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Abstract

Chosen-ciphertext security is by now a standard security property for asym-
metric encryption. Many generic constructions for building secure cryptosystems
from primitives with lower level of security have been proposed. Providing se-
curity proofs has also become standard practice. There is, however, a lack of
automated verification procedures that analyse such cryptosystems and provide
security proofs. This paper presents an automated procedure for analysing generic
asymmetric encryption schemes in the random oracle model. It has been applied
to several examples of encryption schemes.

1 Introduction

Our day-to-day lives increasingly depend upon informationand our ability to manip-
ulate it securely. This requires solutions based on cryptographic systems (primitives
and protocols). In 1976, Diffie and Hellman invented public-key cryptography, coined
the notion of one-way functions and discussed the relationship between cryptography
and complexity theory. Shortly after, the first cryptosystem with a reductionist security
proof appeared (Rabin 1979). The next breakthrough towardsformal proofs of secu-
rity was the adoption of computational theory for the purpose of rigorously defining
the security of cryptographic schemes. In this framework, asystem isprovably secure
if there is a polynomial-time reduction proof from a hard problem to an attack against
the security of the system. The provable security frameworkhas been later refined
into the exact (also called concrete) security frameworkwhere better estimates of the
computational complexity of attacks is achieved. Provablecryptography has become a
very active field of research and public-key cryptography isprobably one of the most
active topics (An objective analysis of what it is about and what it is not about can
be found in [12].) Yet, there is a problem with cryptographicproofs, as expressed by
S. Halevi in [17], A. Dent [14], J. Stern et al [23] and others.While research in the
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field of provable cryptography has achieved tremendous progress towards rigorously
defining the functionalities and requirements of many cryptosystems, little has been
done for developing computer-aided proof methods or more generally for investigat-
ing a proof theory for cryptosystems as it exists for imperative programs, concurrent
systems, reactive systems, etc...

In this paper, we present an automated proof method for analyzing generic asym-
metric encryption schemes in the random oracle model (ROM).Generic encryption
schemes aim at transforming schemes with weak security properties, such as one-
wayness, into schemes with stronger security properties, specifically security against
chosen ciphertext attacks. Examples of generic encryptionschemes are [11, 25, 5, 6,
19, 18, 22, 20]. The paper contains two main parts. The first one presents a composi-
tional Hoare logic for proving IND-CPA-security. The second part presents a method
for proving plaintext awareness (PA). Hence, altogether wehave a proof method for
IND-CCA security, that applies for instance to the constructions in [5, 18, 19]. An
important feature of our method is that it is not based on a global reasoning and global
program transformation as it is the case for the game-based approach [7, 21]. Indeed,
both approaches can be considered complementary as the Hoare logic-based one can
be considered as aiming at characterizing by means of predicates the set of contexts in
which the game transformations can be applied safely.

Our automated verification method has been implemented in CAML 1 and applied
to several examples.

Related work: We restrict our discussion to work aiming at providing computa-
tional proofs for cryptosystems. In particular, this excludes symbolic verification (in-
cluding ours). We mentioned above the game-based approach [7, 21, 17]. B. Blanchet
and D. Pointcheval developed a dedicated tool, CryptoVerif, that supports security
proofs within the game-based approach [8, 9]. From the theoretical point of view,
the main differences in our approaches are the following. CryptoVerif is based on ob-
servational equivalence. The equivalence relation induces rewriting rules applicable in
contexts that satisfy some properties. Invariants provable in our Hoare logic can be
considered as logical representations of these contexts. Moreover, as we are working
with invariants, that is we follow a state-based approach, we need to prove results that
link our invariants to game-based properties such as indistinguishability (cf. Propo-
sition 1 and 3). G. Barthe and S. Tarento were among the first toprovide machine-
checked proofs of cryptographic schemes without relying onthe perfect cryptography
hypothesis. They have provided formal models of the GenericModel and the Random
Oracle Model in the Coq proof assistant, and used this formalisation to prove hardness
of the discrete logarithm [1], security of signed ElGamal encryption against interactive
attacks [3], and of Schnorr signatures against forgery attacks [24]. They are currently
working on formalizing the game-based approach in Coq [2]. Another interesting work
to mention is the Hoare-style proof system proposed by R. Corin and J. Den Hartog for
game-based cryptographic proofs [10]. Yet, there is no computer-assistance for the
developed logic. In [13], Datta et al. present a computationally sound compositional
logic for key exchange protocols. There is, however, no proof assistance provided for
this logic neither.

1The implementation can be downloaded athttp://www-verimag.imag.fr/ lakhnech/checker.ml



Outline: In Section 2, we introduce notations used for defining our programming
language and generic asymmetric encryption schemes. In Section 3, we present our
method for proving IND-CPA security. In Section 4 we introduce a criterion to prove
plaintext awareness. Finally, in Section 5 we conclude.

2 Definitions

We are interested in analysing generic schemes for asymmetric encryption assuming
ideal hash functions. That is, we are working in therandom oracle model[15, 5]. Using
standard notations, we writeH

r
←Ω to denote thatH is randomly chosen from the set

of functions with appropriate domain. By abuse of notation,for a list ~H = H1, · · · ,Hn

of hash functions, we write~H
r
← Ω instead of the sequenceH1

r
← Ω · · · ,Hn

r
←Ω. We

also fix a finite setΠ of trapdoor permutations and a finite setH = {H1, · · · ,Hn} of
hash functions andO = Π∪H . We assume an arbitrary but fixed ordering onΠ andH ;
just to be able to switch between set-based and vector-basednotation. Adistribution
ensembleis a countable sequence of distributions{Xη}η∈N. We only consider distribu-
tion ensembles that can be constructed in polynomial-time by probabilistic algorithms
that have oracle access toO.

Given two distribution ensemblesX = {Xη}η∈N andX′ = {X′η}η∈N, an algorithm
A andη ∈N, we define theadvantageof A in distinguishingXη andX′η as the follow-
ing quantity:

Adv(A ,η,X,X′) = Pr[x
r
← Xη : AO(x) = 1]−Pr[x

r
← X′η : AO(x) = 1].

We insist, above, that for each hash functionH, the probabilities are also taken over
the set of functions with the appropriate type. LetAdv(η,X,X′)= sup

A

(Adv(A ,η,X,X′))

be the maximal advantage taken over all probabilistic polynomial-time algorithms.
Then, two distribution ensemblesX andX′ are calledindistinguishable, denoted by
X ∼ X′, if Adv(η,X,X′) is negligible as a function ofη. In other words, for any
polynomial-time (inη) probabilistic algorithmA , Adv(A ,η,X,X′) is negligible as a
function ofη. We insist that all security notions we are going to use are inthe ROM,
where all algorithms, including adversaries, are equippedwith oracle access to the hash
functions.

2.1 A simple programming language for encryption and decryp-
tion oracles

We introduce a notation (a simple programming language) in which the encryption and
decryption oracles are specified. The motivation for fixing anotation is obvious: it is
mandatory for developing an automatic verification procedure. LetVar be an arbitrary
finite non-empty set of variables. Then, our programming language is built according
to the following BNF described in Figure 1, where for a bit-string bs= b1 · · ·bk (bi are
bits), bs[n,m] = bn · · ·bm

2, andN is the name of the oracle,c its body andx andy
are the input and output variable respectively. Commands are standard, wherex

r
←U

2Notice thatbs[n,m] = ε, whenm< n andbs[n,m] = bs[n,k], whenm> k



means that the value ofx is randomly sampled following the uniform distribution on the
appropriate domain,⊕ is the bitwise-xor operation and|| is the string concatenation.

Command c ::= x
r
←U | x := f (y) | x := f−1(y) | x := H(y) | x := y[n,m]
| x := y⊕z | x := y||z | if x = y then c1 else c2 fi | c;c

Oracle O ::= N (x,y) : c

Figure 1:Language grammar.

Example 1 The following command encodes the encryption scheme proposed by Bel-
lare and Rogaway in [5] (shortlyE(ine; r) = f (r)||ine⊕G(r)||H(ine||r)):
E(ine,oute) : r

r
← {0,1}η0; a := f (r); g := G(r); b := ine⊕g; s := ine||r;

c := H(s); u := a||b||c; oute := u; where, f∈Π and G,H ∈H .

Semantics:In addition to variables inVar, we consider variablesTH1, . . . ,THn . Vari-
ableTHi records the queries to the hash functionHi andcan not be accessed by the
adversary. Thus, we consider states that assign bit-strings to the variables inVar and
lists of pairs of bit-strings toTHi .

A stateassociates a value in{0,1}∗ to each variable inVar and a list of pairs of
values toTH . For simplicity of the presentation, we assume that all variables range
over large domains, whose cardinalities are exponential inthe security parameterη.
Given a stateS, S(TH).dom, respectivelyS(TH).res, denotes the list obtained by pro-
jecting each pair inS(TH) to its first, respectively second, element. A program takes
as input aconfiguration(S, ~H,( f , f−1)) and yields a distribution on configurations. A
configuration is composed of a stateS, a vector of hash functions(H1, · · · ,Hn) and a
pair ( f , f−1) of a trapdoor permutation and its inverse. LetΓ denote the set of con-
figurations and DIST(Γ) the set of distributions on configurations. The semantics is
given in Figure 2, whereδ(x) denotes the Dirac measure, i.e.Pr(x) = 1. Notice that
the semantic function of commands can be lifted in the usual way to a function from
DIST(Γ) to DIST(Γ). By abuse of notation we also denote the lifted semantics by[[c]].

A notational convention: It is easy to prove that commands preserve the values of
~H and( f , f−1). Therefore, we can, without ambiguity, writeS′

r
← [[c]](S, ~H,( f , f−1))

instead of(S′, ~H,( f , f−1))
r
← [[c]](S, ~H,( f , f−1)). According to our semantics, com-

mands have as denotations functions that transform distributions on configurations to
distributions on configurations. However, only distributions that are constructible are
of interest. Their set is denoted by DIST(Γ, ~H,F) and is defined as the set of distribu-

tions of the form:[( f , f−1)
r
← F(1η);~H

r
← Ω;S

r
← A~H, f , f−1

() : (S, ~H, f , f−1)], where
A is an probabilistic polynomial-time algorithm accessingf , f−1 and ~H and which
records its queries to hashing oracles into theTH ’s in S, belongs to DIST(Γ, ~H,F).

2.2 Asymmetric Encryption

We are interested in generic constructions that convert anytrapdoor permutation scheme
into a public-key encryption scheme. More specifically, ouraim is to provide an au-
tomatic verification method for generic encryption schemes. We also adapt IND-CPA
and IND-CCA security notions to our setting.



[[x
r
←U]](S, ~H,( f , f−1)) = [u

r
←U : (S{x 7→ u}, ~H,( f , f−1))]

[[x := f (y)]](S, ~H,( f , f−1)) = δ(S{x 7→ f (S(y))}, ~H,( f , f−1))

[[x := f−1(y)]](S, ~H,( f , f−1)) = δ(S{x 7→ f−1(S(y))}, ~H,( f , f−1))

[[x := y[n,m]]](S,~H,( f , f−1)) = δ(S{x 7→ S(y)[n,m]},~H,( f , f−1))

[[x := H(y)]](S, ~H,( f , f−1)) =






δ(S{x 7→ v}, ~H,( f , f−1)) ; if (S(y),v) ∈TH

δ(S{x 7→ v,TH 7→ S(TH) · (S(y),v)}, ~H,( f , f−1)) ;
if (S(y),v) 6∈TH andv = ~H(H)(S(y))

[[x := y⊕z]](S,~H,( f , f−1)) = δ(S{x 7→ S(y)⊕S(z)},~H,( f , f−1))

[[x := y||z]](S, ~H,( f , f−1)) = δ(S{x 7→ S(y)||S(z)}, ~H,( f , f−1))
[[c1;c2]] = [[c2]]◦ [[c1]]

[[if x then c1 else c2 fi]](S, ~H,( f , f−1)) =

{

[[c1]](S, ~H,( f , f−1)) if S(x) = 1
[[c2]](S, ~H,( f , f−1)) otherwise

[[N (v)]](S, ~H,( f , f−1)) = [[c]](S{x 7→ v}, ~H,( f , f−1)), wherec is the body ofN .

Figure 2:The semantics of the programming language

Definition 1 A generic encryption schemeis a triple(F,E(ine,oute) : c,D(ind,outd) :
c′):
1. F is a trapdoor permutation generatorthat on inputη generates anη-bit string
trapdoor permutation( f , f−1)
2. E(ine,oute) : c andD(ind,outd) : c′ are oracle declarations. �

Definition 2 Let GE= (F,E(ine,oute) : c,D(ind,outd) : c′) be a generic encryption
scheme. Let A= (A1,A2) be an adversary and X∈ DIST(Γ, ~H,F). For α ∈ {cpa,cca}
andη ∈N, let

Advind−α
A,GE (η,X) =2∗Pr[(S, ~H,( f , f−1))

r
← X;(x0,x1,s)

r
← AO1

1 ( f );b
r
← {0,1};

S′
r
← [[E(xb)]](S, ~H,( f , f−1)) : AO2

2 (x0,x1,s,S′(oute)) = b]−1
where if α = cpa thenO1 = O2 = ~H and if α = cca thenO1 = O2 = ~H ∪ {D}.

We insist, above, that A1 outputs x0,x1 such that|x0| = |x1| and that in the case of
CCA, A2 does not ask its oracleD to decrypt S′(y). We say that GE is IND-α secure if
Advind−α

A,GE (η,S) is negligible for any state S and polynomial-time adversaryA. �

3 Verification of IND-CPA security

In this section, we present an effective procedure to verifyIND-CPA security. The
procedure may fail to prove a secure encryption scheme but never declares correct an
insecure one. Thus, we sacrifice completeness for soundness, a situation very frequent
in verification3. We insist that our procedure does not fail for any of the numerous

3We conjecture that the IND-CPA verification problem of schemes described in our language is undecid-
able.



constructions we tried.
We are aiming at developing a procedure that allows us to prove properties, i.e.

invariants, of the encryption oracle. More precisely, the procedure annotates each
control point of the encryption command with a set of predicates that hold at that
point for any execution except with negligible probability. Given an encryption ora-
cleE(ine,oute) : c we want to prove that at the final control point, we have an invariant
that tells us that the value of oute is indistinguishable from a random value. As we will
show, this implies IND-CPA security.

A few words now concerning how we present the verification procedure. First, we
present the invariant properties we are interested in the assertion language. Then, we
present a set of rules of the form{ϕ}c{ϕ′} meaning that execution of commandc in
any distribution that satisfiesϕ leads to a distribution that satisfiesϕ′. Using Hoare
logic terminology, this means that the triple{ϕ}c{ϕ′} is valid.

3.1 The Assertion Language

Our assertion language is defined by the following grammar, whereψ defines the set of
atomic assertions:ψ ::= Indis(νx;V1;V2) |WS(x;V) | H(H,e) andϕ ::= true | ψ | ϕ∧ϕ
whereV1,V2⊆ Var ande is either a variable inVar or an expressionx||y with x,y∈ Var.

Intuitively, Indis(νx;V1;V2) is satisfied by a distribution on configurations, if any
adversary has negligible probability to distinguish whether he is given the value ofx
or a random value, even when he is additionally given the values of the variables inV1

and the image by the one-way permutation of those inV2. The assertionWS(x;V) is
satisfied by a distribution, if any adversary has negligibleprobability to compute the
value ofx, even when he is given the values of the variables inV. Finally, H(H,e) is
satisfied, when the value ofehas not been submitted to the hash oracleH.

Notations: We useIndis(νx;V) instead ofIndis(νx;V; /0) andIndis(νx) instead of
Indis(νx;Var). We also writeV,x instead ofV ∪{x} and evenx,y instead of{x,y}.

Formally, the meaning of the assertion language is defined bya satisfaction relation
X |= ϕ, which tells us when a distribution on configurationsX satisfies the assertionϕ.
In order to define the satisfaction relationX |= ϕ, we need to generalize indistinguisha-
bility as follows. LetX be a family of distributions in DIST(Γ) andV1 andV2 be sets
of variables inVar. By D(X,V1,V2) we denote the following distribution family (on
tuples of bit-strings):

D(X,V1,V2)η = [(S, ~H,( f , f−1))
r
← X : (S(V1), f (S(V2)), ~H, f )]

HereS(V) is the pointwise application ofS to the elements ofV and f (S(V2)) is
the pointwise application off to the elements ofS(V2). We say thatX andX′ are
V1;V2-indistinguishable, denoted byX ∼V1;V2 X′, if D(X,V1,V2)∼ D(X′,V1,V2).

Example 2 Let S0 be any state and let H1 be a hash function. Recall that we are
working in the ROM. Consider the following distributions:

Xη = [β;S:= S0{x 7→ u,y 7→H1(u)} : (S, ~H,( f , f−1))] and X′η = [β;u′
r
←{0,1}n(η);S:=

S0{x 7→ u,y 7→ H1(u′)} : (S, ~H,( f , f−1))], whereβ = ~H
r
← Ω;( f , f−1)

r
← F(1η);u

r
←

{0,1}n(η). Then, we have X∼{y};{x} X′ but we do not have X∼{y,x} X′. �

The satisfaction relationX |= ψ is defined as follows:
1. X |= true, X |= ϕ∧ϕ′ iff X |= ϕ andX |= ϕ′.



2. X |= Indis(νx;V1;V2) iff X∼V1;V2 [u
r
←U;(S, ~H,( f , f−1))

r
←X : (S{x 7→ u}, ~H,( f , f−1))].

3. X |= WS(x;V) iff Pr[(S, ~H,( f , f−1))
r
← X : A(S(V)) = S(x)] is negligible, for any

polynomial-time adversaryA.
4. X |= H(H,e) iff Pr[(S, ~H,( f , f−1))

r
← X : S(e) ∈ S(TH).dom] is negligible.

The relation between our Hoare triples and public key security is established by the
following proposition that states that, if the value of oute is indistinguishable from a
random value thenGE is IND-CPA.

Proposition 1 Let GE be a generic encryption scheme. If
{true}c{Indis(νoute;oute, ine)} is valid then GE is IND-CPA secure.

3.2 The Hoare Logic

In this section we present our Hoare logic for IND-CPA security. We begin with a set
of preservation axioms that tell us when an invariant established at the control point
before a command can be transferred to the control point after the commands. Then,
for each command, we present a set of specific axioms.

3.2.1 Generic preservation rules:

We assumez 6= x andc is x
r
←U, x := y1||y2, x = y⊕ t, x := f (y) or x := H(y).

Lemma 1 The following axioms are sound, provided x6∈V1∪V2 and x 6∈ V for (G2):
(G1){Indis(νz;V1;V2)} c {Indis(νz;V1;V2)}
(G2){WS(z;V)} c {WS(z;V)}
(G3){H(H ′,e)} c {H(H ′,e)}, if x 6∈ var(e)∧H ′ 6= H

3.2.2 Random Assignment:

Consider the commandc≡ x
r
←U.

Lemma 2 The following axioms are sound:
(R1){true} c {Indis(νx)}
(R2){true} c {H(H,e)} if x ∈ var(e)

Lemma 3 The following preservation axioms, where we assume x6= y 4, are sound:
(R3){Indis(νy;V1;V2)}c{Indis(νy;V1,x;V2)}
(R4){WS(y;V)}c{WS(y;V,x)}

3.2.3 Hash Function:

Lemma 4 The following basic axioms are sound, for x6= y:
(H1) {WS(y;V)∧H(H,y)}x := H(y){Indis(νx;V,x)}
(H2) {H(H,y)} x := H(y){H(H ′,e)} if x ∈ var(e)
(H3) {Indis(νy;V;V ′,y)∧H(H,y)}x := H(y){Indis(νx;V,x;V ′,y)} if y 6∈V

4By x = y we mean syntactic equality.



The following preservation axioms are sound providedx 6= y andz 6= x:
(H4) {WS(y;V)∧WS(z;V)∧H(H,y)}x := H(y){WS(z;V,x)}
(H5) {H(H,e)∧WS(z;y)}x := H(y){H(H,e)}, if z∈ var(e)∧x /∈ var(e)
(H6) {Indis(νy;V1;V2,y)∧H(H,y)}x := H(y){Indis(νy;V1,x;V2,y)}, if y 6∈V1

(H7) {Indis(νz;V1,z;V2)∧WS(y;V1∪V2,z)∧H(H,y)}x := H(y){Indis(νz;V1,z,x;V2)}

3.2.4 One-way Function:

Lemma 5 The following axiom is sound:
(O1){Indis(νy;V;y)} x := f (y) {WS(y;V,x)}, if (y 6∈V ∪{x})

Lemma 6 The following axioms are sound for z6= x:
(O2){Indis(νz;V1,z;V2,y)} x := f (y) {Indis(νz;V1,z,x;V2)}, if z 6= y (O3){WS(z;V)∧
Indis(νy;V,z;y)} x := f (y) {WS(z;V,x)} For one-way permutations, we additionally
have the following axiom:
(P1){Indis(νy;V1;V2,y)} x := f (y) {Indis(νx;V1,x;V2)}, if y 6∈V1∪V2

3.2.5 The Xor operator

In the following axioms, we assumey 6= z.

Lemma 7 The following axiom is sound:
(X1) {Indis(νy;V1,y,z;V2)} x := y⊕z{Indis(νx;V1,x,z;V2)}, if y 6∈V1∪V2

Lemma 8 The following axioms are sound provided t6= x,y,z.
(X2) {Indis(νt;V1,y,z;V2)} x := y⊕z{Indis(νt;V1,x,y,z;V2)}
(X3) {WS(t;V,y,z)} x := y⊕z{WS(t;V,y,z,x)}

3.2.6 Concatenation:

Lemma 9 The following axioms are sound:
(C1){WS(y;V)} x := y||z{WS(x;V)}, if x 6∈V. A dual axiom applies for z.
(C2) {Indis(νy;V1,y,z;V2)∧ Indis(νz;V1,y,z;V2)} x := y||z{Indis(νx;V1;V2)}, if y,z 6∈
V1∪V2

(C3){H(H,y||z)} x := y||z{H(H,x)}
(C4){Indis(νt;V1,y,z;V2)} x := y||z{Indis(νt;V1,x,y,z;V2)}, if t 6= x,y,z
(C5){WS(t;V,y,z)} x := y||z{WS(t;V,y,z,x)}, if t 6= x,y,z

In addition to the axioms above, we have the usual Sequentialcomposition and Con-
sequence rules of the Hoare logic. In order to apply the Consequence rule, we use
entailment (logic implication) between assertions as in Lemma 10.

Lemma 10 Let X be a distribution ensemble inDIST(Γ, ~H ,F).
1. If X |= Indis(νx;V1;V2), V′1 ⊆V1 and V′2 ⊆V1∪V2 then X|= Indis(νx;V ′1;V ′2).
2. If X |= WS(x;V ′) and V⊆V ′ then X|= WS(x;V).
3. If X |= Indis(νx;V1;V2∪{x}) and V⊆V1 then X|= WS(x;V).

The soundness of the Hoare Logic follows by induction from the soundness of each
axiom and soundness of the Consequence and Sequential composition rules.

Proposition 2 The Hoare triples given in Section 3.2 are valid.



3.3 Extensions

In this section, we show how our Hoare logic, and hence our verification procedure,
can be adapted to deal with on one hand injective partially trapdoor one-way func-
tions and on the other hand OW-PCA (probabilistic) functions. The first extension is
motivated by Pointcheval’s construction in [19] and secondby the Rapid Enhanced-
security Asymmetric Cryptosystem Transform (REACT) [18].For obvious reasons,
we cannot recall the definitions of the security of these functions; we explain them
informally. The first observation we have to make is that Proposition 1 is too de-
manding in case we do not assume trapdoor permutations. Therefore, we introduce a
new predicateIndis f (νx;V1;V2) whose meaning is as follows:X |= Indis f (νx;V1;V2)

iff X ∼V1;V2 [u
r
← U;(S, ~H,( f , f−1))

r
← X : (S{x 7→ f (u)}, ~H,( f , f−1))]. Notice that

Indis f (νx;V1;V2) is equivalent toIndis(νx;V1;V2), when f is a bijection. Now, let oute,
the output of the encryption oracle, have the forma1|| · · · ||an with ai = fi(xi) ( fi can be
the identity function). Then, we can prove the following:

Proposition 3 Let GE= (F,E(ine,oute) : c,D(ind,outd) : c′) be a generic encryption

scheme. If{true}c{
n
V

i=1
Indis fi (νai ;a1, . . . ,an, ine)} is valid then GE is IND-CPA.

Now, we introduce a new axiom forIndis f (νx;V1;V2) that replaces axiom (P1) in case
the one-way functionf is not a permutation:

(P1′) {Indis(νy;V1;V2,y)} x := f (y) {Indis f (νx;V1,x;V2)} if y 6∈V1∪V2

Injective partially trapdoor one-way functions: In contrast to the previous sec-
tion, we do not assumef to be a permutation. On the other hand, we demand a stronger
property than one-wayness. Letf : X ×Y → Z be a function and letf−1 : Z→ X be
such that∀z∈ dom( f−1)∃y∈ Y , z= f ( f−1(z),y). Here f−1 is a partial function. The
function f is saidpartially one-way, if for any givenz= f (x,y), it is computationally
impossible to compute a correspondingx. In order to deal with the fact thatf is now
partially one-way, we add the following axioms, where we assumex,y 6∈ V ∪{z} and
where we identifyf and(x,y) 7→ f (x||y):
(PO1){Indis(νx;V,x,y)∧ Indis(νy;V,x,y)} z := f (x||y) {WS(x;V,z)} }.
(PO2){Indis(νx;V,x,y)∧WS(y;V,x)∧H(H,y)} z := f (x||H(y)) {WS(x;V,z)} }.

The intuition behind (PO1) and (PO2) is thatf guarantees one-way secrecy of the
x-part ofx||y. For example, we verify Pointcheval’s transformer in [19] in Appendix??.

OW-PCA: Some constructions such as REACT are based on probabilisticone-way
functions that are difficult to invert even when the adversary has access to a plaintext
checking oracle (PC), which on input a pair(m,c), answers whetherc encryptsm. In
order to deal with OW-PCA functions, we need to strengthen the meaning of our pred-
icates allowing the adversary to access to the additional plaintext checking oracle. For
instance, the definition ofWS(x;V) becomes:X |= WS(x;V) iff Pr[(S, ~H,( f , f−1))

r
←

X : APCA(S(V)) = S(x)] is negligible, for any adversaryA. Now, we have to revisit
Lemma 10 and the axioms that introduceWS(x;V) in the postcondition. It is, however,
easy to check that they are valid.
These extensions allow us to prove the security of PKC and REACT in the extended
version of this paper.



4 Plaintext awareness

Bellare and Rogaway introducedplaintext awareness (PA)in [6]5. The motivation
is to decompose IND-CCA security of an encryption scheme into IND-CPA and PA
security. Indeed, a public-key encryption scheme that satisfies IND-CPA (in the ROM)
and the original definition of PA is IND-CCA1 (in the ROM). PA has been refined in [4]
such that if an encryption scheme is PA and IND-CPA then it is IND-CCA. Intuitively,
plaintext awareness means that the decryption oracle can besimulated by aplaintext
extractorthat does not have access to the inverse permutationf−1. Now we introduce
a simple analysis that allows us to automatically verify that an encryption scheme is
PA in the strong sense [4]. Hence, combined with the results of the previous sections
we obtain an analysis that allows to verify IND-CCA security.

We recall the definition of PA-security following the notations and conventions
of [4]. Let GE = (F,E(ine,oute) : c,D(ind,outd) : c′) be a generic encryption scheme.
An adversaryB for plaintext awareness is given the public permutationf , oracle ac-
cess to the encryption algorithmE and to the ideal hash functions~H = H1, · · · ,Hn.
His goal is to output a cipher-text that cannot be correctly decrypted by the plaintext
extractor. Hence, the success of plaintext extractorK againstB in the distribution
X ∈ DIST(Γ, ~H ,F) is defined by:

Succpa
K,B,GE(η,X) = Pr[(S, ~H,( f , f−1))

r
← X;(hH,C,y,S′)

r
← BE(),~H( f );

S′′
r
← [[D(y)]](S′, ~H,( f , f−1)) : y∈C∨ (y 6∈C∧K(hH,C,y, f ) = S′′(outd))]

Here by(hH,C,y,S′)
r
← BE(),~H( f ) we mean the following. RunB on input f with

oracle access toHi , i = 1, · · · ,n andE() (which calls f andHi), recordingB’s inter-
action with the hash functions inhH and his interaction withE() in C. I.e., hH is a
list (hH1, · · · ,hHn) of lists. Each listhHi = ((h1,v1), · · · ,(hqi ,vqi )) records allB’s Hi-
oracle queriesh1, · · · ,hqi and the corresponding answersv1, · · · ,vqi . The modified state
S′ is due to calls of the hash functions either byB or the encryption oracle. The listC
records the cipher-texts received in reply toE-queries6. Finally, y is B’s challenge to
the plaintext extractorK. Please notice thatK wins wheneverB outputs a valuey∈C.

Definition 3 An encryption scheme GE= (F,E(ine,oute) : c,D(ind,outd) : c′) is PA-
secure, if there is a polynomial-time probabilistic algorithm K such that for every dis-
tribution X ∈ DIST(Γ, ~H,F) and adversary B,1− Succpa

K,B,GE(η,X) is a negligible
function inη.

The rest of the section is organized as follows. We first introduce a semantic condi-
tion onD that implies the existence of a plaintext extractor. Then, we show how this
condition can be checked syntactically on the code ofD (c′). To ease the presentation,
we useE(x; r1; . . . ; rn) to note the ciphertext (i.e. the value of oute) obtained from the
plaintextx (i.e. the value of ine is given byx), using the random seedsr1, . . . rn.

In the remainder of this section, we consider an encryption schemeGE that uses
the hash functions~H = H1, · · · ,Hn. We assume thatc′ has the following formc1;h :=

5While in the original work by Bellare and Rogaway and in subsequent ones, plaintext awareness includes
semantic security as a necessary condition, we prefer to separate plaintext extraction and semantic security

6This list was not included in the original definition by Bellare and Rogaway. Without it only IND-CCA1
can be proved but not IND-CCA.



H1(t); if V (~x,h) = v then outd := melse outd := ”error” fi, where~x is a vector of vari-
ables (possibly empty) andV is a (deterministic) function (possibly the identity in
which case we do not write it) such that for any~x andv, the probability thatV (~x, r) = v
whenr is drawn uniformly at random in the right domain is negligible. Furthermore,
we require that the hash functionH1 is not called inc1 and that the encryption al-
gorithm c makes exactly one call to the oracleH1, (t∗,h∗), and that the value of the
variablet after running the decryption oracle ist∗. Consider, for instance, the scheme
in [5], f (r)||ine⊕G(r)||H(ine||r). Here,t gets assigned the value ine||r. We call the
conditionV (~x,h) = v (or equivalentlyV (~x,H1(t)) = v) the ”sanity check”.

It allows us to discriminate valid cipher-text from arbitrary bit-string. We also
assume thatc1 does not make calls toH1 and that decryption behaves correctly with
respect to encryption: ify is generated using the encryption algorithm, then the value
of t as computed by the decryption oracle coincides with the value used as argument in
the call toH1 by the encryption algorithm.

Example 3 Bellare and Rogaway [5]:D(ind = a∗||b∗||v∗,outd) :
r∗ := f−1(a∗);g∗ := G(r∗);m∗ := b∗⊕g∗; t := m∗||r∗;h := H(t);
if h = v∗ then outd := m∗ else outd := ”error” fi

A semantic criterion for PA Our semantic criterion for PA-security is composed of
three conditions. We begin with an informal presentation ofthese conditions and how
they will enable us to construct a plaintext extractor.

1. The first condition says that there is an algorithm that checks if a given bit-string
t∗, that has been submitted toH1 by B, corresponds to the challengey. That is, if
the tester answers ”yes” (1), thent∗ matches with the value oft as computed by the
decryption oracle; and if it answers ”no” (0), thent∗ does not satisfy the sanity check.

2. The second condition states that it is easy to compute the plaintext fromt∗.
3. The third condition states that for each value oft there is at most one correspond-

ing ciphertexty.
Assume now that these conditions are satisfied. Then, we can construct a plaintext

extractorK as follows. Using the algorithm of the first condition, that we call the tester,
scan the listhH1 to find a suitablet∗. If none is found, answer ”error”. Otherwise, apply
the algorithm of the second condition on the found valuet∗ to extract the plaintext. The
third condition ensures that eacht∗ value corresponds to at most one ciphertext which
is necessary to ensure that the extracted plaintext is the correct one. Let us now tackle
the formal treatment of these ideas.

Definition 4 We say that GE satisfies thePA-semantic criterion, if there exist efficient
algorithmsT andExt that satisfy the following conditions:
1. ThetesterT takes as input(hH,C,y,t∗, f ) and returns a value in{0,1}. We require
that for any adversary B and any distribution X∈ DIST(Γ, ~H,F),

1−Pr[ (S, ~H,( f , f−1))
r
← X;(hH,C,y,S′)

r
← BE(),~H( f );

S′′
r
← [[D(y)]](S′, ~H,( f , f−1)); t∗

r
← hH1.dom;b

r
← T (hH,C,y,t∗, f ) :

(

b = 1⇒ (H1(t∗) = H1(S′′(t))∧ V (S′′(~x),H1(t∗)) = S′′(v)
)

∧
(

b = 0⇒ V (S′′(~x),H1(t∗)) 6= S′′(v)
)

] is negligible.



2. For Ext, we require that for any adversary B and any distribution X∈DIST(Γ, ~H,F),

1−Pr[ (S, ~H,( f , f−1))
r
← X;(hH,C,y,S′)

r
← BE(),~H( f );S′′

r
← [[D(y)]](S′, ~H,( f , f−1))

: Ext(hH,C,y,S′′(t), f ) = S′′(outd)] is negligible.

3. Finally, we require that for any adversary B and any distribution X∈DIST(Γ, ~H,F),

Pr[ (S, ~H,( f , f−1))
r
← X;(hH,C,y,y′,S′)

r
← BE(),~H( f );

S1
r
← [[D(y)]](S′, ~H,( f , f−1));S2

r
← [[D(y′)]](S′, ~H,( f , f−1)) :

y 6= y′∧S1(t) = S2(t)∧S1(outd) 6= ”error”∧S2(outd) 6= ”error”] is negligible.

Of course there are generic encryption schemes for which theconditions above are
satisfied under the assumption thatT has access to an extra oracle such as a plain-
text checking oracle (PC), or a ciphertext validity-checking oracle, which on inputc
answers whetherc is a valid ciphertext or not (CV). In this case, semantic security
of the scheme has to be established under the assumption thatf is OW-PCA, respec-
tively OW-CVA. Furthermore, our definition of the PA-semantic criterion makes per-
fectly sense for constructions that apply to IND-CPA schemes such as Fujisaki and
Okamoto’s converter [16]. In this case,f has to be considered as the IND-CPA encryp-
tion oracle.

Given a testerT and an algorithmExt as in Definition 4, we construct a plaintext
extractor as follows:

KT ,Ext(hH,C,y, f ) : Let L = {t∗ | t∗ ∈ dom(hH1) such thatT (hH,C,y,t∗, f ) = 1}
if L = /0 then return ”error” elset∗

r
← L; returnExt(hH,C,y,t∗, f )

Theorem 1 Let GE be a generic encryption scheme that satisfies the PA-semantic cri-
terion. Then, GE is PA-secure.

An easy syntactic check that implies the PA-semantic criterion is as follows.

Definition 5 A generic encryption scheme GE satisfies thePA-syntactic criterion, if
the sanity check has the formV (t,h) = v, whereD is such that h is assigned H1(t), t is
assigned ine||r, ine is the plaintext andE(ine; r) is the ciphertext (i.e., r is the random
seed ofE). �

It is not difficult to see that ifGE satisfies the PA-syntactic criterion then it also satisfies
the PA-semantic with a testerT as follows (Ext is obvious):

Look in hH1 for a bit-strings such thatE(x∗; r∗) = y, wherey is the chal-
lenge andx∗||r∗ = s.

Here are some examples that satisfy the syntactic criterion(we use·∗ to denote the
values computed by the decryption oracle):

Example 4 • Bellare and Rogaway [5]:
E(ine; r) = a||b||c = f (r)||ine⊕G(r)||H(ine||r). The ”sanity check” of the de-
cryption algorithm is H(m∗||r∗) = c∗.

• OAEP+ [20]: E(ine; r) = f (a||b||c), where a= ine⊕G(r), b= H ′(ine||r), c=
H(s)⊕ r and s= ine⊕G(r)||H ′(ine||r). The ”sanity check” of the decryption
algorithm has the form H′(m∗||r∗) = b∗.



• Fujisaki and Okamoto [16]:E(ine; r)= E ′((ine||r),H(ine||r)), where(K ′,E ′,D ′)
is a public encryption scheme (that is CPA). The ”sanity check” of the decryption
algorithm is: E ′(m∗||r∗,H(m∗||r∗)) = ind.

The PA-semantic criterion applies to the following constructions but not the syntactic
one:

Example 5 • Pointcheval [19]: E(ine; r;s) = f (r||H(ine||s))||((ine||s)⊕G(r)),
where f is a partially trapdoor one-way injective function.The ”sanity check”
of the decryption oracleD(a||b) has the form f(r∗||H(m∗||s∗)) = a∗. The tester
looks in hG and hH for r∗ and m∗||s∗ such thatE(m∗; r∗;s∗) = y.

• REACT [18]: This construction applies to any trapdoor one-way function (pos-
sibly probabilistic). It is quite similar to the construction in [5]:
E(ine;R; r) = a||b||c = f (R; r)||ine⊕G(r)||H(R||ine||a||b), where a= f (R; r)
and b= ine⊕G(R). The ”sanity check” of the decryption algorithm is
H(R∗||m||a∗||b∗) = c. For this construction, one can provide a testerT that
uses a PCA oracle to check whether a is the encryption of R by f .Hence, the
PA security of the construction under the assumption of the OW-PCA security of
f . The tester looks in hH for R∗||m||a∗||b∗ such that c∗ = H(R∗||m||a∗||b∗) and
a∗ = f (R∗), which can be checked using the CPA-oracle.

And now some examples of constructions that do not satisfy the PA-semantic criterion
(and hence, not the syntactic one):

Example 6 • Zheng-Seberry Scheme [25]:
E(x; r) = a||b= f (r)||(G(r)⊕(x||H(x)). The third condition of the PA-semantic
criterion is not satisfied by this construction. Actually, there is an attack [22] on
the IND-CCA security of this scheme that exploits this fact.

• OAEP [6]: E(ine; r) = a = f (s||r⊕H(s)), where s= (ine||0k)⊕G(r). Here the
third condition is not satisfied.

5 Conclusion

In this paper we proposed an automatic method to prove IND-CCA security of generic
encryption schemes. IND-CPA is proved using a Hoare logic and plaintext awareness
using a syntactic criterion. An implementation based on theweakest precondition cal-
culus associated to our logic has been implemented and experimented positively on
many examples (cf.http://www-verimag.imag.fr/ lakhnech/checker.ml). Finally, it is
not difficult to adapt our Hoare logic to allow a security proof in the concrete frame-
work of provable security.
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