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ABSTRACT

Chosen-ciphertext security is by now a standard security
property for asymmetric encryption. Many generic construc-
tions for building secure cryptosystems from primitives with
lower level of security have been proposed. Providing secu-
rity proofs has also become standard practice. There is, how-
ever, a lack of automated verification procedures that ana-
lyze such cryptosystems and provide security proofs. This
paper presents an automated procedure for analyzing generic
asymmetric encryption schemes in the random oracle model.
This procedure has been applied to several examples of en-
cryption schemes among which the construction of Bellare-
Rogaway 1993, of Pointcheval at PKC’2000 and REACT.

Categories and Subject Descriptors: E.3 DATA EN-
CRYPTION: Public key cryptosystems

General Terms: Security, verification.

Keywords: Hoare logics, asymmetric encryption, provable
security, automated proofs, random oracle model.

1. INTRODUCTION
Our day-to-day lives increasingly depend upon informa-

tion and our ability to manipulate it securely. This requires
solutions based on cryptographic systems (primitives and
protocols). In 1976, Diffie and Hellman invented public-key
cryptography, coined the notion of one-way functions and
discussed the relationship between cryptography and com-
plexity theory. Shortly after, the first cryptosystem with
a reductionist security proof appeared (Rabin 1979). The
next breakthrough towards formal proofs of security was
the adoption of computational security for the purpose of
rigorously defining the security of cryptographic schemes.
In this framework, a system is provably secure if there is
a polynomial-time reduction proof from a hard problem to
an attack against the security of the system. The prov-
able security framework has been later refined into the ex-
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act (also called concrete) security framework where better
estimates of the computational complexity of attacks are
achieved. While research in the field of provable cryptog-
raphy has achieved tremendous progress towards rigorously
defining the functionalities and requirements of many cryp-
tosystems, little has been done for developing computer-
aided proof methods or more generally for investigating a
proof theory for cryptosystems as it exists for imperative
programs, concurrent systems, reactive systems, etc...

In this paper, we present an automated proof method for
analyzing generic asymmetric encryption schemes in the ran-
dom oracle model (ROM). Generic encryption schemes aim
at transforming schemes with weak security properties, such
as one-wayness, into schemes with stronger security proper-
ties, especially security against chosen ciphertext attacks.
Examples of generic encryption schemes are [11, 23, 21, 5,
6, 19, 18, 17]. The paper contains two main contributions.
The first one is a compositional Hoare logic for proving IND-
CPA-security. That is, we introduce a simple programming
language (to specify encryption algorithms that use one-way
functions and hash functions) and an assertion language that
allows to state invariants and axioms and rules to establish
such invariants. Compositionality of the Hoare logic means
that the reasoning follows the structure of the program that
specifies the encryption oracle. The assertion language con-
sists of three atomic predicates. The first predicate allows
us to express that the value of a variable is indistinguishable
from a random value even when given the values of a set of
variables. The second predicate allows us to state that it is
computationally infeasible to compute the value of a vari-
able given the values of a set of variables. Finally, the third
predicate allows us to state that the value of a variable has
not been submitted to a hash function.

Transforming the Hoare logic into an (incomplete) au-
tomated verification procedure is quite standard. Indeed,
we can interpret the logic as a set of rules that tell us
how to propagate the invariants backwards. We have done
this for our logic resulting in a verification procedure im-
plemented in less than 250 lines of CAML. We have been
able to automatically verify IND-CPA security of several
schemes among which [5, 18, 17]. Our Hoare logic is in-
complete for two main reasons. First, IND-CPA security
is an observational equivalence-based property, while with
our Hoare logic we establish invariants. Nevertheless, as
shown in Proposition 3.1, we can use our Hoare logic to
prove IND-CPA security at the price of completeness. That
is, we prove a stronger property than IND-CPA. The second
reason, which we think is less important, is that for efficiency



reasons some axioms are stronger than needed.
The second contribution of the paper presents a simple

criterion for plaintext awareness (PA). Plaintext awareness
has been introduced by Bellare and Rogaway in [6]. It has
then been refined in [4] such that if an encryption scheme
is PA and IND-CPA then it is IND-CCA. Intuitively, PA
ensures that an adversary cannot generate a valid cipher
without knowing the plaintext, and hence, the decryption
oracle is useless for him. The definition of PA is complex
and proofs of PA are also often complex. In this paper, we
present a simple syntactic criterion that implies plaintext
awareness. Roughly speaking the criterion states that the
cipher should contain as a sub-string the hash of a bitstring
that contains as substrings the plaintext and the random
seed. This criterion applies for many schemes such as [5,
17, 18] and easy to check. Although (or maybe because) the
criterion is simple, the proof of its correctness is complex.

Putting together these two contributions, we get a proof
method for IND-CCA security.

An important feature of our method is that it is not based
on a global reasoning and global program transformation as
it is the case for the game-based approach [7, 20]. Indeed,
both approaches can be considered complementary as the
Hoare logic-based one can be considered as aiming at char-
acterizing, by means of predicates, the set of contexts in
which the game transformations can be applied safely.

Related work.
We restrict our discussion to work providing computa-

tional proofs for cryptosystems. In particular, this excludes
symbolic verification (including ours). We mentioned above
the game-based approach [7, 20, 15]. In [8, 9] B. Blanchet
and D. Pointcheval developed a dedicated tool, CryptoVerif,
that supports security proofs within the game-based ap-
proach. CryptoVerif is based on observational equivalence.
The equivalence relation induces rewriting rules applicable
in contexts that satisfy some properties. Invariants prov-
able in our Hoare logic can be considered as logical repre-
sentations of these contexts. Moreover, as we work with
invariants, that is we follow a state-based approach, we
need to prove results that link our invariants to game-based
properties such as indistinguishability (cf. Proposition 3.1
and 3.12). Our verification method is fully automated. It
focusses on asymmetric encryption in the random oracle
model, while CryptoVerif is potentially applicable to any
cryptosystem.

G. Barthe and S. Tarento were among the first to provide
machine-checked proofs of cryptographic schemes without
relying on the perfect cryptography hypothesis. They for-
malized the Generic Model and the Random Oracle Model in
the Coq proof assistant, and used this formalization to prove
hardness of the discrete logarithm [1], security of signed
ElGamal encryption against interactive attacks [3], and of
Schnorr signatures against forgery attacks [22]. They are
currently working on formalizing the game-based approach
in Coq [2]. D. Nowak provides in [16] an implementa-
tion in Coq of the game-based approach. He illustrates his
framework by a proof of the semantic security of the en-
cryption scheme ElGamal and its hashed version. Another
interesting work is the Hoare-style proof system proposed by
R. Corin and J. Den Hartog for game-based cryptographic
proofs [10]. The main difference between our logic and theirs
is that our assertion language does not manipulate probabil-

ities explicitly and is at a higher level of abstraction. On the
other hand, their logic is more general. In [12], Datta et al.
present a computationally sound compositional logic for key
exchange protocols. There is, however, no proof assistance
provided for this logic neither.

Outline: In Section 2, we introduce notations used for
defining our programming language and generic asymmetric
encryption schemes. In Section 3, we present our method
for proving IND-CPA security. In Section 4 we introduce
a criterion to prove plaintext awareness. In Section 5 we
explain the automated verification procedure derived from
our Hoare logic. Finally, in Section 6 we conclude.

2. DEFINITIONS
We are interested in analyzing generic schemes for asym-

metric encryption assuming ideal hash functions. That is,
we are working in the random oracle model [13, 5]. Using

standard notations, we write H
r
← Ω to denote that H is

randomly chosen from the set of functions with appropriate
domain. By abuse of notation, for a list ~H = H1, · · · , Hn

of hash functions, we write ~H
r
← Ω instead of the sequence

H1
r
← Ω, . . . ,Hn

r
← Ω. We fix a finite set H = {H1, . . . ,Hn}

of hash functions and also a finite set Π of trapdoor per-
mutations and O = Π ∪ H. We assume an arbitrary but
fixed ordering on Π and H; just to be able to switch be-
tween set-based and vector-based notation. A distribution
ensemble is a countable sequence of distributions {Xη}η∈N.
We only consider distribution ensembles that can be con-
structed in polynomial time by probabilistic algorithms that
have oracle access to O. Given two distribution ensembles
X = {Xη}η∈N and X ′ = {X ′

η}η∈N, an algorithm A and
η ∈ N, we define the advantage of A in distinguishing Xη

and X ′
η as the following quantity:

Adv(A, η,X,X ′) =

Pr[x
r
← Xη : AO(x) = 1]− Pr[x

r
← X ′

η : AO(x) = 1].

We insist, above, that for each hash function H , the prob-
abilities are also taken over the set of maps with the appro-
priate type. Let Adv(η,X,X ′) = sup

A
(Adv(A, η, X,X ′)), the

maximal advantage taken over all probabilistic polynomial-
time algorithms. Then, two distribution ensembles X and
X ′ are called indistinguishable if Adv(η,X,X ′) is negligi-
ble as a function of η and denoted by X ∼ X ′. In other
words, for any polynomial-time (in η) probabilistic algo-
rithm A, Adv(A, η,X,X ′) is negligible as a function of η.
We insist that all security notions we are going to use are in
the ROM, where all algorithms, including adversaries, are
equipped with oracle access to the hash functions.

2.1 A simple programming language for en-
cryption and decryption oracles

We introduce a simple programming language without
loops in which the encryption and decryption oracles are
specified. The motivation for fixing a notation is obvious: it
is mandatory for developing an automatic verification pro-
cedure. Let Var be an arbitrary finite non-empty set of vari-
ables. Then, our programming language is built according
to the following BNF described in Table 1, where for a bit-
string bs = b1 . . . bk (bi are bits), bs[n,m] = bn . . . bm

1, and

1Notice that bs[n,m] = ǫ, when m < n and bs[n,m] =
bs[n, k], when m > k



N is the name of the oracle, c its body and x and y are the
input and output variable respectively. Note the command
y[n,m] is only used in the decryptions, it is why we do not
have to consider it in our Hoare logic. With this language
we can sample an uniform value to x, apply a way func-
tion f and its inverse f−1, a hash function, the exclusive-or,
the concatenation and substring function, and perform an
“if-then-else” (used only in the decryption function).

Example 2.1. The following command encodes the en-
cryption scheme proposed by Bellare and Rogaway in [5]
(shortly E(ine; oute) = f(r)||ine ⊕G(r)||H(ine||r)):

E(ine, oute) :

r
r
← {0, 1}η0 ; a := f(r); g := G(r);

b := ine ⊕ g; s := ine||r; c := H(s);
u := a||b||c; oute := u;
where, f ∈ Π and G,H ∈ H.

Semantics: In addition to the variables in Var, we con-
sider variables TH1

, . . . ,THn
. Variable THi

records the
queries to the hash function Hi and can not be accessed
by the adversary. Thus, we consider states that assign bit-
strings to the variables in Var and lists of pairs of bit-strings
to THi

. A state associates a value in {0, 1}∗ to each vari-
able in Var and a list of pairs of values to TH . For simplic-
ity of the presentation, we assume that all variables range
over large domains, whose cardinalities are exponential in
the security parameter η. u

r
← U is the uniform sampling

of a value u from the appropriate domain. Given a state
S, S(TH).dom, respectively S(TH).res, denotes the list ob-
tained by projecting each pair in S(TH) to its first, respec-
tively second, element.

A program takes as input a configuration (S, ~H, (f, f−1))
and yields a distribution on configurations. A configura-
tion is composed of a state S, a vector of hash functions
(H1, . . . ,Hn) and a pair (f, f−1) of a trapdoor permutation
and its inverse. Let Γ denote the set of configurations and
Dist(Γ) the set of distributions on configurations. The se-
mantics is given in Table 2, where δ(x) denotes the Dirac
measure, i.e. Pr(x) = 1. Notice that the semantic function
of commands can be lifted in the usual way to a function
from Dist(Γ) to Dist(Γ). By abuse of notation we also
denote the lifted semantics by [[c]].

A notational convention: It is easy to prove that com-
mands preserve the values of ~H and (f, f−1). Therefore,

we can, without ambiguity, write S′ r
← [[c]](S, ~H, (f, f−1))

instead of (S′, ~H, (f, f−1))
r
← [[c]](S, ~H, (f, f−1)). According

to our semantics, commands denote functions that transform
distributions on configurations to distributions on configu-
rations. However, only distributions that are constructible
are of interest. Their set is denoted by Dist(Γ, ~H,F) and is
defined as the set of distributions of the form:
[(f, f−1)

r
← F(1η); ~H

r
← Ω; S

r
← A

~H,f,f−1

() : (S, ~H, f, f−1)]

where A is an algorithm accessing f , f−1 and ~H and which
records its queries to hashing oracles into the TH ’s in S.

2.2 Asymmetric Encryption
We study generic constructions that convert any trapdoor

permutation into a public-key encryption scheme. More
specifically, our aim is to provide an automatic verification
method for generic encryption schemes. We also adapt IND-
CPA and IND-CCA security notions to our setting.

Definition 2.1. A generic encryption scheme is defined
by a triple (F, E(ine, oute) : c,D(ind, outd) : c

′) such that:

• F is a trapdoor permutation generator that on input η
generates an η-bit string trapdoor permutation (f, f−1)

• E(ine, oute) : c and D(ind, outd) : c
′ are oracle declara-

tions for encryption and decryption.

Definition 2.2. Let GE be a generic encryption scheme
defined by (F,E(ine, oute) : c,D(ind, outd) : c

′). Let A =

(A1, A2) be an adversary and X ∈ Dist(Γ, ~H,F). For α ∈
{cpa, cca} and η ∈ N, let

Adv
ind−α
A,GE (η,X) = 2 ∗ Pr[(S, ~H, (f, f−1))

r
← X;

(x0, x1, s)
r
← AO1

1 (f); b
r
← {0, 1};

S′ r
← [[E(xb, oute)]](S, ~H, (f, f

−1)) :

AO2

2 (f, x0, x1, s, S
′(oute)) = b]− 1

where if α = cpa then O1 = O2 = ~H and if α = cca then
O1 = O2 = ~H ∪ {D}.

We insist, above, that A1 outputs x0, x1 such that |x0| =
|x1| and that in the case of CCA, A2 does not ask its or-
acle D to decrypt S′(y). We say that GE is IND-α secure
if Adv

ind−α
A,GE (η,X) is negligible for any constructible distribu-

tion ensemble X and polynomial-time adversary A.

3. IND-CPA SECURITY
In this section, we present an effective procedure to ver-

ify IND-CPA security. The procedure may fail to prove a
secure encryption scheme but never declares correct an in-
secure one. Thus, we sacrifice completeness for soundness,
a situation very frequent in verification2. We insist that our
procedure does not fail for any of the numerous construc-
tions we tried.

We are aiming at developing a procedure that allows us
to prove properties, i.e. invariants, of the encryption oracle.
More precisely, the procedure annotates each control point
of the encryption command with a set of predicates that
hold at that point for any execution except with negligible
probability. Given an encryption oracle E(ine, oute) : c we
want to prove that at the final control point, we have an
invariant that tells us that the value of oute is indistinguish-
able from a random value. As we will show, this implies
IND-CPA security.

A few words now concerning how we present the verifi-
cation procedure. First, we present in the assertion lan-
guage the invariant properties we are interested in. Then,
we present a set of rules of the form {ϕ}c{ϕ′} meaning that
execution of command c in any distribution that satisfies ϕ
leads to a distribution that satisfies ϕ′. Using Hoare logic
terminology, this means that the triple {ϕ}c{ϕ′} is valid.

From now on, we suppose that the adversary has access
to the hash functions ~H, and he is given the trapdoor per-
mutation f , but not its inverse f−1.

3.1 The Assertion Language
Our assertion language is defined by the following gram-

mar, where ψ defines the set of atomic assertions:

ψ ::= Indis(νx;V1; V2) | WS(x;V ) | H(H, e)
ϕ ::= true | ψ | ϕ ∧ ϕ,

2We conjecture that the IND-CPA verification problem of
schemes described in our language is undecidable.



Command c ::= x
r
← U | x := f(y) | x := f−1(y) | x := H(y) | x := y[n,m]
| x := y ⊕ z | x := y||z | if x = y then c1 else c2 fi | c; c

Oracle declaration O ::= N (x, y) : c

Table 1: Language grammar.

[[x
r
← U ]](S, ~H, (f, f−1)) = [u

r
← U : (S{x 7→ u}, ~H, (f, f−1))]

[[x := f(y)]](S, ~H, (f, f−1)) = δ(S{x 7→ f(S(y))}, ~H, (f, f−1))

[[x := f−1(y)]](S, ~H, (f, f−1)) = δ(S{x 7→ f−1(S(y))}, ~H, (f, f−1))

[[x := y[n,m]]](S, ~H, (f, f−1)) = δ(S{x 7→ S(y)[n,m]}, ~H, (f, f−1))

[[x := H(y)]](S, ~H, (f, f−1)) =
8

<

:

δ(S{x 7→ v}, ~H, (f, f−1)) ; if (S(y), v) ∈ TH

δ(S{x 7→ v,TH 7→ S(TH) · (S(y), v)}, ~H, (f, f−1)) ;

if (S(y), v) 6∈ TH and v = ~H(H)(S(y))

[[x := y ⊕ z]](S, ~H, (f, f−1)) = δ(S{x 7→ S(y)⊕ S(z)}, ~H, (f, f−1))

[[x := y||z]](S, ~H, (f, f−1)) = δ(S{x 7→ S(y)||S(z)}, ~H, (f, f−1))
[[c1; c2]] = [[c2]] ◦ [[c1]]

[[if x then c1 else c2 fi]](S, ~H, (f, f−1)) =



[[c1]](S, ~H, (f, f
−1)) if S(x) = 1

[[c2]](S, ~H, (f, f
−1)) otherwise

[[N (v, y)]](S, ~H, (f, f−1)) = [[c]](S{x 7→ v}, ~H, (f, f−1)) where c is the body of N .

Table 2: The semantics of the programming language

where V1, V2 ⊆ Var and e is an expression, that is, a variable
x or the concatenation of a polynomial number of variables.

Intuitively, Indis(νx;V1; V2) is satisfied by a distribution
on configurations, if any adversary has negligible probability
to distinguish whether he is given the value of x or a random
value, even when he is additionally given the values of the
variables in V1 and the image by the one-way permutation
of those in V2. The assertion WS(x;V ) is satisfied by a
distribution, if any adversary has negligible probability to
compute the value of x, even when he is given the values
of the variables in V . Finally, H(H, e) is satisfied when the
value of e has not been submitted to the hash oracle H .

Notations: We use Indis(νx;V ) instead of Indis(νx;V ; ∅)
and Indis(νx) instead of Indis(νx;Var). We also write V, x
instead of V ∪ {x} and even x, y instead of {x, y}.

Formally, the meaning of the assertion language is defined
by a satisfaction relation X |= ϕ, which tells us when a
distribution on configurations X satisfies the assertion ϕ. In
order to define the satisfaction relation X |= ϕ, we need to
generalize indistinguishability as follows. Let X be a family
of distributions in Dist(Γ, ~H,F) and V1 and V2 be sets of
variables in Var. By D(X, V1, V2) we denote the following
distribution family (on tuples of bit-strings):

D(X, V1, V2)η =

[(S, ~H, (f, f−1))
r
← X : (S(V1), f(S(V2)), ~H, f)]

Here S(V1) is the point-wise application of S to the el-
ements of V1 and f(S(V2)) is the point-wise application
of f to the elements of S(V2). We say that X and X ′

are V1;V2-indistinguishable, denoted by X ∼V1;V2
X ′, if

D(X, V1, V2) ∼ D(X ′, V1, V2).

Example 3.1. Let S0 be any state and let H1 be a hash
function. Recall that we are working in the ROM. Consider
the following distributions: Xη = [β;S := S0{x 7→ u, y 7→

H1(u)} : (S, ~H, (f, f−1))] and X ′
η = [β;u′ r

← {0, 1}p(η);S :=

S0{x 7→ u, y 7→ H1(u
′)} : (S, ~H, (f, f−1))], where β = ~H

r
←

Ω; (f, f−1)
r
← F(1η);u

r
← {0, 1}p(η), where p is a polyno-

mial. Then, we have X ∼{y};{x} X ′ but we do not have
X ∼{y,x};∅ X ′, because then the adversary can query the
value of H1(x) and match it to that of y.

The satisfaction relation X |= ψ is defined as follows:

• X |= true, X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′.

• X |= Indis(νx;V1;V2) iff X ∼V1;V2
[u

r
← U ;

(S, ~H, (f, f−1))
r
← X : (S{x 7→ u}, ~H, (f, f−1))]

• X |= WS(x;V ) iff Pr[(S, ~H, (f, f−1))
r
← X : A(S(V ))

= S(x)] is negligible, for any adversary A.

• X |= H(H,e) iff Pr[(S, ~H, (f, f−1))
r
← X : S(e) ∈

S(TH).dom] is negligible.

The relation between our Hoare triples and semantic security
is established by the following proposition that states that
if the value of oute is indistinguishable from a random value
then the scheme considered is IND-CPA.

Proposition 3.1. Let (F, E(ine, oute) : c,D(ind, outd) :
c
′) be a generic encryption scheme. It is IND-CPA secure if
{true}c{Indis(νoute; oute, ine)} is valid.

If {true}c{Indis(νoute; oute, ine)} holds then the encryption
scheme is secure with respect to randomness of ciphertext.
It is standard that randomness of ciphertext implies IND-
CPA security.

3.2 A Hoare Logic for IND-CPA security
In this section we present our Hoare logic for IND-CPA

security. We begin with a set of preservation axioms that tell
us when an invariant established at the control point before
a command can be transferred to the next control point.
Then, for each command, except x := f−1(y), x := y[n,m]
and conditional, we present a set of specific axioms that



allow us to establish new invariants. The commands that
are not considered are usually not used in encryption but
only in decryption procedures, and hence, are irrelevant for
IND-CPA security.

3.2.1 Generic preservation rules:

We assume z 6= x and c is either x
r
← U or x := y||t or

x = y ⊕ t or x := f(y) or x := H(y) or x := t⊕H(y).

Lemma 3.2. The following axioms are sound, when x 6∈
V1 ∪ V2:

• (G1) {Indis(νz;V1;V2)} c {Indis(νz;V1;V2)}

• (G2) {WS(z;V1)} c {WS(z;V1)}

• (G3) {H(H ′, e[e′/x])} x := e′ {H(H ′, e)}, provided
H ′ 6= H in case e′ ≡ H(y). Here, e[e′/x] is the ex-
pression obtained from e by replacing x by e′.

3.2.2 Random Assignment:

Lemma 3.3. The following axioms are sound:

• (R1) {true} x
r
← U {Indis(νx)}

• (R2) {true} x
r
← U {H(H,e)} if e is x or is of the form

e1||x||e2, x||e2 or e1||x.

Moreover, the following preservation axioms, where we as-
sume x 6= y 3, are sound:

• (R3) {Indis(νy;V1; V2)}x
r
← U{Indis(νy;V1, x;V2)}

• (R4) {WS(y;V )}x
r
← U{WS(y;V, x)}

Axiom (R1) is obvious. Axiom (R2) takes advantage of the
fact that U is a large set, or more precisely that its cardinal-
ity is exponential in the security parameter, and that since
e contains the fresh generated x the probability that it has
already been submitted to H is small. Axioms (R3) and
(R4) state that the value of x cannot help an adversary in
distinguishing the value of y from a random value in (R3)
or computing its value in (R4). This is the case because the
value of x is randomly sampled.

Henceforth, we write x ∈ var(e) to state that e is x or is
of the form e1||x||e2, x||e2 or e1||x.

3.2.3 Hash Function:

Lemma 3.4. The following basic axioms are sound, when
x 6= y, and α is either a constant or a variable:

• (H1){WS(y;V ) ∧ H(H,y)}x := α⊕ H(y)
{Indis(νx;V, x)}

• (H2){H(H, y)} x := H(y){H(H ′, e)}, if e is x or is of
the form e1||x||e2, x||e2 or e1||x.

• (H3){Indis(νy;V ;V ′, y) ∧ H(H,y)}x := H(y)
{Indis(νx;V, x;V ′, y)} if y 6∈ V

Axiom (H1) captures the main feature of the random oracle
model, namely that the hash function is a random function.
Hence, if an adversary cannot compute the value of y and
this latter has not been hashed yet then he cannot distin-
guish H(y) from a random value. Axiom (H2) is similar to
axiom (R2). Axiom (H3) uses the fact that the value of y
can not be queried to the hash oracle.
3By x = y we mean syntactic equality.

Lemma 3.5. The following preservation axioms are sound
provided that x 6= y and z 6= x:

• (H4) {WS(y;V ) ∧WS(z;V ) ∧ H(H,y)}x := H(y)
{WS(z;V, x)}

• (H5) {H(H,e) ∧WS(z; y)}x := H(y){H(H,e)}, if z ∈
var(e) ∧ x /∈ var(e)

• (H6) {Indis(νy;V1;V2, y) ∧ H(H,y)}x := H(y)
{Indis(νy;V1, x;V2, y)}, if y 6∈ V1

• (H7) {Indis(νz;V1, z;V2)∧WS(y;V1∪V2, z)∧H(H,y)}
x := H(y){Indis(νz;V1, z, x;V2)}

The idea behind (H4) is that to the adversary the value
of x is seemingly random so that it can not help to compute
z. Axiom (H5) states that the value of e not having been
hashed yet reminds true as long as e contains a variable z
whose value is not computable out of y. (H6) and (H7) give
necessary conditions to the preservation of indistinguisha-
bility that is based on the seemingly randomness of a hash
value.

3.2.4 One-way Function:

Lemma 3.6. The following axiom is sound, when y 6∈ V ∪
{x}:

• (O1) {Indis(νy;V ; y)} x := f(y) {WS(y;V, x)}.

Axiom (O1) captures the one-wayness of f .

Lemma 3.7. The following axioms are sound when z 6= x:

• (O2) {Indis(νz;V1, z;V2, y)} x := f(y)
{Indis(νz;V1, z, x;V2)}, if z 6= y

• (O3) {WS(z;V ) ∧ Indis(νy;V, z; y)} x := f(y)
{WS(z;V, x)}

For one-way permutations, we also have the following axiom:

• (P1){Indis(νy;V1;V2, y)} x := f(y)
{Indis(νx;V1, x;V2)}, if y 6∈ V1 ∪ V2

Axiom (O2) is obvious since f(y) is given to the adversary
in the precondition and axiom (O3) follows from the fact
that y and z are independent. Axiom (P1) simply ensues
from the fact that f is a permutation.

3.2.5 The Xor operator

In the following axioms, we assume y 6= z.

Lemma 3.8. The following axiom is sound when y 6∈ V1∪
V2:

• (X1) {Indis(νy;V1, y, z;V2)}x := y ⊕ z
{Indis(νx;V1, x, z;V2)},

Moreover, we have the following axioms that are sound pro-
vided that t 6= x, y, z.

• (X2) {Indis(νt;V1, y, z;V2)}x := y ⊕ z
{Indis(νt;V1, x, y, z;V2)}

• (X3) {WS(t;V, y, z)}x := y ⊕ z{WS(t;V, y, z, x)}

To understand axiom (X1) one should consider y as a key
and think about x as the one-time pad encryption of z with
the key y. Axioms (X2) and (X3) take advantage of the fact
that is easy to compute x given y and z.



3.2.6 Concatenation:

Lemma 3.9. The following axioms are sound:

• (C1) {WS(y;V )} x := y||z {WS(x;V )}, if x 6∈ V . A
dual axiom applies for z.

• (C2) {Indis(νy;V1, y, z;V2)∧Indis(νz;V1, y, z;V2)} x :=
y||z {Indis(νx;V1;V2)}, if y, z 6∈ V1 ∪ V2

• (C3) {Indis(νt;V1, y, z; V2)}x := y||z
{Indis(νt;V1, x, y, z;V2)}, if t 6= x, y, z

• (C4) {WS(t;V, y, z)} x := y||z {WS(t;V, y, z, x)}, if
t 6= x, y, z

(C1) states that if computing a substring of x out of the
elements of V is hard, then so is computing x itself. The
idea behind (C2) is that y and z being random implies ran-
domness of x, with respect to V1 and V2. Eventually, x being
easily computable from y and z accounts for rules (C3) and
(C4).

In addition to the axioms above, we have the usual sequen-
tial composition and consequence rules of the Hoare logic.
In order to apply the consequence rule, we use entailment
(logic implication) between assertions as in Lemma 3.10.

Lemma 3.10. Let X ∈ Dist(Γ, ~H,F) be a distribution
ensemble:

1. If X |= Indis(νx;V1;V2), V
′
1 ⊆ V1 and V ′

2 ⊆ V1 ∪ V2

then X |= Indis(νx;V ′
1 ;V ′

2).

2. If X |= WS(x;V ′) and V ⊆ V ′ then X |= WS(x;V ).

3. If X |= Indis(νx;V1;V2 ∪ {x}) and V ⊆ V1 \ {x} then
X |= WS(x;V ).

The soundness of the Hoare Logic follows by induction from
the soundness of each axiom and soundness of the Conse-
quence and Sequential composition rules.

Proposition 3.11. The Hoare triples of Section 3.2 are
valid.

Example 3.2. We illustrate our proposition with Bellare
& Rogaway’s generic construction [5].

1) r
r
← {0, 1}n0

Indis(νr;Var) ∧ H(G, r) ∧ H(H, ine||r)
2) a := f(r)
Indis(νa;Var− r) ∧WS(r;Var− r) ∧ H(G, r)∧
H(H, ine||r)
3) g := G(r)
Indis(νa;Var− r) ∧ Indis(νg;Var− r)∧
WS(r;Var− r) ∧ H(H, ine||r)
4) b := ine ⊕ g
Indis(νa;Var− r) ∧ Indis(νb;Var− g − r)∧
WS(r;Var− r) ∧ H(H, ine||r)
5) s := ine||r
Indis(νa;Var− r − s) ∧ Indis(νb;Var− g − r − s)∧
WS(s;Var− r − s) ∧ H(H,s)
6) c := H(s)
Indis(νa;Var− r − s) ∧ Indis(νb;Var− r − g − s)∧
Indis(νc;Var− r − s)
7) oute := a||b||c
Indis(νoute;Var− a− b− c− r − g − s)

1) (R1), (R2), and (R2).
2) (P1), (O1), (G3), and (G3).
3) (H7), (H1), (H4), and (G3).
4) (X2), (X1), (X3), and (G3).
5) (G1), (G1), (C1), and (G3).
6) (H7), (H7), and (H1).
7) (C2) twice.

3.3 Extensions
In this section, we show how our Hoare logic, and hence

our verification procedure, can be adapted to deal with on
one hand injective partially trapdoor one-way functions and
on the other hand OW-PCA (probabilistic) functions. The
first extension is motivated by Pointcheval’s construction
in [18] and the second one by the Rapid Enhanced-security
Asymmetric Cryptosystem Transform (REACT) [17]. For
obvious reasons, we cannot recall the definitions of the se-
curity of these functions; we explain them informally.

The first observation we have to make is that Proposi-
tion 3.1 is too demanding in case f is not a permutation.
Therefore, we introduce a new predicate Indisf (νx;V1;V2)
whose meaning is as follows:
X |= Indisf (νx;V1; V2) if and only if X ∼V1;V2

[u
r
←

U ; (S, ~H, (f, f−1))
r
← X : (S{x 7→ f(u)}, ~H, (f, f−1))].

Notice that, when f is a bijection, Indisf (νx;V1;V2) is
equivalent to Indis(νx;V1; V2) (fi can be the identity function
as in the last step of Example 3.3 and 3.4). Now, let oute, the
output of the encryption oracle, have the form a1|| · · · ||an

with ai = fi(xi). Then, we can prove the following:

Proposition 3.12. We consider GE a generic encryp-
tion scheme of the form (F,E(ine, oute) : c,D(ind, outd) :
c
′).

If {true}c{
n
V

i=1

Indisfi
(νai; a1, . . . , an, ine)} is valid then GE

is IND-CPA.

Now, we introduce a new axiom for Indisf (νx;V1;V2) that
replaces axiom (P1) in case the one-way function f is not a
permutation:

(P1′) {Indis(νy;V1;V2, y)}
x := f(y)
{Indisf (νx;V1, x;V2)} if y 6∈ V1 ∪ V2

Clearly all preservation rules can be generalized for Indisf .
Injective partially trapdoor one-way functions: In

contrast to the previous section, we do not assume f to be
a permutation. On the other hand, we demand a stronger
property than one-wayness. Let f : X × Y → Z be a func-
tion and let f−1 : Z → X be such that ∀z ∈ dom(f−1)∃y ∈
Y, z = f(f−1(z), y). Here f−1 is a partial function. The
function f is said partially one-way, if for any given z =
f(x, y), it is computationally impossible to compute a cor-
responding x. In order to deal with the fact that f is
now partially one-way, we add the following axioms, where
we assume x, y 6∈ V ∪ {z} and where we identify f and
(x, y) 7→ f(x||y):

(PO1) {Indis(νx;V, x, y) ∧ Indis(νy;V, x, y)}
z := f(x||y)
{WS(x;V, z) ∧ Indisf (νz;V, z) }

The intuition behind the first part of (PO1) is that f
guarantees one-way secrecy of the x-part of x||y. The second
part follows the same idea that (P1’).



Example 3.3. We verify Pointcheval’s transformer [18].

1) r
r
← {0, 1}n0

Indis(νr;Var) ∧ H(G, r)

2) s
r
← {0, 1}n0

Indis(νr;Var) ∧ Indis(νs;Var) ∧ H(G, r) ∧ H(H, ine||s)
3) w := ine||s
Indis(νr;Var) ∧WS(w;Var− s− w) ∧ H(G, r) ∧ H(H,w)
4) h := H(w)
Indis(νr;Var−w − s) ∧ Indis(νh;Var− w − s) ∧ H(G, r)
5) a := f(r||h)
Indisf (νa;Var− r − s−w − h)
∧WS(r;Var− r − s− w − h) ∧ H(G, r)
6) b := w ⊕G(r)
Indisf (νa;a, ine) ∧ Indis(νb; a, b, ine)
7) oute := a||b
Indisf (νa;a, ine) ∧ Indis(νb; a, b, ine)

1) (R1) and (R2); 2) (R3), (R1), (G3) and (R2); 3) (C3),
(C1), (G3), and (G3); 4) (H7), (H1), and (G3); 5) New
rule (PO1) and (G3); 6) Extension of (G1) to Indisf , and
(H1); 7) Extension of (G1) to Indisf , and (G1).

To conclude, we use the fact that Indisf (νa; a, ine) and
Indis(νb;a, b, ine) implies Indisf (νa;a, b, ine)

OW-PCA: Some constructions such as REACT are based
on probabilistic one-way functions that are difficult to invert
even when the adversary has access to a plaintext checking
oracle (PC), which on input a pair (m, c), answers whether
c encrypts m. In order to deal with OW-PCA functions, we
need to strengthen the meaning of our predicates allowing
the adversary to access to the additional plaintext checking
oracle. For instance, the definition of WS(x;V ) becomes:

X |= WS(x;V ) iff Pr[(S, ~H, (f, f−1))
r
← X : APCA(S(V )) =

S(x)] is negligible, for any adversary A. Now, we have to
revisit Lemma 3.10 and the axioms that introduce WS(x;V )
in the postcondition. It is, however, easy to check that they
are valid.

Example 3.4. REACT [17]

1) r
r
← {0, 1}n0

Indis(νr;Var)

2) R
r
← {0, 1}n0

Indis(νr;Var) ∧ Indis(νR;Var) ∧ H(G,R)∧
H(H,R||ine||f(R||r)||ine ⊕G(R))
3) a := f(R||r)
Indisf (νa;Var− r −R) ∧WS(R;Var− r −R)∧
H(G,R) ∧ H(H,R||ine||a||ine ⊕G(R))
4) g := G(R)
Indisf (νa;Var− r −R) ∧ Indis(νg;Var− r −R)∧
WS(R;Var− r −R) ∧ H(H,R||ine||a||ine ⊕ g)
5) b := ine ⊕ g
Indisf (νa;Var− r −R) ∧ Indis(νb;Var− g − r −R)∧
WS(R;Var− r −R) ∧ H(H,R||ine||a||b)
6) w := R||ine||a||b
Indisf (νa;Var− r − w −R)
∧Indis(νb;Var− g − r − w −R)
∧WS(w;Var− r − w −R) ∧ H(H,w)
7) c := H(w)
Indisf (νa;a, b, c, ine) ∧ Indis(νb; a, b, c, ine)
∧Indis(νc; a, b, c, ine)
8) oute := a||b||c;
Indisf (νa;a, b, c, ine) ∧ Indis(νb; a, b, c, ine)
∧Indis(νc; a, b, c, ine)

1) (R1)
2) (R3), (R1), (R2) and (R2)
3) (PO1), (G3) and (G3).
4) Extension of (H7) to Indisf , (H1), (H4), and (G3).
5) Extension of (X2) to Indisf , (X1), (X3), and (G3).
6) Extension of (G1) to Indisf , (G1), (C1), and (G3).
7) Extension of (H7) to Indisf , (H7), and (H1).
8) Extension of (G1) to Indisf , (G1) and (G1).

4. PLAINTEXT AWARENESS
Bellare and Rogaway introduced plaintext awareness (PA)

in [6]4. The motivation is to decompose IND-CCA secu-
rity of an encryption scheme into IND-CPA and PA secu-
rity. Indeed, a public-key encryption scheme that satisfies
IND-CPA (in the ROM) and the original definition of PA is
IND-CCA1 (in the ROM). PA has been refined in [4] such
that if an encryption scheme is PA and IND-CPA then it is
IND-CCA. Intuitively, plaintext awareness means that the
decryption oracle can be simulated by a plaintext extractor
that does not have access to the inverse permutation f−1.
Now we introduce a simple analysis that allows us to au-
tomatically verify that an encryption scheme is PA in the
strong sense [4]. Hence, combined with the results of the
previous sections we obtain an analysis that allows to verify
IND-CCA security.

We recall the definition of PA-security following the no-
tations and conventions of [4]. Let GE = (F,E(ine, oute) :
c,D(ind, outd) : c

′) be a generic encryption scheme. An
adversary B for plaintext awareness is given the public per-
mutation f , oracle access to the encryption algorithm E and
to the ideal hash functions ~H = H1, · · · ,Hn. His goal is to
output a cipher-text that cannot be correctly decrypted by
the plaintext extractor. Hence, the success of plaintext ex-
tractor K against B in the distribution X ∈ Dist(Γ, ~H,F)
is defined by:

Succ
pa

K,B,GE(η,X) =

Pr[(S, ~H, (f, f−1))
r
← X; (hH,C, y, S′)

r
← BE, ~H(f);

S′′ r
← [[D(y, outd)]](S′, ~H, (f, f−1)) :

y ∈ C ∨ (y 6∈ C ∧K(hH,C, y, f) = S′′(outd))]

Here by (hH,C, y, S′)
r
← BE, ~H(f) we mean the following:

run B on input f with oracle access to Hi, i = 1, · · · , n
and E (which calls f and Hi), recording B’s interaction
with the hash functions in hH and his interaction with E
in C. Thus, hH is a list (hH1, · · · , hHn) of lists. Each
list hHi = ((h1, v1), · · · , (hqi

, vqi
)) records all of B’s Hi-

oracle queries h1, · · · , hqi
and the corresponding answers

v1, · · · , vqi
. The modified state S′ is due to calls of the hash

functions either by B or the encryption oracle. The list C
records the cipher-texts received in reply to E-queries 5. Fi-
nally, y is B’s challenge to the plaintext extractor K. Please
notice that K wins whenever B outputs a value y ∈ C.

Definition 4.1. An encryption scheme given by GE =
(F, E(ine, oute) : c,D(ind, outd) : c

′) is PA-secure, if there

4While in the original work by Bellare and Rogaway and
in subsequent ones, plaintext awareness includes semantic
security, we prefer to separate plaintext extraction and se-
mantic security.
5This list was not included in the original definition by
Bellare and Rogaway. Without it only IND-CCA1 can be
proved but not IND-CCA.



is a polynomial-time probabilistic algorithm K such that for
every distribution X ∈ Dist(Γ, ~H,F) and adversary B, we
have 1− Succ

pa

K,B,GE(η,X) is a negligible function in η.

The rest of the section is organized as follows. We first intro-
duce a semantic condition on D that implies the existence of
a plaintext extractor. Then, we provide a syntactic criterion
that implies the semantic criterion.

In the remainder of this section, we consider an encryption
scheme GE that uses the hash functions ~H = H1, · · · , Hn.
We assume that c

′ has the following form
c1;h := H1(t);
if V(~x, h) = v then outd := m else outd := ”error” fi,

where ~x is a vector of variables (possibly empty) and V is a
function (possibly the identity in which case we do not write

it) such that for given ~x and v, Pr[r
r
← U : V(~x, r) = v]

is negligible. Furthermore, we require that the hash func-
tion H1 is not called in c1 and that the encryption algo-
rithm c makes exactly one call to the oracle H1. Consider,
for instance, the scheme in [5], f(r)||ine ⊕ G(r)||H(ine||r).
Here, t gets assigned the value ine||r. We call the condition
V(~x, h) = v (or equivalently V(~x,H1(t)) = v) the ”sanity
check”.

It allows us to discriminate valid cipher-text from arbi-
trary bit-string. We also assume that decryption behaves
correctly with respect to encryption: if y is generated using
the algorithm of encryption, then the value of t as computed
by the decryption oracle coincides with the value used as ar-
gument in the call to H1 by the encryption algorithm.

Example 4.1. Bellare and Rogaway [5]:
D(ind = a∗||b∗||v, outd) :
r∗ := f−1(a∗); g∗ := G(r∗);m∗ := b∗ ⊕ g∗; t := m∗||r∗;
h := H(t);
if h = v then outd := m∗

else outd := ”error” fi

A semantic criterion for PA Our semantic criterion
for PA-security is composed of three conditions. We begin
with an informal presentation of these conditions and how
they will enable us to construct a plaintext extractor.

1. The first condition says that there is an algorithm that
checks whether a given bit-string t∗, that has been
submitted to H1 by B, corresponds to the challenge y.
That is, if the tester answers ”yes” (1), then t∗ matches
with the value of t as computed by the decryption or-
acle and additionally satisfies the sanity check; and if
it answers ”no” (0), then t∗ does not satisfy the sanity
check.

2. The second condition states that it is easy to compute
the plaintext from t∗.

3. The third condition states that for each value of t there
is at most one corresponding ciphertext y.

Assume now that these conditions are satisfied. Then,
we can construct a plaintext extractor K as follows. Using
the algorithm of the first condition, that we call the tester,
scan the list hH1 to find a suitable t∗. If none is found,
answer ”error”. Otherwise, apply the algorithm of the second
condition on the value found for t∗ to extract the plaintext.
The third condition ensures that each value of t∗ corresponds
to at most one ciphertext, which is necessary to ensure that
the extracted plaintext is the correct one. Let us now
tackle the formal treatment of these ideas.

Definition 4.2. We say that GE a generic encryption
scheme satisfies the PA-semantic criterion, if there exist ef-
ficient algorithms T and Ext that satisfy the following con-
ditions:

1. The tester T takes as input (hH,C, y, t∗, f) and re-
turns a value in {0, 1}. We require that for any adver-

sary B and any distribution X ∈ Dist(Γ, ~H,F),

1−

Pr[(S, ~H, (f, f−1))
r
← X; (hH, C, y, S′)

r
← BE, ~H(f);

S′′ r
← [[D(y, outd)]](S′, ~H, (f, f−1)); t∗

r
← hH1.dom;

b
r
← T (hH, C, y, t∗, f) :

`

b = 1⇒ H1(t∗) = H1(S′′(t))
∧V(S′′(x), H1(t∗)) = S′′(v)

´

∧
`

b = 0⇒ V(S′′(x), H1(t∗)) 6= S′′(v)
´

]

is negligible.

2. For Ext, we require that for any adversary B and any
distribution X ∈ Dist(Γ, ~H,F),

1−

Pr[(S, ~H, (f, f−1))
r
← X; (hH,C, y, S′)

r
← BE, ~H(f);

S′′ r
← [[D(y, outd)]](S

′, ~H, (f, f−1)) :
Ext(hH,C, y, S′′(t), f) = S′′(outd)]

is negligible.

3. Finally, we require that for any adversary B and any

distribution X ∈ Dist(Γ, ~H,F),

Pr[(S, ~H, (f, f−1))
r
← X; (hH, C, y, y′, S′)

r
← BE, ~H (f);

S1
r
← [[D(y, outd)]](S′, ~H, (f, f−1));

S2
r
← [[D(y′, outd)]](S′, ~H, (f, f−1)) :

y 6= y′ ∧ S1(t) = S2(t) ∧ S1(outd) 6= ”error”∧
S2(outd) 6= ”error”]

is negligible.

Of course there are generic encryption schemes for which the
conditions above are satisfied under the assumption that T
has access to an extra oracle such as a plaintext checking
oracle (PC), or a ciphertext validity-checking oracle (CV),
which on input c answers whether c is a valid ciphertext.
In this case, the semantic security of the scheme has to be
established under the assumption that f is OW-PCA, re-
spectively OW-CVA. Furthermore, our definition of the PA-
semantic criterion makes perfect sense for constructions that
apply to IND-CPA schemes such as Fujisaki and Okamoto’s
converter [14]. In this case, f has to be considered as the
IND-CPA encryption oracle.

Given a tester T and an algorithm Ext as in Definition 4.2,
we construct a plaintext extractor as follows:

KT ,Ext(hH,C, y, f) :
Let L = {t∗ | t∗ ∈ dom(hH1), T (hH,C, y, t∗, f) = 1}

if L = ǫ then return ”error” else t∗
r
← L;

return Ext(hH,C, y, t∗, f)

Theorem 4.1. Let GE be a generic encryption scheme
that satisfies the PA-semantic criterion. Then, GE is PA-
secure.

An easy syntactic check that implies the PA-semantic crite-
rion is as follows.

Definition 4.3. A generic encryption scheme GE satis-
fies the PA-syntactic criterion, if the sanity check has the
form V(t, h) = v, where D is such that h is assigned H1(t),
t is assigned ine||r, ine is the plaintext and E(ine; r) is the
ciphertext (i.e., r is the random seed of E).



It is not difficult to see that if GE satisfies the PA-syntactic
criterion then it also satisfies the PA-semantic one with a
tester T as follows (Ext is obvious):

Look in hH1 for a bit-string s such that E(x∗; r∗) = y,
where y is the challenge and x∗||r∗ = s.

Here are some examples that satisfy the syntactic criterion
(we use ·∗ to denote the values computed by the decryption
oracle):

Example 4.2. • Bellare and Rogaway [5]: E(ine; r) =
a||b||c = f(r)||ine⊕G(r)||H(ine||r). The ”sanity check”
of the decryption algorithm is H(m∗||r∗) = c∗.

• OAEP+ [19]: E(ine; r) = f(a||b||c), where a = ine ⊕
G(r), b = H ′(ine||r), c = H(s) ⊕ r and s = ine ⊕
G(r)||H ′(ine||r). The ”sanity check” of the decryption
algorithm has the form H ′(m∗||r∗) = b∗.

• Fujisaki and Okamoto [14]: if (K′, E ′,D′) is a pub-
lic encryption scheme (that is CPA) then E(ine; r) =
E ′((ine||r);H(ine||r)). The ”sanity check” of the de-
cryption algorithm is:
E ′(m∗||r∗;H(m∗||r∗)) = ind.

The PA-semantic criterion applies to the following construc-
tions but not the syntactic one:

Example 4.3.

• Pointcheval [18]:
E(ine; r; s) = f(r||H(ine||s))||((ine||s)⊕G(r)), where f
is a partially trapdoor one-way injective function. The
”sanity check” of the decryption oracle D(a||b) has the
form f(r∗||H(m∗||s∗)) = a∗. The tester looks in hG
and hH for r∗ and m∗||s∗ such that E(m∗; r∗; s∗) = y.

• REACT [17]: This construction applies to any trap-
door one-way function (possibly probabilistic). It is
quite similar to the construction in [5]: E(ine;R; r) =
a||b||c = f(R; r)||ine⊕G(r)||H(R||ine||a||b), where a =
f(R; r) and b = ine ⊕G(R). The ”sanity check” of the
decryption algorithm is H(R∗||m∗||a∗||b∗) = c. For
this construction, one can provide a tester T that uses
a PCA oracle to check whether a is the encryption of
R by f . Hence, the PA security of the construction
under the assumption of the OW-PCA security of f .
The tester looks in hH for R∗||m∗||a∗||b∗ such that
c∗ = H(R∗||m∗||a∗||b∗) and a∗ = f(R∗), which can be
checked using the CPA-oracle.

And now some examples of constructions that do not satisfy
the PA-semantic criterion (and hence, not the syntactic one):

Example 4.4. • Zheng-Seberry Scheme [23]:

E(x; r) = a||b = f(r)||(G(r) ⊕ (x||H(x)). The third
condition of the PA-semantic criterion is not satisfied
by this construction. Actually, there is an attack [21]
on the IND-CCA security of this scheme that exploits
this fact.

• OAEP [6]: E(ine; r) = a = f(ine||0
k⊕G(r)||r⊕H(s)),

where s = ine||0
k ⊕ G(r). Here the third condition is

not satisfied.

5. AUTOMATION
We can now fully automate our verification procedure of

IND-CCA for the encryption schemes we consider as follows:

1. Automatically establish invariants

2. Check the syntactic criterion for PA.

Point 2 can be done by a simple syntactic analyzer taking
as input the decryption program, but has not been imple-
mented yet.

Point 1 is more challenging. The idea is, for a given pro-
gram, to compute invariants backwards, starting with the
invariant Indis(νoute; oute, ine) at the end of the program.

As several rules can lead to a same postcondition, we in
fact compute a set of sufficient conditions at all points of the
program: for each set {φ1, . . . , φn} and each instruction c,
we can compute a set of assertions {φ′

1, . . . , φ
′
m} such that

1. for i = 1, . . . ,m, there exists j such that {φ′
i}c{φj}

can be derived using the rules given section 3.2,

2. and for all j and all φ′ such that {φ′}c{φj}, there ex-
ists i such that φ′ entails φ′

i and that this entailment
relation can be derived using lemma 3.10.

Of course, this verification is potentially exponential in the
number of instructions of the encryption program as each
postcondition may potentially have several preconditions.
However this is mitigated as

• the considered encryption scheme are generally imple-
mented in a few instructions (around 10)

• we implement a simplification procedure on the com-
puted set of invariants: if φi entails φj (for i 6= j),
then we can safely delete φi from the set of asser-
tions {φ1, . . . , φn}. In other words, we keep only the
minimal preconditions with respect to strength in our
computed set of invariants (the usual Hoare logic cor-
responds to the degenerated case where this set has a
minimum element, called the weakest precondition).

In practice, checking Bellare & Rogaway generic construc-
tion is instantaneous.

We implemented that procedure as an Objective Caml
program, taking as input a representation of the encryption
program. This program is only 230 lines long and is available
on the web page of the authors.

6. CONCLUSION
In this paper we proposed an automatic method to prove

IND-CCA security of generic encryption schemes in the ran-
dom oracle model. IND-CPA is proved using a Hoare logic
and plaintext awareness using a syntactic criterion. It does
not seem difficult to adapt our Hoare logic to allow a se-
curity proof in the concrete framework of provable security.
Another extension of our Hoare logic could concern OAEP.
Here, we need to express that the value of a given variable is
indistinguishable from a random value as long as a value r
has not been submitted to a hash oracle G. This can be done
by extending the predicate Indis(νx;V1;V2). The details are
future work.
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