
Information Processing Letters 161 (2020) 105976

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

About blockchain interoperability

Pascal Lafourcade a, Marius Lombard-Platet b,c,∗
a Université Clermont-Auvergne, LIMOS CNRS UMR 6158, Aubière, France
b Be-Studys, Geneva, Switzerland
c Département d’informatique de l’ENS, École normale supérieure, CNRS, PSL Research University, Paris, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 August 2019
Received in revised form 31 January 2020
Accepted 23 May 2020
Available online 27 May 2020
Communicated by Luca Viganò

Keywords:
Decentralized ledger
Interoperability
Blockchain

A blockchain is designed to be a self-sufficient decentralised ledger: a peer verifying 
the validity of past transactions only needs to download the blockchain (the ledger) 
and nothing else. However, it might be of interest to make two different blockchains 
interoperable, i.e., to allow one to transmit information from one blockchain to another 
blockchain. In this paper, we give a formalisation of this problem, and we prove 
that blockchain interoperability is impossible according to the classical definition of a 
blockchain. Under a weaker definition of blockchain, we demonstrate that two blockchains 
are interoperable is equivalent to creating a ‘2-in-1’ blockchain containing both ledgers, 
thus limiting the theoretical interest of making interoperable blockchains in the first 
place. We also observe that all practical existing interoperable blockchain frameworks work 
indeed by exchanging already created tokens between two blockchains and not by offering 
the possibility to transfer tokens from one blockchain to another one, which implies a 
modification of the balance of total created tokens on both blockchains. It confirms that 
having interoperability is only possible by creating a ‘2-in-1’ blockchain containing both 
ledgers.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Blockchain was first introduced in 2008 by Nakamoto in 
[1]. In their paper, the anonymous author(s) described the 
first decentralised ledger: a database in which anyone can 
write, and that is not controlled by a single or a conglom-
erate of identities. Since then, many other blockchains have 
been described: Ethereum [2], Ripple [3] and many others. 
In May 2019, 248 active blockchains were listed on [4].

While many different blockchains exist, there is no di-
rect way of reaching interoperability, at least without a 
trusted third party. Consider for instance a client willing 
to convert their Bitcoins to Ether: they would need to con-

* Corresponding author.
E-mail addresses: pascal.lafourcade@limos.fr (P. Lafourcade), 

marius.lombard-platet@ens.fr (M. Lombard-Platet).
https://doi.org/10.1016/j.ipl.2020.105976
0020-0190/© 2020 Elsevier B.V. All rights reserved.
sume the amount of Bitcoins they wants to convert and 
to generate the equivalent amount of Ether. While Bitcoin 
consumption may be reachable (by sending coins to a non-
existing address, such as the address 0), it is impossible to 
spontaneously generate Ether (or any other kind of cryp-
tocurrency). For now, the problem is solved with the help 
of trusted brokers (also called escrows), even though other 
solutions are on their way [5,6].

The issue of interoperability is solved in some cases, 
like “atomic exchanges” and hash-locking [7], in which 
game theory ensures that a broker only benefits when 
following the protocol. However the question of trustless 
interoperability in the general context remains open.

Contributions We introduce a theoretical background to 
blockchain interoperability, providing a formal definition 
of a blockchain and of interoperability. We then prove 

https://doi.org/10.1016/j.ipl.2020.105976
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2020.105976&domain=pdf
mailto:pascal.lafourcade@limos.fr
mailto:marius.lombard-platet@ens.fr
https://doi.org/10.1016/j.ipl.2020.105976


2 P. Lafourcade, M. Lombard-Platet / Information Processing Letters 161 (2020) 105976

 

that, by definition, interoperability between two public 
blockchains is impossible. However, we contend that there 
may be special conditions under which two blockchains 
can be interoperable. This leads us to prove the equiva-
lence between two interoperable public blockchains and 
a ledger emulating both blockchains on two separate reg-
istries.

Related work The concept of sidechains (a sidechain is a 
blockchain attached to another blockchain, with exchanges 
possible between the two blockchains) has been explored 
in [8]. The authors describe a two-way peg in which a 
sidechain is fed with an SPV proof, a short proof of the 
transaction allowing for lightweight clients. The sidechain 
plays the role of a lightweight client, and can thus al-
low subsequent operations following the SPV proof. How-
ever, this pegging system requires a contest period, during 
which it is assumed that people will verify that the SPV 
proof does not come from a fork. Hence, additional trust 
is required in this model. In a paper from 2016 [7], Bu-
terin lists ways of reaching interoperability, and focuses on 
trusted inter-chains exchanges, where one sends money on 
blockchain A and receives some in blockchain B.

Similarly, the Interledger protocol [6] (ILP) allows one 
to automatize money transfers while leveraging the risk 
of fraud, thanks to micro-transactions. Yet, ILP is more 
about escrow synchronization than interoperability as we 
define it later on. In an ILP transaction from blockchain A
to blockchain B, one must find an escrow having enough 
money on B (or several escrows having in total enough 
money), so the transfer can occur. More generally, we con-
sider that interoperability can for instance allow money to 
‘disappear’ from A and to ‘reappear’ on B, without the 
need for trusted escrows.

Interoperability has been notably implemented in the 
blockchain network Kadena [9], in which transfers from 
one blockchain of the network to another is possible. The 
money is destroyed on one side and generated on the 
other. Kadena also uses smart contracts for securing es-
crow transfer. However, there is no indication that Kadena 
can operate with chains outside of their specific network. 
So in our terminology, we say that Kadena is a “N-in-1 
blockchain”, which is to say one blockchain, with several 
ledgers.

To the best of our knowledge, no theoretical work on 
interoperability has been done to date. Our work, rather 
than giving a practical implementation of an interoperable 
blockchain, gives a theoretical background to the topic, and 
explores the conceptual meaning of having interoperable 
blockchains.

Outline In the next section, we formally define a blockchain
and interoperability. In Section 3, we prove that it is 
impossible by design to have interoperability between 
blockchains. In Section 4, we show that interoperability is 
possible with a weaker definition of the blockchain. Before 
concluding, in Section 5, we prove that interoperability is 
equivalent to having a blockchain with two ledgers.
2. Preliminaries

Sets and tuples are noted in calligraphic font: A, algo-
rithms in serif: Mine. When a deterministic algorithm, say 
Algorithm, returns some value x from some input i, we use 
the notation x ← Algorithm(i). If Algorithm is randomised, 
we use the notation x $←− Algorithm(i). A list of elements 
e1, . . . , en (in this order) is represented by [e1, . . . , en]. We 
denote concatenation of two lists a and b with a‖b. The 
set of elements belonging to A but not to B is noted A\B
(this set is also called the difference of A and B.)

2.1. Blockchain definition

Various definitions of blockchain have already been 
given [10,11]. In this work, we rather give a formalization 
of blockchains, which we believe is easier to use for prov-
ing theoretical results such as the one in this paper.

Intuitively, a blockchain is a chain of transactions. More 
precisely, each element of the chain (each block) con-
tains several transactions (or one or none), as well a proof 
needed for consensus to take place. For instance in Bit-
coin [1] or similar Proof of Work blockchains, the proof 
is a nonce (a random number such that the hash of the 
block is below a threshold value); in a Proof-of-Stake such 
as the Casper version for Ethereum [2] the proof con-
sists of the successive bets on what the next block will 
be; in a Proof-of-Elapsed-Time as designed by Intel [12], 
the proof is instead a certificate obtained from the SGX (a 
trusted enclave). Note that it exists blockchains not requir-
ing proofs (for instance, one can argue that PBFT consensus 
does not require proof), in which case we consider the 
proof is empty.

Definition 1 (Blockchain). Let T be a set of transactions and 
P be a set of proofs. A blockchain is a tuple of elements 
B = (L, W , Emit, Mine), where:

• A ledger L is a list of transactions with their proofs 
defined by: L = [([t1,1, t1,2, . . . ], p1), . . . , [([tn,1, tn,2,

. . . ], pn)] with ti, j ∈ T and pi ∈P .
• W is such that W ⊂ T , W is called the pool of wait-

ing transactions.
• Emit is a deterministic algorithm taking one transac-

tion t ∈ T and W as input, and returning an updated 
pool Emit(t, W) = W ∪ t .

• Mine is an algorithm taking L, W and returning a new 
ledger L′ , a new pool W ′ , where for any W ⊂ T , and 
for (L′, W ′) $←− Mine(L, W), we have that L′ is of the 
form L‖[(transacs, p)], where transacs is a list con-
taining all elements from W\W ′ , and p ∈P a proof.

Furthermore, after a call to Emit or Mine, the ledger L
and the waiting pool W of B are updated with the values 
returned by said algorithms. In other words, Mine and Emit
are not pure functions [13], as they have side effects on 
the blockchain.



P. Lafourcade, M. Lombard-Platet / Information Processing Letters 161 (2020) 105976 3
At this point, transactions are appended (or not) to the 
blockchain after a call to Mine. We hereby give a formal 
definition of what a valid transaction is.

Definition 2 (Valid transaction). Let B = (L, W, Emit, Mine)

be a blockchain, and let t be a transaction (t ∈ W), t is a 
valid transaction for B (currently in state L) if and only 
if there exists a block in the ledger returned by Mine con-
taining t .

As we can see, the validity of a transaction depends on 
the state of the ledger; if a transaction is valid at one point, 
it may not be valid forever, and reciprocally. For instance, 
a transaction from user U to user V is valid only as long 
as U has enough funds. Yet, after the emission and the in-
sertion of the transaction in the blockchain, U may issue 
other transactions, emptying their wallet. This is the clas-
sical issue of double spending.

The same is true for smart contracts: here, they are 
seen as a special subset of transactions, and they affect the 
state of the ledger. Because Mine has access to the whole 
ledger, it can take into account the smart contract’s side 
effects.

Note that Mine is a randomized algorithm, and as such, 
there is no guarantee that all users will agree on the same 
ledger. Because blockchain is a decentralised ledger, state 
synchronisation must be ensured. For this, we introduce a 
synchronisation algorithm, called Consensus.

Definition 3 (Decentralised blockchain). A decentralised block-
chain is a tuple B′ = (L, W, Emit, Mine, Consensus) where:

• B = (L, W, Emit, Mine) is a blockchain,
• Consensus is a deterministic algorithm, taking as input 
B, a set S of tuples (Li, Wi) such that ∀(Li, Wi) ∈
S , we have that (Li, Wi, Emit, Mine) is a blockchain. 
Furthermore, for (L∗, W∗) ← Consensus(B, S), then 
(L∗, W∗) ∈ S ∪ (L, W). In other words, from a list of 
potential new blocks, Consensus chooses (or accepts) 
one of them, or rejects them all (and returns (L, W)).

• After a call to Consensus, B′ ’s ledger and waiting pool 
components are replaced with the values returned by 
said algorithms.

The idea of Consensus is that when a peer updates 
their local version of the blockchain, they first receive pos-
sibly more than one new version (i.e., new blocks) from 
peers. However only one of these new blocks will be ac-
cepted, and all the network must agree on this block.

Definition 4 (Secure blockchain). We say that a decen-
tralised blockchain (L, W , Emit, Mine, Consensus) is secure
if it is computationally hard for a user to craft a new ledger 
L′ and a new transaction pool W ′ such that for all S such 
that (L′, W ′) ∈ S , we have both that Consensus(B, S) =
(L′, W ′) and L is not a prefix of L′ .

This definition makes a blockchain immune against his-
tory rewriting (and double spending), as it is computation-
ally hard to rewrite old blocks.
2.2. Interoperability definition

The concept of interoperability is to enable two block-
chains to work together. A classic blockchain A accepts 
transactions because given the current state of A’s ledger, 
the transaction does not violate A’s rules. Similarly, we say 
that a blockchain A that is interoperable with blockchain 
B accepts transactions because, given the current state of 
A and B’s ledgers, the transaction does not violate A’s 
rules. Furthermore, if the rules for said transaction only 
imply conditions on A’s ledger, then the transaction does 
not require B to be valid, and as such does not make use 
of the interoperability. So an interoperable transaction on 
A must be dependent on B’s ledger: if B’s ledger is equal 
to some values, then the transaction is valid; otherwise it 
is invalid.

We now give a formalization of this definition.

Definition 5 (Blockchain interoperability). Let A = (LA, WA,

EmitA , MineA , ConsensusA) and B = (LB , WB , EmitB , MineB ,

ConsensusB) be two decentralised blockchains. Let �A

(resp. �B ) be the set of all possible values for A’s ledger 
LA (resp. LB ). A is interoperable with B if there exists:

• a transaction t ∈ T ,
• a non-empty subset ωA ⊂ �A ,
• a non-empty proper subset ωB � �B

such that there exists a block containing t that is accepted 
by ConsensusA if LA ×LB ∈ ωA × ωB , and rejected other-
wise.

A and B are interoperable if they are both interoperable 
with each other.

3. General impossibility of interoperability

Our first result is to show that it is impossible to have 
interoperability between two blockchains in general.

Theorem 1. Under the Definitions 3 and 5, blockchain interop-
erability is impossible.

Proof. Assume that an interoperable transaction t exists. 
Then there is a set ωB of possible ledger values of B for 
which a block containing t is accepted by ConsensusA , if 
LB ∈ ωB . Moreover, if LB ∈ �B\ωB , then ConsensusA will 
refuse any block containing t .

However, ConsensusA only takes A, S as arguments, 
where S is a set of tuples (Li, Wi) (see Definition 3). As 
a consequence, ConsensusA is independent from B, and 
especially from LB . Then, if t is accepted by ConsensusA

when LB ∈ ωB , then t is also accepted by ConsensusA

when LB ∈ �B\ωB ; this implies that �B\ωB = ∅, i.e., 
ωB = �B , which is a contradiction with the hypothesis of 
Definition 5, namely that ωB is a proper subset of �B . �

This result is actually quite straightforward if we re-
member that a blockchain is, by construction, made to be 
self-sufficient: no blockchain can rely on external data. Es-
pecially, no blockchain can rely on another blockchain for 



4 P. Lafourcade, M. Lombard-Platet / Information Processing Letters 161 (2020) 105976
asserting the validity of a transaction. Hence, interoperabil-
ity is a contradiction of one of the intrinsic characteristics 
of blockchain.

The interpretation of the result is as follows: with-
out additional assumptions, interoperability between two 
blockchains is impossible. Therefore, to achieve interoper-
ability further assumptions need to be made. For instance, 
in the two-way pegged blockchain mechanism, a dispute 
period is required for each interoperability operation; as 
the blockchain cannot know by itself whether the pro-
posed SPV proof is the one of the latest block.

4. Interoperability with a weaker definition

Even though blockchain is not suited for interoperabil-
ity stricto sensu, we can generalise our blockchain defini-
tion, in order to make a blockchain interoperable.

Hypothesis 1. We assume that for two blockchains A =
(LA, WA, EmitA, MineA , ConsensusA) and B, with A both 
MineA and ConsensusA have access to both A and B: 
ConsensusA is of the form ConsensusA(A, B, S), and 
MineA is of the form MineA(LA, LB , WA, WB).

We now use the notation ConsensusA(A, B, ·) to note 
the new consensus algorithm. Hence, the ‘version’ of 
Consensus in the previous definition, is now noted
ConsensusA(A, ∅, ·). Similarly, the non-interoperable ver-
sion of Mine is now noted as MineA(LA, ∅, WA, ∅).

Definition 6 (Interoperable transaction). Under the assump-
tion Hypothesis 1, a transaction t on the blockchain 
A is said to be interoperable with B if t can be ac-
cepted by ConsensusA(A, B, ·) but cannot be accepted by 
ConsensusA(A, ∅, ·).

In this context, we have the following result.

Theorem 2. Under Hypothesis 1, it is possible to build interop-
erable blockchains.

Proof. Note that we already know that interoperable 
blockchains exist, such as Kadena [9] or other blockchains 
listed in [5], but we give an example of interoperable 
blockchain in our own theoretical framework.

Consider two decentralised blockchains A = (LA, WA,

EmitA, MineA , ConsensusA) and B. On the blockchains we 
define accounts. An account ownership is defined by the 
knowledge of a private key, and for simplicity the pub-
lic key is assimilated to the account itself. A transaction 
t ∈ TA (resp. TB ) specifies the sender’s public key, the re-
ceiver’s public key, an amount and a signature of the pre-
vious fields by the sender’s private key. An account i on 
blockchain A (resp. B) is designed by i A (resp iB ).

We build blockchain B so that it is interoperable with 
blockchain A in the following sense: a user can ‘create’ 
money on B if and only if at least the same amount of 
money has been consumed on A, by sending it to a ‘bin’ 
account.
We first note that accounts owned by nobody exist. 
In our scheme, in most cryptosystems the public key 0
(consisting of only zeroes) is not linked to any private 
key. Thus, while the account 0A exists and money can be 
transferred on this account, it cannot be claimed by any-
one.

Let us construct B in order to fulfil the previous re-
quirements. First, let us define the interoperability trans-
actions t∗(mB , pkB), which sends some amount of money 
mB from 0B to the account pkB on B. t∗(mB , pkB) is only 
valid if1 there is at least one transaction on LA sending m
to the account 0A , with m > mB .

Then, let us construct MineB : a transaction t is valid 
for MineB(LB , LA, WB , WA) if and only if t is valid for 
MineA(LA, ∅, WA, ∅), or if both statements are true:

• t is an interoperability transaction transferring some 
amount of money m from 0B to an account on 
B,

• LA contains a transaction sending at least m on the 
zero-address 0A .

Similarly, ConsensusB(B, A, ·) is conceived to accept 
new ledgers that would have been accepted by
ConsensusA(B, ∅, ·), as well as ledgers where the new 
blocks are constituted solely of transactions that are ac-
cepted by ConsensusA(B, ∅, ·) and valid interoperability 
transactions (valid in the meaning that at the time of their 
incorporation in the ledger, the sender has enough funds 
to emit the transaction).

With this construction, we immediately get that B is 
interoperable with A: a user can transfer assets from A to 
B, which is shown by the fact that some transactions (here 
denoted t∗) are only valid on B if the sender has enough 
funds on A. �
5. Equivalence of interoperable blockchains with a single 
blockchain

Even though interoperable blockchains can be tweaked 
into existence, we argue that they are conceptually equiv-
alent to a single blockchain. More precisely, we argue 
that they are equivalent to one blockchain, composed 
of two ledgers. Such a blockchain can be easily imple-
mented: if the first bit of the transaction is 0, then apply 
the transaction to the first ledger, and if 1 to the sec-
ond.

We say that two blockchains are equivalent if any valid 
transaction on one blockchain corresponds to one valid 
transaction on the other blockchain. This definition implies 
that two equivalent blockchains will have very similar evo-
lutions of their ledgers. As Mine is not deterministic, we 
cannot ensure that the two ledgers will be identical, but 
the definition we give is enough for practical uses.

1 Note that for a real cryptocurrency more checks would be needed for 
any practical use, notably because of the fact that in the current setting, 
anyone can withdraw m from 0B as many times as they want. However, 
for the sake of simplicity, we only describe a simple, naive interoperability 
operation here, so these checks are omitted.



P. Lafourcade, M. Lombard-Platet / Information Processing Letters 161 (2020) 105976 5
Definition 7 (Blockchain equivalence). Let there be two 
blockchains A = (LA , WA, EmitA, MineA) and B = (LB , WB ,

EmitB , MineB) accepting transactions from TA and TB , re-
spectively. A and B are said to be equivalent if there 
exists a bijection ϕ : TA → T B such that, if both ledgers 
are equivalent, then there is an equivalence of the valid 
transactions. In mathematical terms, ϕ(LA) = LB ⇒ ∀t A ∈
TA, t A is a valid transaction for A ⇔ ϕ(t A) is a valid trans-
action for B).

Note that ϕ(LA) is the generalization of ϕ to ledgers: 
if LA = [[t1,1, t1,2, . . . ] , . . . , [tn,1, tn,2, . . . ]

]
, then ϕ(LA) =

[[ϕ(t1,1), ϕ(t1,2), . . . ], . . . , [ϕ(tn,1), ϕ(tn,2), . . . ]], in the case 
of a ledger without proofs. If the ledger has proofs (see 
Definition 1), ϕ would need to work on a projection of the 
ledger: a projection in which every poof is removed. This 
subtlety has been removed from the definition for the sake 
of simplicity.

For instance, let us assume that two blockchains are 
equivalent, and two smart contracts being the reciprocal 
image of each other. This means that whatever transac-
tion triggers one smart contract, the effects on the state 
of the blockchain will be equivalent to the effects on the 
state of the image blockchain: in both cases, the accept-
able elements after the transaction are the same (up to 
a bijection). This definition does not guarantee that the 
smart contract will behave identically: for instance, one 
could image a smart contract updating a useless write-only 
variable, which by definition does not affect the set of fu-
ture acceptable transactions as it is write-only. However, it 
ensures that the behaviour of the blockchain is strictly the 
same in both cases.

Theorem 3. A decentralised blockchain A interoperable with a 
blockchain B is equivalent to a decentralised blockchain C con-
taining both A and B’s ledgers.

Proof. Let A = (LA, WA, EmitA, MineA, ConsensusA) and 
B be two decentralised blockchains, with A being inter-
operable with B. A being interoperable with B, we have 
MineA of the form MineA(LA, LB , ·), and ConsensusA of 
the form ConsensusA(A, B, ·).

Let TA (resp. TB ) be the set of transactions for A (resp. 
B). Note that TA contains interoperability transactions. Let 
C be the tuple C = (LC , WC , EmitC , MineC , ConsensusC ).

We define the set of transactions for C , TC = (TA ×∅) ∪
(∅ × TB). Let c A (resp. cB ) be the canonical projector of TC

on TA (resp. TB ).
For (LA‖[(transacsA, p A)], W ′

A) = MineA(LA, LB ,

c A(WC )) and (LB‖[(transacsB , pB)], W ′
B) = MineB(LB ,

cB(WC )), we define: MineC (LC , WC ) = (LC ‖[(transacsA ×
∅‖∅ × transacsB , p A × pB), (W ′

A × ∅) ∪ (∅ ×W ′
B)]).

Simply put, MineC is a parallelisation of MineA and 
MineB : a block proposed by MineC is a block comprised 
of the transactions accepted by MineA and MineB .

Similarly, ConsensusC is built as a parallelisation of 
ConsensusA and ConsensusB . If ConsensusA(A, B, c A(SC ))

= (L∗
A, W∗

A) and ConsensusB(B, cB(SB)) = (L∗
B , W∗

B), then 
we define ConsensusC = (LA × ∅‖∅ × LB , WA × ∅ ∪ ∅ ×
WB).
By construction, we see that C is a decentralised 
blockchain. Furthermore, by construction each transaction 
accepted by MineC is either accepted by MineA or MineB
and, conversely, each transaction accepted by MineA or 
MineB is accepted by MineC , hence the equivalence of the 
blockchains. �

In practice, Theorem 3 means that creating two interop-
erable blockchains is equivalent to creating one blockchain, 
with a ledger divided into two separate registries: a ‘2-in-
1’ blockchain. So while creating interoperable blockchains 
(with a lax definition of a blockchain) is possible, we ar-
gue that the conceptual interest of doing so is limited. 
However, it may be interesting to create an interoperable 
blockchain on top of an already existing blockchain. Do-
ing so allows both blockchains to fully operate, without 
the older blockchain being affected by anything. Nonethe-
less the obvious restriction is that only one of the two 
blockchains will be interoperable with the other, with all 
the limits implied by this fact.

6. Conclusion

In this paper, we explored the possibility of making two 
blockchains interoperable. We showed that, under classical 
definitions, it is impossible to make a blockchain interact 
with anything other than itself. If we relax the definition, 
we do get the possibility of interoperable blockchains, but 
doing so is equivalent to creating a ‘2-in-1’ blockchain, i.e., 
a blockchain with two ledgers.

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could 
have appeared to influence the work reported in this pa-
per.

References

[1] S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system, http://
www.bitcoin .org /bitcoin .pdf, 2009.

[2] V. Buterin, Ethereum: a next-generation smart contract and decen-
tralized application platform, https://github .com /ethereum /wiki /wiki /
White -Paper, 2014.

[3] D. Schwartz, N. Youngs, A. Britto, The ripple protocol consen-
sus algorithm, https://ripple .com /files /ripple _consensus _whitepaper.
pdf, 2014.

[4] CryptoID, Crypto-currency blockchain explorers, https://
chainz .cryptoid .info/, 2019.

[5] S. Johnson, P. Robinson, J. Brainard, Sidechains and interoperability, 
arXiv e-prints, arXiv:1903 .04077, 2019.

[6] S. Thomas, E. Schwartz, A protocol for interledger payments, https://
interledger.org /interledger.pdf, 2015.

[7] V. Buterin, Chain interoperability, https://www.r3 .com /wp -content /
uploads /2017 /06 /chain _interoperability _r3 .pdf, 2016.

[8] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, 
A. Poelstra, J. Timón, P. Wuille, Enabling blockchain innovations 
with pegged sidechains, http://www.opensciencereview.com /papers /
123 /enablingblockchain -innovations -with -pegged -sidechains, 2014.

[9] W. Martino, M. Quaintance, S. Popejoy, Chainweb whitepaper, http://
kadena2 .novadesign .io /wp -content /uploads /2018 /08 /chainweb -v15 .
pdf, 2018.

[10] J. Garay, A. Kiayias, N. Leonardos, The bitcoin backbone protocol: 
analysis and applications, in: Advances in Cryptology - EUROCRYPT, 
2015.

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://chainz.cryptoid.info/
https://chainz.cryptoid.info/
http://refhub.elsevier.com/S0020-0190(20)30063-6/bib3ADBCF3F75E52E09361351099F92E5D2s1
http://refhub.elsevier.com/S0020-0190(20)30063-6/bib3ADBCF3F75E52E09361351099F92E5D2s1
https://interledger.org/interledger.pdf
https://interledger.org/interledger.pdf
https://www.r3.com/wp-content/uploads/2017/06/chain_interoperability_r3.pdf
https://www.r3.com/wp-content/uploads/2017/06/chain_interoperability_r3.pdf
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://kadena2.novadesign.io/wp-content/uploads/2018/08/chainweb-v15.pdf
http://kadena2.novadesign.io/wp-content/uploads/2018/08/chainweb-v15.pdf
http://kadena2.novadesign.io/wp-content/uploads/2018/08/chainweb-v15.pdf
http://refhub.elsevier.com/S0020-0190(20)30063-6/bibD70AE7B16A386A69116B097E282AF76Bs1
http://refhub.elsevier.com/S0020-0190(20)30063-6/bibD70AE7B16A386A69116B097E282AF76Bs1
http://refhub.elsevier.com/S0020-0190(20)30063-6/bibD70AE7B16A386A69116B097E282AF76Bs1


6 P. Lafourcade, M. Lombard-Platet / Information Processing Letters 161 (2020) 105976
[11] A.F. Anta, K. Konwar, C. Georgiou, N. Nicolaou, Formalizing and im-
plementing distributed ledger objects, SIGACT News 49 (2) (2018) 
58–76.

[12] IBM Hyperledger Consortium, Hyperledger sawtooth, https://
sawtooth .hyperledger.org /docs /core /releases /latest /index .html, 2017.

[13] B. Milewski, Pure functions, laziness, i/o, and monads, https://
www.schoolofhaskell .com /school /starting -with -haskell /basics -of -
haskell /3 -pure -functions -laziness -io, 2014.

http://refhub.elsevier.com/S0020-0190(20)30063-6/bib02F72011319A54FD5309518E2BEB9397s1
http://refhub.elsevier.com/S0020-0190(20)30063-6/bib02F72011319A54FD5309518E2BEB9397s1
http://refhub.elsevier.com/S0020-0190(20)30063-6/bib02F72011319A54FD5309518E2BEB9397s1
https://sawtooth.hyperledger.org/docs/core/releases/latest/index.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/index.html
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io

	About blockchain interoperability
	1 Introduction
	2 Preliminaries
	2.1 Blockchain definition
	2.2 Interoperability definition

	3 General impossibility of interoperability
	4 Interoperability with a weaker definition
	5 Equivalence of interoperable blockchains with a single blockchain
	6 Conclusion
	References


