
Secure Intersection with MapReducea

Radu Ciucanu1, Matthieu Giraud2, Pascal Lafourcarde2 and Lihua Ye3

1INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, Bourges, France
2LIMOS, Université Clermont Auvergne, Aubière, France

2Harbin Institute of Technology, China
radu.ciucanu@insa-cvl.fr, {matthieu.giraud, pascal.lafourcade}@uca.fr, 16s003041@stu.hit.edu.cn

Keywords: Intersection, Database, Privacy, Security, MapReduce

Abstract: Relation intersection is a fundamental problem, which becomes non-trivial when the relations to be intersected
are too large to fit on a single machine. Hence, a natural approach is to design parallel algorithms that are
executed on a cluster of machines rented from a public cloud provider. Intersection of relations becomes even
more difficult when each relation belongs to a different data owner that wants to protect her data privacy. We
consider the popular MapReduce paradigm for outsourcing data and computations to a semi-honest public
cloud. Our main contribution is the SI protocol that allows to securely compute the intersection of an arbitrary
number of relations, each of them being encrypted by its owner. The user allowed to query the intersection
result has only to decrypt the result sent by the public cloud. SI does not leak (to the public cloud or to the
user) any information on tuples that are not in the final relation intersection result, even if the public cloud
and the user collude i.e., they share all their private information. We prove the security of SI and provide an
empirical evaluation showing its efficiency.

1 Introduction

The outsourcing of data and computation to the
cloud is a frequent scenario in modern applications.
While many cloud service providers with an impor-
tant amount of data storage and of power computation
(e.g., Google Cloud Platform, Amazon Web Services,
Microsoft Azure) are available for a reasonable price,
they do not usually address the fundamental problem
of protecting the privacy of users’ data.

We consider the problem of intersection of an ar-
bitrary number of relations, each of them belonging
to a different data owner. We rely on the popular
MapReduce (Dean and Ghemawat, 2004) paradigm
for outsourcing data and computations to a semi-
honest public cloud. Our goal is to compute the re-
lations’ intersection while preserving the data privacy
of each of the data owners. We develop a protocol
based on public-key cryptography where each par-
ticipant encrypts and sends their respective relation
on the public cloud. The public cloud cannot learn
neither the input nor the output data, but may learn
only the number of tuples in the intersection. At the

aThis research was conducted with the support of the
FEDER program of 2014-2020, the region council of
Auvergne-Rhône-Alpes.

end of the computation, the public cloud sends the
result to the final user, who only has to decrypt the
received data. Moreover, if the public cloud and the
user collude, i.e., the public cloud knows the user’s
private key, then they cannot learn other information
than the intersection result. Secure intersection is
a foundational primitive and have a lot of applica-
tions such that privacy-preserving data mining (Ag-
garwal and Yu, 2008), homeland security (Cristofaro
and Tsudik, 2010), human genome research (Baldi
et al., 2011), Botnet detection (Nagaraja et al., 2010),
social networks (Mezzour et al., 2009), and location
sharing (Narayanan et al., 2011).

1.1 Intersection with MapReduce

A protocol to compute the intersection between two
relations with MapReduce is presented in Chapter 2
of (Leskovec et al., 2014). We stress that intersec-
tion between relations can be viewed as intersection
between sets where elements of these sets correspond
to the tuples of relations having the same schema. In
Chapter 2 of (Leskovec et al., 2014), the public cloud
receives two relations from their respective owner. A
collection of cloud nodes has chunks of these two re-
lations. The Map function creates for each tuple t a

key-value pair (t, t) where key and value are equal to
the tuple. Then, the key-value pairs are grouped by
key, i.e., key-value pairs output by the map phase that
have the same key are sent to the same reducer (i.e.,
the application of the Reduce function to a single key
and its associated values). For each key, the Reduce
function checks if the considered key is associated to
two values. If it is the case, i.e., tuple t is present
in both relations, then the public cloud produces and
sends the pair (−, t) to the user. The dash value “−”
corresponds to the empty value, we use it to be con-
sistent with the key-value result form required by the
MapReduce paradigm. Hence, all tuples received by
the user correspond to the tuples that are in both rela-
tions. However, the key is irrelevant at the end of the
protocol, hence we often omit to write it. We illustrate
this approach with the following example considering
three relations.

Example. We consider three relations: NSA,
GCHQ, and Mossad. Each relation is owned by their
respective data owner. These three relations have the
same schema composed of only one attribute, namely
“Suspect’s ID”. They are defined as follows: NSA =
{F654,U840,X098}, GCHQ = {F654,M349,P027},
and Mossad= {F654,M349,U840}. An external user,
called Interpol, wants to receive the intersection of
these three relations denoted Interpol. We illus-
trate the execution of intersection computation with
MapReduce for this setting in Figure 1. First, each
data owner outsources their respective relation into
the public cloud. Then, the public cloud runs the
map function on each relation and sends the output to
the master controller in order to sort key-value pairs
by key. Then, the master controller sends key-value
pairs sharing the same key to the same reducer. In
our example, we obtain 5 reducers since there are 5
different suspect’s identities. The reducer associated
to the key F654 has three values since the identity
F654 is present in the three relations NSA, GCHQ,
and Mossad. The reducer associated to the key M349
has two values since the identity M349 is only present
in relations GCHQ and Mossad. Other reducers are
associated to only one value since the corresponding
suspect’s identity is present in only one relation. For
each reducer, the public cloud runs the reduce func-
tion and sends the tuple (−,ID) to the user if the sus-
pect’s identity ID is present is the three relations, else
the public cloud sends nothing. In our example, we
observe that the user Interpol only receives the pair
(−,F654) since the suspect’s identity F654 is present
in the three relations NSA, GCHQ, and Mossad.

1.2 Problem statement

We assume n+ 2 parties: n data owners, the public
cloud, and the external user (simply referred as user
in the following). Each data owner is trusted (i.e.,
they dutifully follow the protocol and do not collude
with other party) and outsources a relation Ri, with
i ∈ J1,nK, to the public cloud, denoted C . We denote
by Ri the owner of the relation Ri for i ∈ J1,nK. A
user, denoted U, and who does not know the individ-
ual relations Ri is authorized to query the intersection
of these n relations.

We assume that the public cloud is semi-
honest (Lindell, 2017), i.e., it executes dutifully the
computation task but tries to learn the maximum of
information on relations Ri and on their intersection.
In the original protocol (Leskovec et al., 2014), tuples
of each relation are not encrypted, hence the public
cloud learns all the content of each relation and the
result of the intersection that it sends to the user as il-
lustrated in Figure 1. In order to preserve the privacy
of data owners, the cloud should not learn any plain
input data, contrary to what happens for the original
protocol.

Moreover, we assume that the public cloud can
collude with the user, i.e., they share all their respec-
tive private information. We want that the user that
queried the intersection of these n relations may learn
nothing else than the intersection of the n relations,
even in case of collusion with the public cloud.

1.3 Contributions

We revisit the standard protocol for the computa-
tion of intersection with MapReduce (Leskovec et al.,
2014) and propose a new protocol called SI (for Se-
cure Intersection with MapReduce) that satisfies our
aforementioned problem statement. More precisely:

• Our protocol SI guarantees that the user who
queries the intersection of the n relations learns
only the final result, i.e., tuples that are present in
the n relations. Moreover, the public cloud does
not learn information about the input data that be-
longs to the data owners, it learns only the car-
dinal of each relation and the cardinal of the in-
tersection. SI also satisfies the problem setting
in the presence of collusion between the user and
the public cloud. We prove in the aforementioned
properties in the random oracle model.

• To show the practical scalability of SI, we present
experimental results using the MapReduce open-
source implementation Apache Hadoop 3.2.0.

• Our protocol SI is efficient from both computa-
tion and communication points of view. The over-

Data owners

Relations

NSA

GCHQ

Mossad

Map
NSA

GCHQ

Mossad M
as

te
rC

on
tr

ol
le

r

Public cloud

Key F654

Values
F654
F654
F654

Key M349

Values M349
M349

Key P027
Value P027

Key U840
Value U840

Key X098
Value X098

Reduce

User

Relation Interpol

(−,F654)

Figure 1: Example of intersection with MapReduce between three relations. First, data owners outsource their respective
relation on the public cloud. The public cloud runs the Map function, then the Reduce function verifies if a key is associated
to a list of three values. If that case, only the reducer associated to the key F654 has three values. Hence, the public cloud
sends the tuple (−,F654) to the user.

Protocol Comp. cost Com. cost
Standard 2nN (n+1)N

SI
CE ·N

(n+1)N+C f · (3n−2)
+C⊕ · (2N · (n−2))

Figure 2: Summary of results in big-O. Let N =
max(|R1|, . . . , |Rn|). Let C f (resp. CE , C⊕) be the com-
putation cost of a pseudo-random function evaluation (resp.
asymmetric encryption, xor operation).

head for the computation complexity is linear in
the number of tuples by relation while the com-
munication complexity is the same as in the stan-
dard protocol (Leskovec et al., 2014). Our tech-
nique is based on classical cryptographic tools
such that pseudo-random function, asymmetric
and one-time-pad encryptions. We summarize in
Figure 2 the trade-offs between computation and
communication costs for our secure protocol SI vs
the standard MapReduce protocol computing the
intersection of n≥ 2 relations. In our communica-
tion cost analysis, we measure the total size of the
data that is emitted from a map or reduce node.

1.4 Related Work

As previously mentioned, a relation can be seen as a
set where tuples of the relation are the elements of the
set. Private Set Intersection (PSI) refers to the cryp-
tographic primitive where two parties compute the in-

tersection of their respective sets, such that minimal
information is revealed in the process. It was intro-
duced by Freedman et al. (Freedman et al., 2004). The
aim of such a primitive is to allow the two parties to
learn the elements common to both sets and nothing
else. Such primitives where neither party has any ad-
vantage over the other and where all parties know the
intersection are called mutual PSI (Cristofaro et al.,
2010). On the contrary, primitives where only one
party learns the intersection of the two sets while the
other learns nothing are called one-way PSI (Cristo-
faro et al., 2010). A natural PSI extension is called
PSI with Data Transfer (PSI-DT) (Jarecki and Liu,
2010). In PSI-DT, one or both parties have data as-
sociated with each element of their respective sets.
Thus, the intersection must be transferred with the as-
sociated data. Contrary to these approaches, our pro-
tocol SI does not reveal any information on the inter-
section to the data owner. Only the user knows the
intersection.

The seminal work (Freedman et al., 2004) uses
two-party computation and partial homomorphic en-
cryption allowing two owners to securely compute
the intersection of two sets. The proposed protocol
is proven against semi-honest adversaries in the stan-
dard model and also proven for a malicious adversary
in random oracle model. Authors consider one client
and one server, each of them owning a secret dataset
where the client sends polynomial coefficients associ-
ated to her dataset in an encrypted way to the server.
At the end of the protocol the server knows which ele-

ments are shared with the server while the later learns
nothing. In our protocol SI, we consider an arbitrary
number of clients owning different relations and using
a semi-honest public cloud to send the intersection of
the relations to the user.

Following this work, (Hazay and Nissim, 2010)
proposed an improved construction considering the
presence of a malicious adversaries in the standard
model. Contrary to us, the complexity of this con-
struction still remains not linear in the number of el-
ements in sets. (Cristofaro et al., 2010), and (Kissner
and Song, 2005) proposed protocols for mutual PSI
with linear complexity while in our protocol the user
does not have any set to intersect. The scheme pro-
posed by (Cristofaro et al., 2010) considers a mali-
cious adversary using zero-knowledge proofs. Their
scheme requires that the user performs computations
at the beginning and at the end of the protocol while
she has only to decrypt the final result in our proto-
col. In the scheme of (Kissner and Song, 2005), each
data owner learns the result of the intersection. The fi-
nal result is represented by a polynomial to decrypt in
group. In order to obtain the elements of the intersec-
tion represented by the polynomial, each data owner
has to perform additional computation for each ele-
ment of her inputs while in our protocol, the user has
only to decrypt the result sent by the public cloud.
In this paper, we consider semi-honest adversary and
prove the security of our protocol in the random ora-
cle model. As remarked above, the intersection com-
puted by our protocol is only known by the user and
not by the data owners and the public cloud.

1.5 Outline

We introduce the needed cryptographic tools in Sec-
tion 2. We recall the standard MapReduce set inter-
section protocol (Leskovec et al., 2014) and present
our secure protocol SI in Section 3. In Section 4, we
show experimental evaluations of SI considering in-
tersection between two relations on different number
of tuples, and considering intersection between dif-
ferent number of relations. We prove in Section 5 the
security properties of SI in the random oracle model.

2 Cryptographic Tools

We start by recalling the definitions of negligi-
ble function, then definitions of public-key encryption
scheme and of pseudo-random function used in SI.

Definition 1 (Negligible function (Boneh and Shoup,
2017)). A function ε :N→R is called negligible if for

all c > 0 there exists t0 ∈ N∗ such that for all integers
t ≥ t0, we have |ε(t)|< 1/tc.

Definition 2 (Public-key encryption). Let η be a se-
curity parameter. A public-key encryption (PKE)
scheme consists of three algorithms.

• The randomized key generation algorithm G takes
the security parameter to return a public/secret
key pair (pk,sk).

• The encryption algorithm E takes a public key pk
and a plaintext m to return a ciphertext c. We de-
note by E(pk,m) the encryption of m.

• The deterministic decryption algorithm D takes a
secret key sk and a ciphertext c to return a corre-
sponding plaintext m or a special symbol ⊥ indi-
cating that the ciphertext was invalid. We denote
by D(sk,c) the decryption of c.

Let Π = (G ,E ,D) be a PKE scheme, and A be
a probabilistic polynomial time adversary. A has ac-
cess to the oracle E(pk,LRb(·, ·)) taking (m0,m1) as
input and returns E(pk,m0) if b = 0, E(pk,m1) oth-
erwise. Π is indistinguishable under chosen-plaintext
attack (IND-CPA) if the advantage of the adversary A
against the IND-CPA experiment defined by:

Adv
ind-cpa
Π,A (η) =

∣∣Pr[1← Exp
ind-cpa-1
Π,A (η)]

−Pr[1← Exp
ind-cpa-0
Π,A (η)]

∣∣ ,
is negligible for any polynomial-size A .

Definition 3 (Pseudo-random function). Let η be a
security parameter. A pseudo-random function (PRF)
F is a deterministic algorithm that has two inputs:
k ∈ {0,1}`(η) (where `(·) is a polynomial function),
and x ∈ X . Its output is y := F(k,x) ∈ Y . We said
that F is defined over ({0,1}`(η),X ,Y).

In the rest of the paper, we assume that data of par-
ticipants are included in X , and the size of Y is larger
enough to avoid collisions. Moreover, we denote by
fk(·) = F(k, ·) an instance of F .

Let F be a pseudo-random function, A be a prob-
abilistic polynomial time adversary, Func[X ,Y] be
the space of functions defined over domain X and
codomain Y , and b ∈ {0,1}. If b = 0, the pseudo-
random function F is used. Otherwise a random func-
tion from Func[X ,Y] is used. We define the advan-
tage of the adversary A against the PRF experiment
by:

Adv
prf
F,A(η) =

∣∣Pr[1← Exp
prf-1
F,A (η)]

−Pr[1← Exp
prf-0
F,A (η)]

∣∣ .
We said that F is a secure pseudo-random function

if this advantage is negligible.

3 MapReduce Intersection

We consider n≥ 2 data owners, each of them own-
ing a relation. These n relations have the same schema
and are denoted R1, . . . ,Rn. We first recall in Sec-
tion 3.1 the standard MapReduce protocol to perform
the intersection of n relations, i.e., a simple general-
ization of the binary protocol presented in Chapter 2
of (Leskovec et al., 2014). This protocol obviously
does not verify privacy properties of our problem set-
ting since the public cloud learns all tuples of each
relation sent by the respective data owner, and the in-
tersection of these n relations sent to the user. Then
we present in Section 3.2 our secure protocol denoted
SI that computes the intersection of n relations using
MapReduce. We prove that contrary to the standard
protocol, SI guarantees that the public cloud learns
only cardinals of relations Ri for i ∈ J1,nK. Moreover,
if the public cloud and the user collude, then they
learn the intersection of these n relations that the user
still knows, and cardinals of relations Ri for i ∈ J1,nK
that the public cloud still knows, and nothing else.

3.1 Standard MapReduce Intersection

In the standard protocol (Leskovec et al., 2014), the
Map function creates for each tuple t of each relation
Ri, with i ∈ J1,nK, a key-value pair where the key and
the value are equal to the tuple t. For a key t, the as-
sociated reducer receives a list of tuples t. Hence, if
a tuple t is only present in one relation, the reducer
receives a collection only composed of one tuple t.
On the contrary, if a tuple t ′ is present in all the n re-
lations, the reducer receives a collection of n tuples
equal to t ′. If a key t is associated to a collection of n
tuples t, then the Reduce function produces the key-
value pair (−, t) and sends it to the user. Otherwise,
it produces nothing. All key-value pairs outputted by
the Reduce function constitute the result of the inter-
section of the n relations. We present the standard
protocol (Leskovec et al., 2014) computing the inter-
section protocol with MapReduce in Figure 3.

We now consider a semi-honest public cloud per-
forming the intersection of n relations with MapRe-
duce. In such a scenario, the public cloud learns all
the content of each relation along with the intersec-
tion of these n relations.

3.2 Secure MapReduce Intersection

In order to compute intersection with MapReduce in a
privacy-preserving way between n ≥ 2 relations, our
protocol uses pseudo-random function, asymmetric
and one-time encryptions. We denote by F a secure

Map function:
// key: id of a chunk of Ri
// value: collection of tuples t ∈ Ri
foreach t ∈ Ri do

emit (t, t).

Reduce function:
// key: tuple t ∈ ∪n

i=1Ri
// values: collection of tuples t
L = []

foreach v ∈ values do
L← L∪{v}

if |L|= n then
emit (−, t).

Figure 3: MapReduce protocol to compute the intersection
of n relations.

pseudo-random function defined over (K ,X ,Y) and
by Π = (G ,E ,D) an IND-CPA asymmetric encryp-
tion scheme. We also assume that the length of val-
ues outputted by the pseudo-random function is equal
to the length of ciphertext outputted by the asymmet-
ric encryption scheme. In practice, we can use the
Advanced Encryption Standard (AES) (Daemen and
Rijmen, 2002) with the Cipher Block Chaining mode
on padded message in order to obtain a ciphertext of
the same length than the ciphertext obtained with the
asymmetric encryption.

3.2.1 Preprocessing of our Secure Protocol SI

Before outsourcing their relation to the public cloud,
data owners perform a key setup and a preprocessing
on their respective relation Ri to obtain a protected
relation denoted R∗i . We present the key setup and the
preprocessing phase in Figure 4.

First, we need a secret key k1 ∈ X that is shared
between the n data owners. Moreover we need n− 1
other secret keys ki ∈ K (for 2 ≤ i ≤ n) such that
ki 6= k j for i 6= j. Key ki with i≥ 2 is shared between
the owner of relation R1 and the owner of relation Ri.
Hence, the owner of relation R1 has a set of secret
keys equals to {k1,k2, . . . ,kn} while the owner of re-
lation Ri (for 2≤ i≤ n) has a set of secret keys equals
to {k1,ki}. We stress that the choice of owner of rela-
tion R1 knowing all the secret keys is arbitrary, and we
call the associated relation, i.e., R1, the main relation.

The aim of this preprocessing is to protect owners’
data in order to avoid the public cloud to learn tuples
of each relation and the result of the intersection sent
to the user. Moreover, this preprocessing is in agree-
ment with the MapReduce paradigm. Indeed, each
protected relation R∗i is composed of tuples under the

Preprocessing:
// input: relation Ri with i ∈ J1,nK
// outputs: protected relation R∗i
for 1≤ i≤ n do ki

$←K ;
R∗i ← /0;
if i = 1 then

foreach t ∈ R1 do
R∗1← R∗1∪{(fk1(t),(E(pk, t)⊕n

j=2 fk j(t)))}
else

foreach t ∈ Ri do
R∗i ← R∗i ∪{(fk1(t),(fki(t)))}

return R∗i .

Figure 4: Preprocessing of our secure protocol SI run by
each data owner.

key-value pair form.
First of all, each key of pairs of R∗i is a pseudo-

random evaluation of a tuple using the secret key k1
known by each data owner. Since a pseudo-random
function is deterministic, equal tuples share the same
value of key. Hence, the map phase sends these key-
value pairs to the same reducer as expected.

Moreover, each value of key-value pairs of the
protected relation R∗1 is equal to the encryption of
the tuple using the asymmetric encryption scheme Π

with the user public key pk xored by n− 1 pseudo-
random evaluations of the tuple using secret keys
k2, . . . ,kn. More precisely, for each tuple t ∈ R1, the
preprocessing computes the key-value pair equals to
(fk1(t),E(pk, t)⊕n

j=2 fk j(t)). Hence, when the pub-
lic cloud receives such key-value pairs and colludes
with the user, it cannot learn the value of tuples since
the asymmetric encryption is protected by pseudo-
random evaluations, and secret keys k1, . . . ,kn are not
known by the public cloud.

3.2.2 Map and Reduce Phases of SI Protocol

The preprocessing presented in Figure 4 outputs an
encrypted relation whose tuples are of the key-value
pair form. Hence, once the public cloud receives the
n encrypted relations R∗i (for i ∈ J1,nK) from the data
owners, it runs the Map function that is simply the
identity function.

After the grouping by key, the Reduce function
checks if the current key fk1(t), for t ∈ ∪N

i=1Ri, is as-
sociated to a list of n values. If that is the case, it
means that the n relations contain the tuple associ-
ated to the current key. Then the Reduce function uses
these n values to perform an exclusive or, and obtains
the asymmetric encryption of the tuple E(pk, t) due
the property of the exclusive or.

Finally, the Reduce function produces the key-

value pair (−,E(pk, t)) and sends it to the user. The
output of the Reduce function is in a key-value form
to be consistent with the MapReduce paradigm since
at the end of the SI protocol keys are irrelevant. All
key-value pairs outputted by the Reduce function con-
stitute the intersection of the n relations. The user has
only to decrypt each value of key-value pair using her
secret key in order to obtain the intersection in plain
form. Our protocol SI is described in Figure 5.

Map function:
// key: id of a chunk of R∗i with i ∈ J1,nK
// values: collection of (fk1(t),E(pk, t)⊕n

j=2 fk j(t))
// or (fk1(t), fk j(t)) with j ∈ J2,nK

foreach (k,v) ∈ values do
emit (k,v)

Reduce function:
// key: fk1(t) such that t ∈ ∪n

i=1Ri
// values: collection of E(pk, t)⊕n

j=2 fk j(t) or fk j(t)
// with j ∈ J2,nK
L← []
foreach v ∈ values do

L← L∪{v}
if |L|= n then

E(pk, t)← E(pk, t)⊕n
j=2 fk j(t)⊕n

j=2 fk j(t)
emit (−,E(pk, t))

Figure 5: Map and Reduce functions of SI.

Example. We illustrate our SI protocol following
the example presented in Section 1. First, we per-
form the preprocessing on relations: NSA, GCHQ,
and Mossad. We consider relation NSA as the main
relation. The three data owners share the secret key
k1, data owners of relations NSA and GCHQ share a
secret key k2, and data owners of relations NSA and
Mossad share a secret key k3. Hence, after the pre-
processing phase, we obtain three protected relations
denoted NSA∗, GCHQ∗, and Mossad∗ as illustrated in
Figure 7.

We now illustrate the execution of intersection
computation with MapReduce using our secure pro-
tocol SI in Figure 7.

3.2.3 Proof of Correctness

We say that the protocol SI is correct if for n≥ 2 rela-
tions R1,R2, . . .Rn, SI returns the correct intersection
of the n≥ 2 relations, i.e., the encrypted relation com-
posed of pairs (−,E(pk, t)) such that t ∈ R, where
R := ∩n

i=1Ri.

Relation NSA∗

(Owner knows secret keys k1, k2, and k3.)
Suspect’s Identity

(fk1(F654),E(pk,F654)⊕ fk2(F654)⊕ fk3(F654))
(fk1(U840),E(pk,U840)⊕ fk2(U840)⊕ fk3(U840))
(fk1(X098),E(pk,X098)⊕ fk2(X098)⊕ fk3(X098))

Relation GCHQ∗

(Owner knows secret keys k1 and k2.)
Suspect’s Identity

(fk1(F654), fk2(F654))
(fk1(M349), fk2(M349))
(fk1(P027), fk2(P027))

Relation Mossad∗

(Owner knows secret keys k1 and k3.)
Suspect’s Identity

(fk1(F654), fk3(F654))
(fk1(M349), fk3(M349))
(fk1(U840), fk3(U840))

Figure 6: Protected relations NSA∗, GCHQ∗, and Mossad∗

after the preprocessing phase of our secure protocol SI.

Lemma 1. Assume that the pseudo-random function
family F perfectly emulates a random oracle, then
protocol SI is correct.

Proof. Let R1,R2, . . .Rn be n relations. Let
R∗1,R

∗
2, . . .R

∗
n be the corresponding encrypted relations

computed by the preprocessing phase of SI. We set
R := ∩n

i=1Ri.
For each t ∈R, there exists a key-value pair in rela-

tion R∗1 of the form (fk1(t),E(pk, t)⊕n
i=2 fki(t)), and

a key-value pair in relation R∗j , with 2 ≤ j ≤ n, of
the form (fk1(t), fk j(t)). Following the MapReduce
paradigm, the n values are sent to the same reducer
that sums the corresponding values. Thus, for each
key fk1(t), with t ∈ R, we obtain:

E(pk, t)⊕n
i=2 fki(t)⊕

n
i=2 fki(t) = E(pk, t) .

Hence, for each t ∈ R, reducer associated to the key
fk1(t) emits the pair (−,E(pk, t)) to the user. More-
over, for each t ∈

(
∪n

i=1 Ri
)
\R, the reducer associated

to the key fk1(t) does not output the pair (−,E(pk, t))
since it is associated to less than n values. Finally,
SI produces pairs (−,E(pk, t)) such that t ∈ R corre-
sponding to the intersection of relations R1,R2, . . . ,Rn
which concludes the proof.

4 Experimental Results

We present an experimental comparison be-
tween the standard MapReduce set intersection pro-

tocol (Leskovec et al., 2014), and our secure protocol
SI. We run two types of experiments, where we vary
two different parameters: the number of tuples per re-
lation for a fixed number of 2 relations (Section 4.2),
and the number of intersected relations (Section 4.3).

4.1 Settings

We have done all computations on a cluster running
Ubuntu Server 16.04 LTS1 with Hadoop 3.2.0 2 using
Java 1.8.0 3. We use the Hadoop streaming utility and
implement the Map and Reduce functions in Golang
1.6.2 4. The cluster is composed of one master node
and of ten slave nodes. Each node has four CPU ca-
denced to 2.4 GHz, 80 GB of disk, and 8 GB of RAM.

According to our SI protocol, we use as pseudo-
random function the Advanced Encryption Standard
(AES) symmetric encryption scheme in Cipher Block
Chaining (CBC) encryption mode with a key size of
128 bits. For the purpose of our protocol, the initial
vector is fixed and common to all data owners. For
the asymmetric encryption scheme, we use the RSA-
OAEP scheme with a key size of 2048 bits and SHA-
256 as hash function.

For each experiment, we report average CPU
times over 8 runs. Since the cluster environment is
not isolated from other machines of the netword, we
do not give measures for the communication cost.

4.2 Number of Tuples

In the experiment on the number of tuples, we con-
sider two relations of the same schema composed
of only one attribute. These two relations have the
same cardinal C and share C/2 elements. Tuples of
the first relation consist in all integers from 1 to C,
while tuples of the second relation consist in all inte-
gers from C/2 to C+C/2. We run the original pro-
tocol (Leskovec et al., 2014) and our secure proto-
col SI on couples of relations of cardinal 500,000 to
3,000,000, by step of 250,000.

We remark in Figure 8 that the computation com-
plexity of our secure protocol is linear as determined
in the complexity study (cf. Figure 2).

4.3 Number of Intersected Relations

In the experiment on the number of intersected re-
lations, we consider intersection between different
number of relations of the same schema composed of

1https://www.ubuntu.com/
2https://hadoop.apache.org/
3https://java.com/en/
4https://golang.org/

Data owners

Relations

NSA∗

GCHQ∗

Mossad∗

Map
NSA∗

GCHQ∗

Mossad∗ M
as

te
rC

on
tr

ol
le

r

Public cloud

Key fk1 (F654)

Values
E(pk,F654)⊕3

j=2 fk j (F654)

fk2 (F654)

fk3 (F654)

Key fk1 (M349)

Values fk2 (M349)

fk3 (M349)

Key fk1 (P027)

Value fk2 (P027)

Key fk1 (U840)

Value fk3 (U840)

Key fk1 (X098)

Value E(pk,X098)⊕3
j=2 fk j (X098)

Reduce

User

Relation Interpol

(−,F654)

Figure 7: Example of intersection with MapReduce between three relations using our secure protocol SI. First, data owners
outsource their respective protected relation on the public cloud. The public cloud runs the Map function, then the Reduce
function verifies if keys are associated to a list of three values. In that case, the public cloud only sends one encrypted
tuple from the reducer associated to the key fk1(F654) since it is the only one that contains three values. This tuple is
(−,E(pk,F654)) equals to (−,(E(pk,F654)⊕3

j=2 fk j (F654))⊕3
j=2 fk j (F654).

0.5 1 1.5 2 2.5 3
0

1,000

2,000

Number of tuples (in millions).

C
PU

tim
e

(i
n

se
co

nd
s)

.

Standard
SI

Figure 8: CPU time of the standard MapReduce protocol to
compute the intersection between two relations.

only one attribute. We start by computing the inter-
section of 2 relations to finish with the intersection
of 10 relations. In each case, relations have 500,000
tuples and shares 250,000 tuples. In practice, for
the intersection of 2 ≤ n ≤ 10 relations, tuples of the
first relation consist in integers from 1 to 500,000,
and tuples of the i-th relation, with 2 ≤ i ≤ n, con-
sist in integers from 1 to 250,000 and integers from
i ·250,000+1 to (i+1) ·250,000.

We compare the standard protocol (Leskovec
et al., 2014) and our secure protocol SI for the ex-
periment on the number of intersected relations. As

shown in Figure 9, the computation complexity of our
secure protocol is linear as determined in the com-
plexity study (cf. Figure 2). We observe that the com-
putation complexity is less compare to the experiment
on the number of tuples. Indeed, when we run the SI
protocols with 10 relations of 500,000 tuples (i.e., a
total of 5,000,000 tuples), the CPU time is approx-
imately equals to 550 seconds while the CPU time
for the intersection of 2 relations of 2 millions (i.e.,
a total of 4,000,000 tuples) is approximately equals
to 1,500 seconds. This is due to number of common
elements of each relation. In the case of the inter-
section of 10 relations (each composed of 500,000
tuples), relations share 250,000 while in the case of
the intersection of the 2 relations (each composed of
2,000,000 tuples), relations share 1,000,000 tuples.
Hence, the Reduce function has to performs a large
number of exclusive or on 2048-bits strings.

5 Security Proof

In this section, we provide a formal security proof
of our SI protocol with n ≥ 2 data owners that com-
putes the intersection of n relations and considering
semi-honest adversaries. The n data owners respec-
tively own a relation denoted Ri for 1≤ i≤ n such that
each relation Ri is constituted of Ni unique tuples, and
all relations have the same schema. Moreover, the n

2 3 4 5 6 7 8 9 10
0

200

400

Number of tuples (in millions).

C
PU

tim
e

(i
n

se
co

nd
s)

.

Standard
SI

Figure 9: CPU time of the experiment on the number of
intersected relation on the original protocol(Leskovec et al.,
2014) and of our secure protocol SI.

relations share N tuples in common, in other terms,
we have R := ∩n

i=1Ri with #R = N.
We start by modeling our SI protocol that com-

putes the intersection of n relations by n + 2 par-
ties. The owner of the main relation R1 is de-
noted R1, while others owners are denoted Ri for
2 ≤ i ≤ n respectively. The public cloud is denoted
C , and the user is denoted U. Parties use respec-
tive inputs I = (IR1 , . . . , IRn , IC , IU) and a function
g = (gR1 , . . . ,gRn ,gC ,gU) such that:

• R1 has the input IR1 := (pk,k1, . . . ,kn,R1) where
pk is a public key of the cryptosystem Π , ki ∈
K for 1 ≤ i ≤ n are secret keys for the pseudo-
random function F , and R1 is the relation owned
by R1. The party R1 outputs gR1(I) = ⊥ (where
⊥ denotes that the function returns nothing) since
R1 does not learn any information.

• Ri for 2≤ i≤ n has the input IR1 := (pk,k1,ki,Ri)
where pk is a public key of the cryptosystem Π,
k1 ∈K and ki ∈K are secret keys for the pseudo-
random function F , and Ri is the relation owned
by Ri. The party Ri outputs gRi(I) = ⊥ since it
does not learn any information.

• C has the input IC := pk where pk is a pub-
lic key the cryptosystem Π. It returns gC (I) =
(N1, . . . ,Nn,N) because the party C learns the
number of tuples in each relation Ri for 1≤ i≤ n
and the number of tuples common to these n rela-
tions.

• U has the input IU := (pk,sk) where (pk,sk) is a
key pair of the cryptosystem Π. It returns gU(I) =
R where R = ∩n

i=1Ri, i.e., the result of intersection
between the n relations computed by the public
cloud.

We prove that our protocol SI securely computes

the intersection of n relations in the presence of static
semi-honest adversaries even if the two parties C and
U collude, i.e., if the public cloud and the user share
all their respective public and private information. In
other terms, we prove that the public cloud and the
user do not learn extra information than they have
even if the user share her secret key sk with the public
cloud. The security proof is given in Theorem 1.

Theorem 1. Assume F is a secure pseudo-random
function and that Π is an IND-CPA asymmetric en-
cryption scheme, then the SI protocol securely com-
putes the intersection of n relations in the presence of
static semi-honest adversaries even if parties C and
U collude.

The security proof for Theorem 1 is decomposed
in Lemma 2 for parties Ri (with 1 ≤ i ≤ n), and in
Lemma 3 for the collusion between parties C and U.

Lemma 2. Let η be a security parameter. There exists
probabilistic polynomial-time simulators and SSI

Ri
for

1 ≤ i ≤ n such for all inputs I = (IR1 , . . . , IRn , IC , IU),
we have:

SSI
Ri
(1η, IRi ,gRi(I))

c≡ viewSI
Ri
(I,η) .

Proof. Consider that Ri (with i ∈ J1,nK) is corrupted,
we observe that Ri receives no output and no incom-
ing message from other parties. Thus, we merely need
to show that a simulator can generate the view of party
Ri from its inputs.

We start, with the data owner of the main rela-
tion, i.e., party R1. In the protocol, R1 receives the
public key pk of the user, the n secret keys k1, . . . ,kn
used with the pseudo-random function F , and the re-
lation R1. Formally, SSI

R1
is given (pk,k1, . . . ,kn,R1),

and works as follows:

1. SSI
R1

runs the preprocessing phase (cf. Figure 4)
on input (pk,k1, . . . ,kn,R1). SSI

R1
obtains the pro-

tected relation R∗1 associated to the relation R1.
2. SSI

R1
sends R∗1 to the party C .

In the same way, parties Ri (with i ∈ J2,nK) re-
ceives the public key pk of the user, the secret keys k1
and ki for the pseudo-random function F , and the cor-
responding relation Ri. Formally, SSI

Ri
(for 2 ≤ i ≤ n)

is given (pk,k1,ki,Ri), and works as follows:

1. SSI
Ri

runs the preprocessing phase (cf. Figure 4)
with input IRi =(pk,k1,ki,Ri) and obtains the pro-
tected relation R∗i associated to the relation Ri.

2. SSI
Ri

sends R∗i to the party C .

We remark that SRi , for all i ∈ J1,nK, uses exactly
the same algorithm as the real protocol SI, then it

describes the same distribution as viewSI
Ri
(I), i.e., we

have for 1≤ i≤ n:

SSI
Ri
(1η, IRi ,gRi(I))

c≡ viewSI
Ri
(I,η) ,

which concludes the proof.

Lemma 3. If F is a secure pseudo-random func-
tion and Π is an IND-CPA asymmetric encryption
scheme, then there exists a probabilistic polynomial-
time simulator SSI

C ,U such for all inputs I =

(IR1 , . . . , IRn , IC , IU), we have:

SSI
C ,U((1η, IC ,gC (I)),(1η, IU ,gU(I)))

c≡ viewSI
C ,U(I,η) .

OPRF(j,x) :
if T [j,x] = /0 then T [j,x] $←{0,1}|Y |;
return T [j,x].

Figure 10: Random oracle OPRF.

Proof. Let η ∈ N be a security parameter. Before to
build SSI

C ,U that computes a distribution that can be
simulated perfectly, we use the hybrid argument to
build hybrid simulators denoted S Hi−SI

C ,U for 1≤ i≤ n.

The simulator, S Hi−SI
C ,U works as SI but each evaluation

of the pseudo-random function performed by parties
R j for 1≤ j ≤ i are substituted using the random ora-
cle OPRF presented in Figure 10. We stress that when
an entry is being accessed for the first time, it is cho-
sen at random and then used thereafter.

We start by showing how to build the simulator
S H1−SI

C ,U :

1. S H1−SI
C ,U generates n relations R1, . . . ,Rn of same

schema such that #Ri = Ni for 1 ≤ i ≤ n, and
#R = N.

2. S H1−SI
C ,U generates n secret keys k1, . . . ,kn for the

pseudo-random function, and a key pair (sk, pk)
for the asymmetric encryption scheme Π accord-
ing to the security parameter η.

3. For each tuple t ∈ R1, S H1−SI
C ,U computes

(OPRF(k1, t),E(pk, t)⊕F(k2, t)⊕·· ·⊕F(kn, t))
to construct R∗1, the protected relation associated
to R1.

4. For each tuple t ∈Ri (with 2≤ i≤ n), S H1−SI
C ,U com-

putes (OPRF(k1, t),F(ki, t)) to construct R∗i , the
protected relation associated to Ri.

5. For each tuple t ∈ R, S H1−SI
C ,U computes

(E(pk, t),E(pk, t)) and stores it into a list
S.

6. Finally, simulator S H1−SI
C ,U outputs:

(R1, . . . ,Rn,R∗1, . . . ,R
∗
n,R,S).

Assume by contradiction that there exists a non-
uniform probabilistic-polynomial time distinguisher
D such that for all inputs I, we have:∣∣Pr[D(viewSI

C ,U(I,η)) = 1]

−Pr[D(S H1−SI
C ,U ((1η, IC ,gIC (I)),(1

η, IU ,gIU (I)))) = 1]
∣∣

= µ(η) ,

where µ is a non-negligible function in η.
We construct a non-uniform probabilistic-

polynomial time guessing algorithm A that uses D to
win the PRF experiment against the pseudo-random
function F . Algorithm A works as follows:

1. A generates n relations R1, . . . ,Rn of same schema
such that #Ri = Ni for 1≤ i≤ n, and #R = N.

2. A generates n secret keys k1, . . . ,kn for the
pseudo-random function F , and a key pair (sk, pk)
for the asymmetric encryption scheme Π accord-
ing to the security parameter η.

3. For each tuple t ∈ R, A computes E(pk, t) and
stores the value into a list S such that S[t] =
E(pk, t).

4. For each tuple t ∈ R1 \R, A computes:
(fb(k1, t),E(pk, t)⊕ F(k2, t)⊕ ·· · ⊕ F(kn, t)) to
construct R∗1, the protected relation associated to
R1. If t ∈ R, then A computes (fb(k1, t),S[t]⊕
F(k2, t)⊕·· ·⊕F(kn, t)) and stores the tuples into
R∗1.

5. For each tuple t ∈ Ri (with 2≤ i≤ n), A computes
(fb(k1, t),F(ki, t)) to construct R∗i , the protected
relation associated to Ri.

6. A invokes D on input:
(R1, . . . ,Rn,R∗1, . . . ,R

∗
n,R,{(S[t],S[t]) : t ∈ R}).

First, we remark that:

Pr[Expprf-0
F,A (η) = 1] =

Pr[D(S H1−SI
C ,U ((1η, IC ,gC (I)),(1η, IU ,gU(I)))) = 1] .

Indeed, when b = 0 the view that A uses as input for
D is computed as in the simulator S H1−SI

C ,U . Then the

probability that the experiment Expprf-0
F,A returns 1 is

equal to the probability that the distinguisher D re-
turns 1 on input computed by the simulator S H1−SI

C ,U .
On the other hand, we have:

Pr[Expprf-1
F,A (η) = 1] = Pr[D(viewSI

C ,U(I,η)) = 1] .

When b = 1, the view that A uses as input for D is
computed as in the real protocol SI. Then the prob-
ability that the experiment Expprf-1

F,A returns 1 is equal
to the probability that the distinguisher D returns 1 on
input computed as in the real protocol.

It therefore follows that:

Adv
prf
F,A (η) =

∣∣Pr[Expprf-1
F,A (η) = 1]−Pr[Expprf-0

F,A (η) = 1]
∣∣

=
∣∣Pr[D(viewSI

C ,U(I,η)) = 1]

−Pr[D(SH1−SI
C ,U ((1η, IC ,gIC (I)),(1

η, IU ,gIU (I)))) = 1]
∣∣

= µ(η) ,

which is non-negligible. However, we assume that F
is a secure pseudo-random function, hence, it does not
exist D such that: ∣∣Pr[D(viewSI

C ,U(I,η)) = 1]−

Pr[D(S H1−SI
C ,U ((1η, IC ,gIC (I)),(1

η, IU ,gIU (I)))) = 1]
∣∣

is non-negligible. Hence, we have:

viewSI
C ,U(I,η)

c≡ S H1−SI
C ,U ((IC ,gIC (I,η)),(IU ,gIU (I,η))) .

The construction of simulator S Hi−SI
C ,U for 2 ≤ i ≤ n is

very similar. The only difference is that evaluations
of the pseudo-random function F are replaced using
the oracle OPRF. We prove as previous that we have
for 1≤ i≤ n−1:

S Hi−SI
C ,U ((1η, IC ,gC (I)),(1η, IU ,gU(I)))

c≡

S Hi+1−SI
C ,U ((1η, IC ,gC (I)),(1η, IU ,gU(I))) .

Finally, we show of to build the simulator SSI
C ,U . The

difference between S Hn−SI
C ,U and SSI

C ,U is that SSI
C ,U sub-

stitutes Π encryption of real values by Π encryption
of random values of the same size. More formally,
SSI

C ,U works as follows:

1. SSI
C ,U generates n relations R1, . . . ,Rn of same

schema such that #Ri = Ni for 1 ≤ i ≤ n, and
#R = N.

2. SSI
C ,U generates n secret keys k1, . . . ,kn according

to the security parameter η.
3. For each tuple t ∈ R, SSI

C ,U picks a random string
bits r of the same length than t, computes E(pk,r)
and stores it into S[t].

4. For each tuple t ∈ R1 \ R, SSI
C ,U computes

(OPRF(k1, t),E(pk, t) ⊕ OPRF(k2, t) ⊕ ·· · ⊕
OPRF(kn, t)) to construct R∗1, the encrypted
relation associated to R1. If t ∈ R1∩R, then SSI

C ,U
computes (OPRF(k1, t),S[t] ⊕ OPRF(k2, t) ⊕
·· ·⊕OPRF(kn, t)).

5. For each tuple t ∈ Ri (with 2≤ i≤ n), SSI
C ,U com-

putes (OPRF(k1, t),OPRF(ki, t)) to construct R∗i ,
the encrypted relation associated to Ri.

6. Finally, SSI
C ,U outputs (R1, . . . ,Rn,R∗1, . . . ,R

∗
n,R,S).

Now we show that we have:

S Hn−SI
C ,U ((1η, IC ,gIC (I)),(1

η, IU ,gIU (I)))
c≡

SSI
C ,U((1η, IC ,gIC (I)),(1

η, IU ,gIU (I))) .

Let η be the security parameter. Assume there ex-
ists a non-uniform probabilistic-polynomial time dis-
tinguisher D such that for all inputs I, we have:∣∣Pr[D(S Hn−SI

C ,U ((1η, IC ,gIC (I)),(1
η, IU ,gIU (I)))) = 1]

−Pr[D(SSI
C ,U((1η, IC ,gIC (I)),(1

η, IU ,gIU (I)))) = 1]
∣∣

= µ(η) ,

where µ(·) is a non-negligible function in η.
We construct a non-uniform probabilistic-

polynomial time guessing algorithm B that uses D to
win the IND-CPA experiment. Algorithm B works as
follows:

1. B generates n relations R1, . . . ,Rn of same schema
such that #Ri = Ni for 1≤ i≤ n, and #R = N.

2. B generates n secret keys k1, . . . ,kn according to
the security parameter η.

3. For each tuple t ∈ R, B picks a random string-bits
of same length than t, computes E(pk,LRb(r, t))
and stores the result into S[t].

4. For each tuple t ∈ R1 \ R, B computes
(OPRF(k1, t),E(pk, t) ⊕ OPRF(k2, t) ⊕ ·· · ⊕
OPRF(kn, t)) to construct R∗1, the encrypted
relation associated to R1. If t ∈ R∩ R1, then B
computes (OPRF(k1, t),S[t] ⊕ OPRF(k2, t) ⊕
·· ·⊕OPRF(kn, t)) and stores the tuples into R∗1.

5. For each tuple t ∈ Ri (with 2 ≤ i ≤ n), B com-
putes (OPRF(k1, t),OPRF(ki, t)) to construct R∗i ,
the encrypted relation associated to Ri.

6. B invokes D on input
(R1, . . . ,Rn,R∗1, . . . ,R

∗
n,{(S[t],S[t]) : t ∈ R}).

First, we remark that:

Pr[Expind-cpa-0
Π,B (η) = 1] =

Pr[D(SSI
C ,U((1η, IC ,gIC (I)),(1

η, IU ,gIU (I)))) = 1] .

When b = 0, the view that B uses as input for D is
computed as in the simulator SSI

C ,U . Then the proba-
bility that the IND-CPA experiment returns 1 is equal
to the probability that the distinguisher D returns 1
on inputs computed as in the simulator SSI

C ,U . On the
other hand, we have:

Pr[Expind-cpa-1
Π,B (η) = 1] =

Pr[D(S Hn−SI
C ,U ((1η, IC ,gIC (I)),(1

η, IU ,gIU (I)))) = 1] .

Indeed, when b = 1 the view that B uses as input for
D is computed as in the simulator S Hn−SI

C ,U . Then the

probability that the IND-CPA experiment returns 1 is
equal to the probability that the distinguisher D re-
turns 1 on inputs computed as in the simulator S Hn−SI

C ,U .
Finally, we evaluate the probability that B wins

the experiment:

Adv
ind-cpa
Π,B (η) =

∣∣Pr[Expind-cpa-1
Π,B (η) = 1]

−Pr[Expind-cpa-0
Π,B (η) = 1]

∣∣
=
∣∣Pr[D(S Hn−SI

C ,U ((1η, IC ,gIC (I)),(1
η, IU ,gIU (I)))) = 1]

−Pr[D(SSI
C ,U((1η, IC ,gIC (I)),(1

η, IU ,gIU (I)))) = 1]
∣∣

= µ(η) ,

which is non-negligible. However, we assume that Π

is IND-CPA. Hence, we have:

S Hn−SI
C ,U ((1η, IC ,gIC (I)),(1

η, IU ,gIU (I)))
c≡

SSI
C ,U((1η, IC ,gIC (I)),(1

η, IU ,gIU (I))) .

By transitivity, we have:

viewSI
C ,U(I,η)

c≡ SSI
C ,U((1η, IC ,gIC (I)),(1

η, IU ,gIU (I))) .

which concludes the proof.

6 Conclusion

We have presented an efficient privacy-preserving
protocol using the MapReduce paradigm to compute
the intersection between an arbitrary number of re-
lations. In fact, in the standard protocol (Leskovec
et al., 2014), the public cloud performing the compu-
tation learns all tuples of the data owners along the in-
tersection result that it sends to the user. In our proto-
col SI, the public cloud cannot learn such information
on the input sets. Moreover, if the cloud and the user
collude, then they cannot learn more than the result of
the intersection. If no such a collusion exists, then the
public cloud only learns cardinals of the relations sent
by the data owner, and the cardinal of their intersec-
tion. We have compared the standard and our secure
approach SI with respect to three fundamental criteria:
computation cost, communication cost, and privacy
guarantees. We also implemented SI with the Hadoop
framework and presented empirical results showing
the scalability of SI.

Looking forward to future work, we plan to study
secure set intersection with MapReduce while consid-
ering a malicious public cloud, i.e., the public cloud
can perform any operations on data that it process.

REFERENCES

Aggarwal, C. C. and Yu, P. S. (2008). A general survey
of privacy-preserving data mining models and algo-
rithms. In Privacy-Preserving Data Mining.

Baldi, P., Baronio, R., Cristofaro, E. D., Gasti, P., and
Tsudik, G. (2011). Countering GATTACA: effi-
cient and secure testing of fully-sequenced human
genomes. In CCS.

Boneh, D. and Shoup, V. (2017). A Graduate Course in
Applied Cryptography.

Cristofaro, E. D., Kim, J., and Tsudik, G. (2010). Linear-
Complexity Private Set Intersection Protocols Secure
in Malicious Model. In ASIACRYPT.

Cristofaro, E. D. and Tsudik, G. (2010). Practical private
set intersection protocols with linear complexity. In
FC.

Daemen, J. and Rijmen, V. (2002). The Design of Rijn-
dael: AES. Information Security and Cryptography.
Springer.

Dean, J. and Ghemawat, S. (2004). Mapreduce: Simplified
data processing on large clusters. In OSDI.

Freedman, M. J., Nissim, K., and Pinkas, B. (2004). Effi-
cient Private Matching and Set Intersection. In EU-
ROCRYPT.

Hazay, C. and Nissim, K. (2010). Efficient Set Operations
in the Presence of Malicious Adversaries. In PKC.

Jarecki, S. and Liu, X. (2010). Fast secure computation
of set intersection. In Security and Cryptography for
Networks.

Kissner, L. and Song, D. X. (2005). Privacy-preserving set
operations. In CRYPTO.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Min-
ing of Massive Datasets, 2nd Ed. Cambridge Univer-
sity Press.

Lindell, Y. (2017). How to simulate it - A tutorial on the
simulation proof technique. In Tutorials on the Foun-
dations of Cryptography.

Mezzour, G., Perrig, A., Gligor, V. D., and Papadimitratos,
P. (2009). Privacy-preserving relationship path dis-
covery in social networks. In CANS.

Nagaraja, S., Mittal, P., Hong, C., Caesar, M., and Borisov,
N. (2010). Botgrep: Finding P2P bots with structured
graph analysis. In USENIX.

Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg,
M., and Boneh, D. (2011). Location privacy via pri-
vate proximity testing. In NDSS.

