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Abstract11

When designing a new symmetric block cipher, it is necessary to evaluate its robustness against12

differential attacks. This is done by computing Truncated Differential Characteristics (TDCs) that13

provide bounds on the complexity of these attacks. TDCs are often computed by using declarative14

approaches such as CP (Constraint Programming), SAT, or ILP (Integer Linear Programming).15

However, designing accurate and efficient models for these solvers is a difficult, error-prone and16

time-consuming task, and it requires advanced skills on both symmetric cryptography and solvers.17

In this paper, we describe a tool for automatically generating these models, called Tagada (Tool18

for Automatic Generation of Abstraction-based Differential Attacks). The input of Tagada is an19

operational description of the cipher by means of black-box operators and bipartite Directed Acyclic20

Graphs (DAGs). Given this description, we show how to automatically generate constraints that21

model operator semantics, and how to generate MiniZinc models. We experimentally evaluate our22

approach on two different kinds of differential attacks (e.g., single-key and related-key) and four23

different symmetric block ciphers (e.g., the AES (Advanced Encryption Standard), Craft, Midori,24

and Skinny). We show that our automatically generated models are competitive with state-of-the-art25

approaches. These automatically generated models constitute a new benchmark composed of eight26

optimization problems and eight enumeration problems, with instances of increasing size in each27

problem. We experimentally compare CP, SAT, and ILP solvers on this new benchmark.28
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1 Introduction38

Symmetric cryptography provides algorithms for ciphering a text given a secret key. Differ-39

ential cryptanalysis is a well-known attack technique that aims at checking if the key can40

be guessed by introducing differences and studying their propagation during the ciphering41

process [6]. To evaluate the robustness of a new ciphering algorithm towards differential42

attacks, we compute Truncated Differential Characteristics (TDCs) as initially proposed by43

Knudsen in [20], where sequences of bits are abstracted by Boolean values in order to locate44

differences (without computing their exact values). We first solve an optimization problem45

(called Step1-opt) that aims at finding a TDC that has a minimal number of differences that46

pass through non-linear operators. This provides bounds on the complexity of differential47

attacks, and in some cases these bounds are large enough to ensure security. When bounds48

are not large enough, we have to solve an enumeration problem (called Step1-enum) that49

aims at finding all TDCs that have a given number of differences that pass through non-linear50

operators. Finally, for each enumerated TDC, we have to compute a Maximum Differential51

Characteristic (MDC), i.e., find difference values that have the largest probability given52

their positions identified in the TDC. MDCs are then used to design attacks. Computing an53

MDC given a TDC is a problem that is efficiently tackled by CP solvers (thanks to table54

constraints) [16]. Step1-opt and Step1-enum are much more challenging problems. They55

may be solved by using declarative approaches such as CP (Constraint Programming), SAT,56

or ILP (Integer Linear Programming) [11]. However, designing accurate and efficient models57

for these solvers is a difficult, error-prone and time-consuming task, and it requires advanced58

skills in both symmetric cryptography and combinatorial optimization.59

Contributions and Overview of the Paper60

In this paper, we describe a tool (called Tagada) that automatically generates MiniZinc61

models for solving Step1-opt and Step1-enum problems given a cipher description. In62

Section 2, we introduce a unifying framework for describing symmetric block ciphers by63

means of elementary operators and bipartite Directed Acyclic Graphs (DAGs) that specify64

how these operators are combined. In Section 3, we formally define Step1-opt and Step1-enum65

problems, and we describe existing approaches for solving these problems.66

In Section 4, we describe the input format of Tagada which is based on the framework67

introduced in Section 2. Operator semantics are specified by functions which may be black68

boxes extracted from an existing implementation of the cipher. The DAG is specified in a69

JSON file. As the creation of this file may be tedious, Tagada includes a set of functions70

for easing its generation. Tagada also includes a function for automatically transforming71

the input description into an operational cipher. Hence, the correctness of the description is72

tested by comparing the outputs of the automatically generated cipher with the outputs of73

the original implementation of the cipher.74

In Section 5, we describe how Tagada automatically generates MiniZinc [21] models for75

computing TDCs. One key point is to define constraints associated with operators. In existing76

models, these constraints have been crafted by researchers, and some of these constraints77

require to have advanced knowledge on both symmetric cryptography and mathematical78

modelling. We show how to automatically generate these constraints from the functions that79

describe operator semantics. We also automatically improve models by both enriching and80

shaving the DAG.81

In Section 6, we experimentally evaluate these models for two kinds of differential attacks,82

i.e., single-key and related-key, and four ciphering algorithms, i.e., the AES, Craft, Midori83
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and Skinny. We report results obtained with ILP, SAT and CP solvers. We also compare the84

automatically generated models with state-of-the-art hand-crafted models, and we show that85

Tagada models are competitive with them.86

Notations87

We denote [n, m] the set of all integer values ranging from n to m. Sequences of bits are88

denoted by x, y, z, . . . (possibly sub-scripted). The length of a sequence x is denoted #x.89

The bitwise xor operator is denoted ⊕. Tuples are denoted t (possibly sub-scripted), and90

the arity of a tuple t is denoted #t. We denote [0, 1]k∗p the set of all possible tuples of k-bit91

sequences of arity p. Given two tuples of bit sequences t = (y1, . . . , yn) and t′ = (y′
1, . . . , y′

n),92

we denote t ⊕ t′ the tuple corresponding to (y1 ⊕ y′
1, . . . , yn ⊕ y′

n).93

2 Unifying Description of Symmetric Block Ciphers94

The best-known symmetric block cipher is the AES (Advanced Encryption Standard),95

which is the standard for block ciphers since 2001 [12]. There exist many other symmetric96

block ciphers, that have been designed for previous competitions or the ongoing lightweight97

cryptography standardization competition organized by the NIST (National Institute of98

Standards and Technology). Some ciphers are designed for devices with limited computational99

resources, for example: Craft [5], Deoxys [19], Gift [2], Midori [1], Present [8], Skinny [4],100

Simon and Speck [3].101

As our goal is to design a generic tool that automatically generates a model for computing102

TDCs from the description of a cipher, we describe these ciphers in a unified way, by means of103

DAGs. This unifying description is our first step towards automatic differential cryptanalysis.104

2.1 Ciphering Operators105

The encryption of a plaintext is achieved by applying elementary ciphering operators. Each106

operator o has a tuple of input parameters denoted tin(o) and a tuple of output parameters107

denoted tout(o) such that each parameter is a bit sequence, i.e., tin(o) = (x1, . . . , x#tin(o))108

and tout(o) = (y1, . . . , y#tout(o)) = o(x1, . . . , x#tin(o)). Without loss of generality, we assume109

that all bit sequences have the same length k (if this is not the case, we may split sequences110

so that they all have the same length). Typically, k = 8 (resp. k = 4) and k-bit sequences111

correspond to bytes (resp. nibbles).112

▶ Example 1. The AES uses four elementary operators that operate on bytes (i.e., k = 8):113

xor, such that tin(xor) = (x1, x2), tout(xor) = (y1), and y1 = x1 ⊕ x2;114

ShiftRows, denoted SRs with s ∈ [0, 3], such that tin(SRs) = (x1, x2, x3, x4), tout(SRs) =115

(y1, y2, y3, y4), and ∀i ∈ [1, 4], yi = x1+(i+s)%4 where % is the modulo operation (in other116

words, SRs simply shifts the positions of the four input bytes);117

MixColumns, denoted MC, such that tin(MC) = (x1, x2, x3, x4), tout(MC) = (y1, y2, y3,118

y4), and ∀i ∈ [1, 4], yi = (Mi,1 ⊗ x1) ⊕ (Mi,2 ⊗ x2) ⊕ (Mi,3 ⊗ x3) ⊕ (Mi,4 ⊗ x4) where Mi,j119

are constant coefficients, and ⊗ is a finite field multiplication;120

SubBytes, denoted S, such that tin(S) = (x1), tout(S) = (y1), and y1 is obtained from x1121

by using a substitution that is represented by a look-up table, called S-Box.122

More generally, there are two main categories of operators that ensure two main concepts123

identified by Shannon in [24]: Non-linear operators that ensure confusion, and linear operators124

that ensure diffusion. Non-linear operators are either S-Boxes (like the AES SubBytes) or125

CVIT 2016
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non-linear arithmetic operations (like in ARX1 structures). The most common linear126

operations used in symmetric ciphers are: multiplication by a MDS (Maximum Distance127

Separable) matrix (like the AES MixColumns), bit permutations, xor and rotation (like128

the AES ShiftRows). Every linear operator o satisfies the following property: ∀t, t′ ∈129

[0, 1]k∗#tin(o), o(t) ⊕ o(t′) = o(t ⊕ t′).130

2.2 Description of a Cipher with a DAG131

Given a plaintext and a key, a cipher returns a ciphertext. The plaintext and the key are132

bit-sequences, and we assume that they have been split into k-bit sequences. The ciphertext133

is computed by applying operators, and this process may be described by a DAG that134

contains two different kinds of vertices denoted P and O, respectively: each vertex in P135

corresponds to a parameter and is a k-bit sequence, whereas each vertex in O corresponds to136

an operator. Arcs connect operators to their input and output parameters: the predecessors137

(resp. successors) of an operator o are denoted pred(o) (resp. succ(o)) and they correspond138

to input (resp. output) parameters. As parameters are ordered, pred(o) and succ(o) are139

tuples (instead of sets) and the order is represented by arc labels: an incoming arc (x, o)140

(resp. outgoing arc (o, x)) is labelled with i ∈ [1, #tin(o)] (resp. i ∈ [1, #tout(o)]), meaning141

that x is the ith input (resp. output) parameter in pred(o) (resp. succ(o)).142

Some input parameters have no predecessor in the DAG. These input parameters either143

correspond to k-bit sequences that are resulting from the plaintext or the key, or to constant144

values. The set of input parameters that are constant values is denoted C.145

Most ciphers are iterative processes composed of r rounds. This round decomposition146

does not appear in the DAG as it is not necessary for automatically generating models.147

▶ Example 2. We display in Fig. 1 the DAG that describes the first AES round.148

3 Optimization and Enumeration of TDCs149

We first define MDCs in Section 3.1; then we define TDCs in Section 3.2; and finally, we150

define the two problems addressed in this paper, Step1-opt and Step1-enum, in Section 3.3.151

3.1 Maximum Differential Characteristics152

To design differential attacks, we study the propagation of differences during the ciphering153

process. To introduce differences in a k-bit sequence x, we xor it with another k-bit sequence154

x′, and we denote δx the resulting differential sequence, i.e., δx = x ⊕ x′. When δx = 0,155

there is no difference (i.e., x = x′) whereas when δx ̸= 0 there are differences (i.e., x ̸= x′).156

Similarly, we denote δt the differential tuple obtained by xoring the elements of the two157

tuples t and t′, i.e., δt = t ⊕ t′. By abuse of language, we say that a tuple δt is equal to 0158

whenever all its elements are equal to 0, i.e., δt does not contain differences.159

Given an operator o, some input/output differences are more likely to occur than others,160

and this is quantified by means of differential probabilities.161

▶ Definition 3 (Differential probability of an operator). The probability that an operator o162

transforms an input difference δtin into an output difference δtout is163

po(δtout |δtin) = #{(t, t′) ∈ [0, 1]k∗#tin(o) × [0, 1]k∗#tin(o) : δtin = t ⊕ t′ ∧ δtout = o(t) ⊕ o(t′)}
2k∗#tin(o)164

1 ARX schemes use only modular Addition, Rotation and xor.
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Figure 1 DAG of the first round of the AES for 128-bit keys. Bytes are represented with squares,
and operators with circles. The input key and plaintext have 128 bits and are split into 16 bytes
colored in blue and green, respectively. Yellow squares correspond to the text state after one
encryption round. Pink squares correspond to the first round sub-key and are obtained from the
blue squares by applying operations which are not displayed to avoid overloading the figure (these
operations are: 16 xors, 4 SubBytes, and 1 xor with a constant).

This probability is equal to 0 or 1 for linear operators. More precisely, for any linear165

operator o, po(δtout |δtin) = 1 if o(δtin) = δtout and po(δtout |δtin) = 0 otherwise. This166

comes from the fact that for any linear operator o and any input parameters t and t′,167

o(t) ⊕ o(t′) = o(t ⊕ t′).168

When an operator o is not linear, po may be different from 0 and 1 and the only case169

where po(δtout |δtin)=1 is when δtin =δtout =0. In all other cases, it is strictly smaller than 1.170

▶ Example 4. For the AES, all operators but SubBytes are linear. For SubBytes, the171

probability pS(δtout |δtin) belongs to {0, 2−6, 2−7, 1}.172

Let us now formally define what is an MDC.173

▶ Definition 5 (MDC). Given a DAG that describes a cipher, a differential characteristic174

is a function δ : P \ C → [0, 1]k that associates a differential sequence δxi with every non-175

constant parameter xi ∈ P \ C. The probability of a differential characteristic is obtained by176

multiplying, for each operator o ∈ O, the probability po(δsucc(o)|δpred(o)) where δt denotes177

the tuple obtained by replacing every parameter xi that occurs in t by δxi if xi ∈ P \ C, and178

by 0 if xi ∈ C.179

An MDC is a differential characteristic with maximum probability.180

3.2 Truncated Differential Characteristics181

MDCs are usually computed in two steps, as initially proposed by Knudsen in [20]: First, we182

search for TDCs, and then we compute MDCs associated with TDCs.183

A TDC is a solution to an abstract problem. More precisely, the abstraction of a k-bit184

differential sequence δx is a Boolean value denoted ∆X such that ∆X = 1 iff δx contains a185

CVIT 2016
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difference, i.e., δx ̸= 0. Similarly, the abstraction of a differential tuple δt = (δx1, . . . , δxi)186

is the Boolean tuple ∆t = (∆x1, . . . , ∆xi) such that ∆xj is the abstraction of δxj for each187

j ∈ [1, i].188

▶ Definition 6 (TDC). Given a bipartite DAG that describes a cipher, a TDC is a function189

∆ : P \ C → {0, 1} that associates a Boolean value ∆xi with every non-constant parameter190

xi ∈ P \ C.191

A concretization of a TDC ∆ is a differential characteristic δ such that, for each non-192

constant parameter x ∈ P \ C, ∆x = 0 ⇔ δx = 0. ∆ is concretizable if it has at least one193

concretization, the probability of which is different from 0.194

Finding a concretization of a TDC that has a maximal probability (or proving that the195

TDC cannot be concretized) is efficiently tackled by CP solvers thanks to table constraints196

(see, e.g., [16]). However, there exists an exponential number of candidate TDCs with respect197

to the number of non-constant parameters in P \ C. Hence, the key point for an efficient198

solution process is to reduce as much as possible the number of candidate TDCs. This is199

done by adding constraints that prevent the generation of non concretizable TDCs as much200

as possible, without removing any concretizable TDC.201

▶ Example 7 (xor). If δy1 = δx1 ⊕ δx2, then it is not possible to have only one sequence202

in {δx1, δx2, δy1} which contains a difference. Therefore, we can add the constraint ∆x1 +203

∆x2 + ∆y1 ̸= 1 for each xor operator.204

▶ Example 8 (MC). There is no straightforward constraint that may be associated with205

MC as knowing which input parameters contain differences is not enough to know which206

output parameters contain differences: To answer this question, we must know the exact207

values of the input differences. However, MC usually satisfies the MDS property [25] that208

relates the number of input differences with the number of output differences. The exact209

definition of this relation depends on the constant coefficients Mi,j . For the AES, this relation210

is: among the four input differences δx1, . . . , δx4 and the four output differences δy1, . . . , δy4,211

either all differences are equal to 0, or at least five of them are different from 0. Hence, we212

can add the constraint
∑4

i=1 ∆Xi + ∆Yi ∈ {0, 5, 6, 7, 8} for each MC operator.213

▶ Example 9 (SRs). SRs simply moves bytes. Therefore, we can add an equality constraint214

between the corresponding Boolean variables, i.e., ∀i ∈ [1, 4], ∆yi = ∆x1+(i+s)%4.215

▶ Example 10 (S). S is not linear, and we cannot deterministically compute the output216

difference δy1 given the input difference δx1. However, as the look-up table is a bijection, we217

know that δx1 = 0 ⇔ δy1 = 0. Therefore, we can add the constraint ∆x1 = ∆y1 for each S218

operator.219

3.3 Definition of Step1-opt and Step1-enum Problems220

As the probability po(δtout |δtin) associated with a non-linear operator o is equal to 1 whenever221

δtout = δtin = 0 whereas it is very small otherwise (e.g., smaller than or equal to 2−6 for222

the AES Sbox), we can compute an upper bound on an MDC by computing a lower bound223

on the number of active non-linear operators in a TDC, where an operator is said to be224

active whenever its input/output differential tuples are different from 0. More precisely,225

let s(∆) be the number of active non-linear operators in a TDC ∆ (i.e., s(∆) = #{o ∈226

O : o is not linear ∧ δpred(o) ̸= 0}), and let s∗ be the minimal value of s(∆) for all possible227

TDCs ∆. If the maximal probability of an active non-linear operator is equal to p, then228
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the probability of an MDC is upper bounded by ps∗ . For example, for the AES this upper229

bound is 2−6·s∗ . In some cases, this upper bound is small enough to ensure the security of230

the cipher with respect to differential attacks, and it is not necessary to actually compute231

MDCs. Most papers that introduce new ciphering algorithms demonstrate the security of232

their cipher with respect to differential attacks only by computing this upper bound (e.g.,233

[5]). When the upper bound ps∗ is large enough to allow mounting differential attacks, we234

have to enumerate all possible TDCs that have a given number of active non-linear operators,235

and we have to search for an MDC for each of these TDCs.236

Step1-opt is the problem that aims at computing s∗ whereas Step1-enum is the problem237

that aims at enumerating all TDCs that have a given number of active non-linear operators.238

There exist different kinds of differential attacks, depending on where differences can be239

injected. In this paper, we consider Single-key attacks, where differences are only injected in240

the clear text (i.e., for each k-bit sequence xi coming from the input key, we have ∆xi = 0),241

and Related-key attacks, where differences can be injected in both the plaintext and the key.242

3.4 Existing Approaches for Solving Step1-opt and Step1-enum243

Two dedicated approaches have been proposed to solve these problems: An approach based244

on dynamic programming (e.g., for AES [13] and Skinny [11]), and an approach based on245

Branch & Bound (e.g., for AES [7]). The dynamic programming approach is rather efficient,246

but it runs out of memory for large instances (e.g., when the key has more than 128 bits247

for the AES); the Branch & Bound approach has no memory issue but needs weeks to solve248

middle size instances and cannot be used to solve all instances within a reasonable amount249

of time.250

Also, ILP, CP, or SAT are commonly used to solve Step1-opt and Step1-enum: on251

Skinny [11], Craft [18], Deoxys [26, 10], AES [23, 16], and Midori [15], for example.252

While ILP/CP/SAT approaches require less programming work than dedicated ones,253

they still require designing mathematical models. In particular, it is necessary to find254

constraints that limit the number of non concretizable TDCs as much as possible, and this255

can be time-consuming. In this paper, we present an automatic way to generate models for256

Step1-opt and Step1-enum.257

4 Description of a Symmetric Block Cipher with Tagada258

The DAG associated with a cipher (see Section 2) must be described in a JSON file. This259

file first specifies a list of parameters such that each parameter has one attribute, i.e., its260

name (which must be unique). Then, it specifies a list of operators such that each operator261

has three attributes, i.e., its list of input parameters, its list of output parameters, and its262

UID (a unique identifier) that must correspond to an executable function.263

▶ Example 11 (JSON representation of a xor followed by a SubBytes).264

{ "parameters": [ {"name": "X00"}, {"name": "K00"}, {"name: "ARK00"}, {"name": "S00"} ],265

"operators": [ {"uid": "xor_2_1", "in": ["X00", "K00"], "out": ["ARK00"]},266

{"uid": "s_1_1", "in": ["ARK00"], "out": ["S00"]}] }267

The UIDs xor_2_1 and s_1_1 correspond to computable functions: xor_2_1 reads two k-bit268

sequences and outputs their xor, and s_1_1 reads one k-bit sequence and returns the269

substitution associated with it according to the S-Box.270

Some patterns may be repeated in the DAG. For example, let us consider the DAG describing271

the first round of the AES displayed in Fig. 1. At the top level of this DAG, there are 16 xors272
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which correspond to the AddRoundKey (ARK) step, where each byte of the text (in blue) is273

xored with the corresponding byte of the key (in green). As it is tedious to write 16 times274

the JSON representation of one xor operation, Tagada provides functions corresponding to275

meta-operators, where a meta-operator is a classical combination of operators.276

▶ Example 12 (ARK meta-operator). The ARK meta-operator has 3 groups of parameters:277

the first group corresponds to the 16 input text bytes; the second to the 16 input key278

bytes; and the third to the 16 output parameters. This meta-operator generates the JSON279

description of 16 xors such that each xor has two input parameters coming from the first280

and the second group, and one output parameter from the third group.281

These meta-operators strongly simplify the definition of the JSON file. For example, the282

JSON file corresponding to 4 rounds of the AES contains 364 parameters and 288 operators.283

This file is generated by approximately 100 lines of code when using meta-operators.284

To test the JSON file, Tagada provides a function that has three input parameters,285

i.e., a JSON file F describing a cipher, a plaintext X and a key K, and that returns the286

ciphertext obtained when ciphering X with K according to F (this computation is done by287

performing a topological sort to order DAG operators, and applying operators in this order).288

This function allows us to test the correctness of the JSON file with the initialization vectors,289

i.e., a set of (key, plaintext, ciphertext) triples that are usually provided by cipher authors290

to validate that implementations are correct. Moreover, these vectors are mandatory for the291

authors of all candidates to NIST’s competitions.292

5 Automatic Generation of Models with Tagada293

We show how Tagada automatically generates state-of-the-art MiniZinc models for solving294

Step1-opt and Step1-enum problems given JSON files that describe ciphers. This is done295

in four steps: (i) generation of constraints from the black boxes associated with operators296

(Section 5.1); (ii) simplification of the DAG (Section 5.2); (iii) extension of the DAG297

(Section 5.3); and (iv) generation of the model from the DAG and the constraints (Section 5.4).298

5.1 Automatic Generation of Constraints299

As pointed out in Section 3.2, the key point for an efficient process is to tighten the abstraction300

to prevent as much as possible the generation of non concretizable TDCs. For non-linear301

operators, we add a constraint to ensure that ∆x1 = ∆y1 where x1 is the input parameter302

and y1 is the output parameter because δx1 = 0 ⇔ δy1 = 0 for all non-linear operators.303

For linear operators, we have to add constraints and, in all existing works, these constraints304

have been manually derived from a careful analysis of operators, as illustrated in Ex. 7 to 9.305

While this has lead to efficient models, this was also time-consuming and error-prone. Hence,306

we propose to automatically generate table constraints for which domain consistency can be307

efficiently achieved. Tables are generated by using the functions that provide operational308

definitions of these operators. More precisely, the constraint associated with an operator o is309

the relation Ro of arity #tin(o) + #tout(o) which contains every boolean tuple corresponding310

to possible difference positions for the input/output parameters of o. As o(t)⊕o(t′) = o(t⊕ t′)311

for any t, t′ ∈ [0, 1]k∗#tin(o), we can build Ro from the black-box definition of o as follows.312

▶ Definition 13 (Relation Ro associated with an operator o).313

Ro = {(∆(x1), . . . , ∆(x#tin(o)), ∆(y1), . . . , ∆(y#tout(o))) : ∃(x1, . . . , x#tin(o)) ∈ [0, 1]k∗#tin(o),314

(y1, . . . , ytout(o)) = o(x1, . . . , x#tin(o))} where ∀x ∈ [0, 1]k, ∆(x) denotes the Boolean abstrac-315

tion of x, i.e., ∆(x) = 0 ⇔ x = 0.316
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To compute this relation, we must (i) enumerate every possible k-bit sequence for317

every input parameter of o; (ii) for each enumerated combination of input parameters,318

call o to compute output parameter values; and (iii) compute the abstract Boolean values319

∆(xi) and ∆(yj) from their corresponding concrete values xi and yj . Hence, the time320

complexity for building Ro is O(t · 2k·#tin(o)) where t is the time complexity of o. Moreover,321

k is either equal to 4 or 8, and the number of input parameters, #tin(o), is usually very322

small: #tin(o) is always smaller than or equal to four for all ciphers we are aware of.323

Hence, the relation is rather quickly computed. In the worst case, the relation contains all324

possible binary tuples of arity #tin(o) + #tout(o). Hence, the space complexity of Ro is325

O((#tin(o) + #tout(o)) · 2#tin(o)+#tout(o)).326

Note that the relation is computed only once for each black box (identified by its UID),327

even if the operator is used more than once in the DAG. Also, some operators are shared by328

multiple ciphers (such as xor which is used by all ciphers). In this case, we only need to329

compute the relation once, and we can memorize it for future usage.330

▶ Example 14 (Rxor). The relation associated with xor contains all triples (∆(x1), ∆(x2),331

∆(x1 ⊕x2)) such that x1, x2 ∈ [0, 1]k. We obtain the following relation: Rxor = {0, 0, 0), (0, 1,332

1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}. Note that the constraint (∆x1, ∆x2, ∆y1) ∈ Rxor has exactly333

the same semantics as the constraint ∆x1 + ∆x2 + ∆y1 ≠ 1 which is usually added to model334

xors in Step1-opt and Step1-enum models.335

▶ Example 15 (RMC). The relation associated with MC contains all tuples (∆(x1), ∆(x2),336

∆(x3), ∆(x4), ∆(y1), ∆(y2), ∆(y3), ∆(y4)) such that ∀i ∈ [1, 4], yi = (Mi,1 ⊗ x1) ⊕ (Mi,2 ⊗337

x2) ⊕ (Mi,3 ⊗ x3) ⊕ (Mi,4 ⊗ x4). This relation, for the AES MixColumns, contains 102 tuples338

and has exactly the same semantics as the constraint associated with the famous MDS339

property, i.e., it contains only tuples such that the number of 1s belongs to {0, 5, 6, 7, 8}.340

5.2 Simplification of the DAG341

Before generating a MiniZinc model from the DAG, we simplify it by applying shaving rules342

that are described in this section. Each rule removes one or more vertices (and their incident343

edges), and rules are iteratively applied until reaching a fixed point.344

Rule 1: Merging Equal Parameters345

When building a relation Ro from the black box that defines o, we can search for every couple346

of input/output parameters (xi, yj) with i ∈ [1, #tin(o)] and j ∈ [1, #tout(o)] such that xi is347

always equal to yi: before starting the construction of the relation, we initialize a Boolean348

variable eqxi,yj
to true; then, for each generated tuple of input parameters, if xi ̸= yj we set349

eqxi,yj
to false. This does not change the time complexity for building the relation.350

We use a list Leq to store all couples of parameter vertices that are related by an equality351

relation. Before starting the shaving process, Leq is initialized by traversing the DAG: for352

each operator vertex o and each couple of parameter vertices (xi, yj) ∈ pred(o) × succ(o), if353

eqxi,yj
= true, we add (xi, yj) to Leq. Rule 1 is triggered whenever Leq is not empty, and it354

is defined as follows.355

▶ Definition 16 (Rule 1). If Leq ≠ ∅, then (i) compute equivalence classes corresponding356

to all binary equality relations contained in Leq (using a union-find data structure) and357

reinitialize Leq to the empty set, (ii) merge all vertices of the DAG that belong to a same358

equivalence class, and (iii) remove every operator vertex that is no longer connected to a359

parameter vertex.360
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▶ Example 17 (SRs). When building the relation RSRs , we infer that eqxi,yj
is true whenever361

j = 1 + (i + s)%4. When considering the DAG displayed in Fig. 1, this allows us to merge362

each of the four predecessors of SRs vertices with its corresponding successor and, finally, to363

remove each SRs vertex.364

Rule 2: Suppressing Constant Parameters365

When an operator vertex o has an input parameter xi that has a constant value c, then this366

parameter is replaced with 0 in the differential characteristic because c ⊕ c = 0 (see Def. 3)367

and, therefore, it can be removed from the DAG. Moreover, if all input parameters of o are368

constants, its outputs are also constants and o can be removed from the DAG.369

We use a list LC to store all parameter vertices that have constant values. Before starting370

the shaving process, LC is initialized with the set C of constant parameters. Rule 2 is371

triggered whenever LC is not empty, and it is defined as follows.372

▶ Definition 18 (Rule 2). If LC ̸= ∅, then repeat the three following steps until LC = ∅:373

(i) choose one operator vertex o such that pred(o) ∩ Lc ̸= ∅;374

(ii) remove from the DAG and from LC every parameter vertex xi ∈ LC ∩ pred(o);375

(iii) if pred(o) = ∅, then remove o from the DAG and add every parameter vertex in succ(o)376

to LC , else update the relation Ro and update Leq if new equality relations can be inferred;377

▶ Example 19 (xor with a constant value). Let us consider a xor operator with one output378

parameter y1 and two input parameters x1 and x2 such that x1 is a constant (i.e., x1 ∈ C).379

This operator is used in the key schedule of the AES, for example. In this case, x1 is removed380

from the DAG, the relation associated with this operator becomes {(0, 0), (1, 1)}, and we381

add the couple (x2, y1) to the list Leq.382

Rule 3: Suppressing Free Parameters383

When an output parameter vertex x has no successor and its predecessor o is a linear operator,384

then we can remove both o and x from the DAG because we can deterministically compute385

the output difference δx of o given the differences of all input parameters of o.386

Similarly, when an input parameter vertex x has no predecessor, and it has only one387

successor which is a linear operator, we can also remove both o and x from the DAG because388

we can deterministically compute the input difference δx of o given the differences of all389

other input parameters of o and the difference of its output parameter.390

More formally, Rule 3 is defined as follows.391

▶ Definition 20 (Rule 3). If there exists a parameter vertex x such that the out-degree of x392

is equal to 0 and the predecessor of x is a linear operator, then remove x and the predecessor393

of x from the DAG.394

If there exists a parameter vertex x such that the in-degree of x is equal to 0, the out-degree395

of x is equal to 1, and the successor of x is a linear operator, then remove x and the successor396

of x from the DAG.397

▶ Example 21. Let us consider the DAG displayed in Fig. 1. Every yellow vertex has no398

successor and its predecessor is a linear operator (i.e., a xor). Hence, we can remove all399

yellow vertices, and all xor operators that are predecessors of yellow vertices.400

Also, every green vertex (corresponding to one byte of the plaintext) has no predecessor401

and one successor which is a linear operator (i.e., a xor). Hence, we can remove all green402

vertices, and all xor operators that are successors of green vertices.403
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Figure 2 Shaved DAG obtained from the DAG of Fig. 1 after applying Rules 1, 2, and 3.

Note that we cannot remove vertices that precede S operators, though they have no more404

predecessors once we have removed xor operators that succeeded green vertices, because S405

is not linear. The shaved DAG obtained from the DAG of Fig. 1 after applying Rules 1, 2,406

and 3 is displayed in Fig. 2. We do not apply the shaving rules on vertices associated with407

the key vertices (in blue and pink) as we have not displayed the operator vertices that are408

used to compute pink vertices from blue ones in Fig. 1.409

5.3 Extension of the DAG410

A basic CP model may be generated from the shaved DAG (this will be explained in411

Section 5.4). However, the resulting model is often not tight enough, i.e., the bound provided412

by Step1-opt is smaller than the actual value and/or many solutions of Step1-enum cannot413

be concretized into differential characteristics with strictly positive probabilities. In this414

section, we show how to tighten this model by extending the DAG.415

5.3.1 Generation of New Vertices and Edges from Existing Operators416

In [17, 16, 23], Step1-opt and Step1-enum models are tightened by exploiting the fact that,417

if t1 = MC(t2) and t3 = MC(t4) (where t1, t2, t3, and t4 are tuples of arity 4), then418

t1 ⊕ t3 = MC(t2 ⊕ t4). As a consequence, the MDS property also holds on t1 ⊕ t3 and t2 ⊕ t4,419

i.e., the number of k-bit sequences in t1 ⊕ t3 and t2 ⊕ t4 that are different from 0 is either420

equal to 0 or strictly greater than 4. Hence, a new variable (called diff variable in [16]) is421

added for each parameter of each couple of MC operators. These diff variables are related422

with initial parameters by adding xor constraints. Finally, constraints that ensure the MDS423

property are added for these new diff variables.424

In Tagada, we generalize this idea to all linear operators. Indeed, for any kind of linear425

operator identified by its UID u, we have u(t1) ⊕ u(t2) = u(t1 ⊕ t2). Therefore, for each426

pair of operator vertices o1, o2 ∈ O such that the UID of o1 and o2 is u, we can add a new427

operator vertex whose UID is u and whose input and output parameter vertices are obtained428

by xoring input and output parameter vertices of o1 and o2. More precisely, let pred(o1) =429

(x1,1, . . . , x1,#tin(u)), succ(o1) = (y1,1, . . . , y1,#tout(u)), pred(o2) = (x2,1, . . . , x2,#tin(u)), and430

succ(o2) = (y2,1, . . . , y2,#tout(u)). We extend the DAG as follows:431

For each i ∈ [1, #tin(u)], we add a new parameter vertex x3,i corresponding to the result432

of xoring x1,i and x2,i, i.e., we add a new xor vertex whose predecessors are x1,i and433

x2,i and whose successor is x3,i;434
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For each j ∈ [1, #tout(u)], we add a new parameter vertex y3,j corresponding to the result435

of xoring y1,j and y2,j , i.e., we add a new xor vertex whose predecessors are x1,i and436

x2,i and whose successor is x3,i;437

We add a new operator vertex o3 such that the UID of o3 is u, the predecessors of o3 are438

x3,1, . . . , x3,#tin(u), and the successors of o3 are y3,1, . . . , y3,#tout(u).439

This may be done for each kind of linear operator except xor (as this is useless in this case).440

As this step may drastically increase the size of the DAG, it is optional, and the user can441

choose the kind of linear operator that should be considered for this step.442

5.3.2 Generation of New xors443

xor equations may be combined to generate new equations. For example, consider two xor444

equations: a ⊕ b ⊕ c = 0, and b ⊕ c ⊕ d = 0. By xoring these two equations, we obtain a445

new equation a ⊕ d = 0. This new equation is redundant when computing MDCs, but it446

tightens the abstraction when computing TDCs. Indeed, let ∆i be the boolean abstraction of447

each k-bit sequence i ∈ {a, b, c, d}. If we only post the two constraints (∆a, ∆b, ∆c) ∈ Rxor448

and (∆b, ∆c, ∆d) ∈ Rxor (where Rxor is the relation defined in Ex. 14), then it is possible449

to assign ∆a, ∆b, and ∆c to 1, and ∆d to 0 because (1, 1, 1) ∈ Rxor and (1, 1, 0) ∈ Rxor.450

However, if we add the constraint (∆a, ∆d) ∈ {(0, 0), (1, 1)}, then this assignment is no451

longer consistent.452

This trick was introduced in [16] for the AES, but it has been limited to xors that occur453

in the key schedule. In Tagada, we generalize it to all xors. Let adj(o) = pred(o) ∪ succ(o)454

be the set of input and output parameters of an operator vertex o. For each couple of operator455

vertices (o1, o2) such that both o1 and o2 are xors that share at least one common parameter456

(i.e., adj(o1 ) ∩ adj(o2 ) ̸= ∅), we compute the set S = (adj(o1) ∪ adj(o2)) \ (adj(o1) ∩ adj(o2))457

(corresponding to parameters that are adjacent to o1 or o2 but not to both o1 and o2). If458

S does not contain more than nmax parameters, then we add a new operator vertex o3 to459

the DAG, and we add an edge between each parameter vertex in S and o. This process is460

recursively applied, until no more vertex can be added.461

nmax is a given integer value that is used to control the growth of the DAG: when nmax = 0,462

no new xor operator is added to the DAG; the larger nmax, the more xor operators are463

added.464

For all possible values of #S ∈ [0, nmax], we have to generate the relation associated with465

a xor of #S parameters, as described in Section 5.1. Also, we infer equality relations and466

apply Rule 1 (as described in Section 5.2) to merge vertices of the DAG that belong to a467

same equivalence class.468

5.4 Generation of the MiniZinc Model from the DAG469

Given a DAG, we generate a MiniZinc model as follows:470

We declare a Boolean variable ∆x for each parameter vertex x of the DAG;471

We add a constraint ∆(prec(o), succ(o)) ∈ Ro for each operator vertex o (where ∆(prec(o),472

succ(o)) is the tuple of Boolean variables associated with parameters in prec(o) and473

succ(o));474

We declare an integer variable s which corresponds to the number of active non-linear475

operators in the TDC, and we add a constraint s =
∑

x∈NL ∆x where NL contains the476

set of parameter vertices that are predecessors of a non-linear operator vertex.477
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Midori (35) AES (25) SKINNY (56) CRAFT (38)
model #d #o #e #d #o #e #d #o #e #d #o #e
nmax=0 18 12 0 24 22 0 38 38
nmax=1 18 12 0 25 22 0 38 38
nmax=2 18 12 0 25 22 0 38 38
nmax=3 18 12 0 25 22 0 38 38
nmax=4 18 12 0 24 22 0 38 38
nmax=5 – – – 12 – – – – – –
nmax=0 MC 18 12 – – – 0 38 38
nmax=1 MC 18 12 – – – 0 38 38
nmax=2 MC 18 12 – – – 0 38 38
nmax=3 MC 18 12 – – – 0 38 38
nmax=4 MC 0 35 34 0 23 21 – – – 0 37 37
nmax=5 MC – – – 0 24 21 – – – – – –

Table 1 Model performance summary of Picat-SAT on the 35 Midori instances, 25 AES instances,
56 SKINNY instances and 38 CRAFT instances, for different values of nmax ranging from 0 to 5.
The 6 first (resp. last) rows give results without (resp. with) selecting MC. #d corresponds to the
number of instances where the model is not tight enough. When #d=0, we report the number of
instances that are solved within 1 hour for Step1-opt (#o) and Step1-enum (#e), and we highlight
the best values. We report – when models have not been generated because DAGs are too large.

For Step1-opt, the goal is to minimize s, and we add the constraint s ≥ 1 because TDCs478

must contain at least one active non-linear operator. For Step1-enum, s is assigned to the479

number of active non-linear operators, and the goal is to enumerate all solutions.480

6 Experimental Results481

We performed all experiments on a PC with a Xeon Gold 5118 (2.30 GHz) with 24 cores and482

32 GB of RAM. Each experiment used only one thread, and we ran 20 of them in parallel to483

speed up the computations. All the source-code and results are available online 2 3.484

We consider four symmetric block ciphers for which there exist recent differential crypt-485

analysis results, i.e., the AES [16], Midori [14], Skinny [11], and Craft [18]. For each cipher,486

there are different instances that are obtained by considering either single-key or related-key487

attacks, by changing the size of the key for related-key attacks of ciphers that have different488

key lengths (i.e., 64 and 128 for Midori, 128, 192, and 256 for the AES), and by changing the489

number r of rounds of the ciphering process, starting from r = 3 up to the largest value for r490

considered in the literature. We obtain 35 (resp. 25, 56, and 38) instances for Midori (resp.491

the AES, Skinny, and Craft). Finally, for each instance, we solve two different problems, i.e.,492

Step1-opt and Step1-enum. Hence, our benchmark contains 308 instances.493

Tagada has a parameter nmax that is used to control the maximum size of new generated494

xor equations (see Section 5.3.2). It is also possible to select the linear operators for which495

we infer new vertices and edges as explained in Section 5.3.1. In the four considered ciphers,496

the only linear operator that can be selected is MC as SR is removed during the DAG497

shaving step. Increasing nmax and/or selecting MC tightens the abstraction, but it also498

2 Tagada: https://gitlab.limos.fr/iia_lulibral/tagada/
3 models and results: https://gitlab.limos.fr/iia_lulibral/experiment-results
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Figure 3 CPU time of Picat-SAT, Chuffed and Gurobi on the model generated by Tagada for
Midori instances when nmax = 4 and MC is selected (top plot for Step1-opt and bottom plot for
Step1-enum). State-of-the art is the handcrafted model of [14] run with Picat-SAT.

increases the number of variables and constraints in the generated model.499

In Table 1, we report the number of instances for which the generated model is not tight500

enough (i.e., the bound computed by Step1-opt is smaller than the best known bound) for501

different values of nmax and with or without selecting MC. This shows us that the best502

parameter setting depends on the cipher: For Midori and the AES, it is necessary to select503

MC and to set nmax to a value larger than or equal to 4 to generate a model that is tight504

enough for all instances; For Skinny and Craft, the generated model is tight enough even505

when nmax = 0 and MC is not selected.506

In Table 1, we also report the number of instances that are solved within one hour of507

CPU time by Picat-SAT [27] whenever the model is tight enough (it is meaningless to report508

these results when models are not tight enough, as they do not solve the same problem).509

When increasing nmax, the model has more constraints, and the number of new constraints510

grows exponentially with nmax. In [16] and [14], this parameter has been fixed to 4 for the511

handcrafted models, and this seems to be a rather good setting. However, for the AES,512

one more instance is solved when increasing nmax to 5, and for Skinny one more instance513

is solved when decreasing nmax to 3. For Midori, Skinny and Craft, when nmax = 5 the514

number of new constraints is so large that we have not run the resulting models. As models515

are automatically generated by Tagada, the user can easily fiddle with parameters to find516

the settings that generate the tightest and most efficient models for a cipher.517

In Fig. 3 to 6, we display results, on a per-instance basis, and for three different kinds of518

solvers, i.e. Picat-SAT [27] (that generates a SAT instance from the MiniZinc model and519

uses Lingeling to solve it), Gurobi [22] (which is an ILP solver), and Chuffed [9] (which is520

a CP solver with lazy clause generation). For these figures, we report results for the best521

parameter setting for each cipher, i.e., nmax = 4 and MC is selected for Midori, nmax = 5522

and MC is selected for the AES, nmax = 0 and MC is not selected for Skinny and Craft.523

Picat-SAT is usually more efficient than Chuffed and Gurobi. However, Chuffed is often524

faster on small instances, and Gurobi is the best performing solver on many Craft instances.525

The MiniZinc models for the AES and Midori described in [16] and [14] are publicly526

available, and we compare our automatically generated models with these handcrafted models527

(we only report results with Picat-SAT in this case as this is the best performing solver).528

However, for instances of AES-192 we do not report results obtained with the model of [16]529

because it does not solve the same problem: for these instances, the model of [16] does not530

integrate in the objective function the S-boxes of the last round, which is an error of this531
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model for this particular case. For both Midori and the AES, models automatically generated532

with Tagada are competitive with state-of-the-art handcrafted models. The largest Midori533

instances (when the key has 128 bits and the number of rounds is greater than 17) cannot be534

solved within one hour by the model of [14] whereas the Tagada model solves them. This535

is remarkable because it takes weeks/months for a researcher to design these handcrafted536

models. Moreover, with Tagada we can check that the description of the cipher is correct537

(as explained in Section 4), and the model is automatically generated from this description538

without any human action (except parameter selection).539

For Skinny, the most efficient approach is a dedicated dynamic program [11]. However,540

this approach consumes huge amounts of memory (more than 700 GB of RAM). In [11], a541

MiniZinc model is also described, and results obtained with Picat-SAT are reported. The542

number of instances solved by this approach within one hour on a server composed of 2×AMD543

EPYC7742 64-Core is the same as with our Tagada model when using Picat-SAT, i.e., 22.544

Finally, for Craft, [5] only reports optimal solutions of Step1-opt and does not report545

CPU times. Our Tagada model has found the same solutions as those of [5].546

7 Conclusion547

In this article, we present Tagada, a tool for automatically generating MiniZinc models for548

solving differential cryptanalysis problems given the description of a symmetric block cipher.549

The description is based on a unifying framework, i.e., a DAG that describes how operators550

are combined and black-boxes that give an operational definition of operators.551

This description allows us to perform a correctness verification using initialization vectors552

and comparing the behavior of our implementation with reference implementations found in553

the literature, limiting the possible bugs.554

Then, for each black box operator, we perform an exhaustive search of its input and output555

values to infer a relation that represents a provably optimal abstraction for this operator.556

The DAG is further modified by removing some parts that are not useful for differential557

attacks, and by adding new operators that tighten the model. Finally, the MiniZinc model is558

generated from the relations and the DAG.559

We experimentally compare automatically generated models with state-of-the-art ap-560

proaches on four ciphers (Midori, AES, Skinny, Craft) and on two types of attacks (Single-Key561

and Related-Key). For all scenarios, our models find the same solutions as hand-crafted562

models, and they have similar running times.563

While the models generated by Tagada have the same tightness and performance as564

state-of-the-art hand-crafted models, MIP/CP/SAT solvers still struggle to solve the largest565

instances. Recently, some ad-hoc dynamic programming algorithms have been proposed (for566

instance, on Skinny [11]), and show better scale-up properties though they have high space567

complexities. Hence, we plan to study the possibility of integrating dynamic programming568

approaches within Tagada.569

Also, we plan to integrate other differential attacks than single-key and related-key (i.e.,570

related-tweak, related-tweakey and boomerang attacks), and to extend Tagada so that it571

also generates models for computing MDCs given TDCs. Of course, we will use Tagada to572

analyze the recent ten finalists of NIST’s competition, as there is a need to provide quickly573

differential attacks (or prove the robustness of the cipher against these attacks).574
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