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ABSTRACT
Private permissioned blockchains are becoming gradually more

sought-after. Such systems are reachable by authorized users, and

tend to be completely transparent to whoever interacts with the

blockchain. In this paper, we mitigate the latter. Authorized users

can now stay unlinked to the transaction they propose in the

blockchain while being authenticated before being allowed to inter-

act. As a first contribution, we developed a consensus algorithm for

private permissioned blockchains based on Hyperledger Fabric and

the Practical Byzantine Fault Tolerance consensus. Building on this

blockchain, five additional variations achieving various client-wise

privacy preserving levels are proposed. These different protocols

allow for different use cases and levels of privacy control and some-

times its revocation by an authority. All our protocols guarantee the

unlinkability of transactions to their issuers achieving anonymity

or pseudonymity. Miners can also inherit some of the above privacy

preserving setting. Naturally, we maintain liveness and safety of

the system and its data.
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1 INTRODUCTION
Blockchains are replicated synchronized databases shared across a

trustless network. They started with Bitcoin’s Nakamoto consensus

style [25], meaning having miners compete to create the next block

with a longest-chain-win rule
1
. Anonymity in Bitcoin can be quite

contentious [28], which led to more anonymous open blockchains

1
Length here does not necessarily mean number of blocks (as it did it at Bitcoin’s

conception). Length can for example denote difficulty in the current Bitcoin protocol, or

weight in Ethereum’s GHOST algorithm implementation [31].
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such as Zcash [20] and Monero (based on Cryptonote [33]). Bitcoin

was, and to some extent still is, open to all users and all miners.

However, blockchains are undergoing an evolutionary shift towards

private and permissioned architecture, and implementing BFT con-

sensus instead of Nakamoto consensus
2
. This shift mainly aims to

regulate access to sensitive information and to gain in scalability.

Distributed ledger privacy. Danezis and Gürses [13] divided pri-

vacy into confidentiality and control (over personal data). With

distributed ledgers, control level depends on the openness and con-

figuration of the ledger. Since control includes the right to erasure,

and in a distributed setting there is no way to make sure that some

data has indeed been deleted, then control is somewhat out of our

reach. Confidentiality refers to the difficulty of extracting knowl-

edge from data. With blockchains, the data is an operation, and

it must have a specified format and must meet certain require-

ments. These requirements usually include a signature by its issuer.

The two relevant ends of the identity confidentiality spectrum are

pseudonymity and anonymity. Pseudonymity is having entities

identified by pseudonyms, but not necessarily being able to link

the pseudonyms to the identities behind them. A good example of

pseudonymity is Bitcoin [25], where users are identified by their

public keys, and it is generally infeasible to trace the public key to

a real world identity. Note that in bitcoin a user can create as many

pseudonyms as they wish. Anonymity, on another hand, is when it

is infeasible to link anything. One such example is Monero’s usage

of ring signatures [29] in order to anonymize the sender’s identity

that is blended with a set of other identities.

Private (respectively permissioned) distributed ledgers must nat-

urally restrict their usage (respectively their mining) to legitimate

entities only. These restrictions seem, at first, incompatible with

privacy, giving rise to a dilemma: how to restrict private (respec-

tively permissioned) distributed ledgers usage (respectively mining)

while ensuring user (respectively miner) privacy? Note that this

apparent dilemma is applicable to virtually any type of private or

permissioned distributed ledger, whether it be relying on Proof-of-

Work, Proof-of-Stake, Byzantine Fault Tolerance (BFT) protocols

or any other type of consensus mechanism.

Contributions. In this article, we propose a new BFT consensus

blockchain, SignCons, modelled after Hyperledger Fabric [2, 15],

with several constructions to gain in privacy. The blockchain itself

makes a distinction between two categories of miners: endorsers

who verify transactions, and orderers who order valid transactions

in blocks. This grants us an execute-order-validate architecture. Or-
derers reach consensus using a modified version of the Practical

2
Note that some intermediate options exist, such as Proof-of-Stake blockchain, which is

in the Nakamoto consensus style as well as being public and permissioned.
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Fault Tolerance [10], yielding safety and liveness under very mod-

erate assumptions. As for our main contributions, firstly we give

three similar yet distinct ways to acquire user anonymity, then

we give another two ways to acquire user pseudonymity, and fi-

nally we propose two constructions to gain endorser and/or orderer

pseudonymity. Constructions aimed at users, endorsers and order-

ers are composable. All constructions (anonymous and pseudony-

mous) share a birthplace, however they differ in their applications

and use cases. The first of the user-related anonymous constructions

is BlindCons. It relies on having an authority, and uses blind signa-

tures. The user authenticates themself to the authority, and if the

user is part of the corresponding authorized set, then the authority

blind signs their operation. And the data must be deemed valid by

the miners if it is signed by the authority. The second construction

is GroupCons, and it also relies on an authority but uses group sig-

natures. The authority plays the role of the group manager, with the

set of authorized users forming the signing group. The operation is

group-signed by its issuer. Group-signed data must be deemed valid

by miners. In this scenario, the authority can revoke the anonymity

of the issuer. The third construction, RingCons does not rely on an

authority, and uses ring signatures. The operation is ring-signed by

its issuer, forming a ring with as many of the authorized users as

the issuer wants. The ring must not include any user not member

of the authorized set. Ring-signed operations in this manner must

be deemed valid by miners. As for the two pseudonymous construc-

tions for users, LinkGroupCons and LinkRingCons, they require

respectively linkable group signatures and linkable ring signatures.

Similarly, endorsers benefit of EndGroupCons and EndRingCons,
while orderers have OrdGroupCons and OrdRingCons. Further-
more, the underlying blockchain, thanks to the PBFT structure,

guarantees safety and liveness with whatever overlaid privacy

construction. The different privacy constructions have different

efficiencies, although all can be implemented without much added

overhead computation (compared to the underlying blockchain).

For a recap of the blockchain’s properties refer to Tables 1 and 2.

Note that these constructions could very easily be applied on top

of any blockchain without inducing much latency into the system,

though we do it here for a Hyperledger-like blockchain for which

we prove the privacy properties

Related Work. Most known privacy works on blockchains aim at

anonymizing cryptocurrencies. Monero (built on Cryptonote [33])

relies on ring signatures [4] and ring confidential transactions [26,

32]. Zerocoin [24] introduced zero knowledge proofs (ZKPs) of

set membership (which are quite onerous). Zcash [20] (resembling

Zerocoin) relies on zk-SNARKs [3] which are much more effficient.

Blockchain privacy has been addressed quite extensively, but

rarely has the identity confidentiality of private or permissioned

distributed ledgers been addressed. One way to solve the issue is

by using identity providers [18]: one permissions issuer and one or

more permissions verifiers. The permissions issuer is in charge of

verifying a user’s identity and issuing them keying material; while

the permissions verifier is in charge of verifying that an entity has

valid keying material and issuing them a special key allowing them

to transact. For the latter verification, the verifier permissions need

not know the user’s identity, but only verify the keying material.

Another way to ensure privacy on a private network uses puzzle-

solving mechanism [12] and is dedicated to IoT networks. They

propose to have two blockchains: a public one and a private one. To

Revoke Authority Privacy

User No Inactive Level

BlindCons Ano.

GroupCons Ano.

RingCons Ano.

LinkGroupCons Pseu.

LinkRingCons Pseu.

Table 1: Users’ Privacy Preserving Protocols.
Ano. : Anonymous; Pseu. : Pseudonymous.

Revoke Authority Privacy

Endorser Not Needed Level

(Ord) EndGroupCons Pseu.

(Ord) EndRingCons Pseu.

Table 2: Orderers’ and Endorsers’ Protocols.

be allowed to transact on the private chain, users must solve a puz-

zle on the public chain inside a specific time-lapse. Legitimate users

should be able to solve the puzzle within the time-lapse while non-

legitimate users should not be able to do it. Other papers consider

blockchain privacy from a network level perspective [19]. Some

propose privacy-preserving private cryptocurrencies [21]. Even a

dedicated survey of privacy-preserving solutions for blockchains [5]

barely mentions privacy on private or permissioned blockchains. It

mentions a blockchain architecture relying on blind signature that

achieves trustless privacy-preserving reputation system [30].

Outline. In Section 2, we start by going over Fabric, PBFT and

the cryptographic tools. In Section 3 we showcase our blockchain

SignCons, before outlining the many privacy preserving construc-

tions in Section 4. Subsequently we discuss the security and privacy

properties in Section 5, the complexities in Section 6 and we con-

clude in Section 7.

2 BACKGROUND
SignCons uses an instantiation of Fabric and a PBFT consensus.

• Practical Byzantine Fault Tolerance (PBFT) [10] which is a Repli-

cated State Machine protocol. For 𝑓 faulty (byzantine) nodes, it

permits a network of 3𝑓 +1 nodes to reach consensus.

• Hyperledger Fabric [2, 15] is a blockchain framework. Is is a highly

tweakable permissioned blockchain framework.

2.1 Practical Byzantine Fault Tolerance (PBFT)
Practical Byzantine Fault Tolerance (PBFT) [10] is designed for sys-

tems of at least 3𝑓 +1 nodes where 𝑓 is the number of faulty (byzan-

tine) nodes. The protocol allows for a very powerful adversary that

can coordinate faulty nodes, delay communication, or delay correct

nodes. However, it is assumed that the adversary cannot delay cor-

rect nodes indefinitely. The adversary is also assumed to be a Proba-

bilistic Polynomial Time (PPT) algorithm. The nodes are called repli-
cas and form the set R. Each replica is identified using an integer in

{0,1,...,|R |−1}. One replica is the primary, and the rest are backups.
A view is a configuration of replicas that determines the primary. For

a view number 𝑣 , the primary is 𝑝 =𝑣 mod|R |. The algorithm com-

prises three stages: pre-prepare, prepare and commit. When a client

𝑐 wishes to do an operation on the State Machine Replication [22],

they send𝑚= (𝑅𝐸𝑄𝑈𝐸𝑆𝑇,𝑜,𝑡,𝑐)𝜎𝑐 to who the client 𝑐 believes is the
primary. In that message𝑚, 𝑜 is the operation and 𝑡 is the timestamp.
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If the client does not receive replies soon enough, it broadcasts the

request to all replicas: this takes care of the client’s possible erro-

neous view and the primary’s possible faultiness. Upon receiving a

request, the primary 𝑝 multicast a pre-prepare message to all repli-

cas. That pre-prepare message is ((𝑃𝑅𝐸 − 𝑃𝑅𝐸𝑃𝐴𝑅𝐸,𝑣,𝑛,𝑑)𝜎𝑝 ,𝑚)
where 𝑣 is the current view, 𝑛 is a sequence number assigned by 𝑝

and 𝑑 is𝑚’s digest. When a backup receives the pre-prepare mes-

sage, it checks if the signatures in the request and the pre-prepare

message are correct and if 𝑑 is𝑚’s digest; it checks if it is in 𝑣 ; it

checks if it has not accepted a pre-prepare message for view 𝑣 with

the same sequence number 𝑛 and a different digest 𝑑 ; and it checks

if the sequence number ℎ < 𝑛 < 𝐻 with ℎ,𝐻 low and high water-

marks. If the pre-prepare message passes all thoses tests, the backup

𝑖 accepts it and multicast (𝑃𝑅𝐸𝑃𝐴𝑅𝐸,𝑣,𝑛,𝑑,𝑖)𝜎𝑖 . Otherwise, it does
nothing. Upon receiving a prepare message, a replica accepts it and

appends it to its log if the signatures check out and if 𝑑 corresponds

to its view and if ℎ <𝑛 <𝐻 . When replica 𝑖 has accepted 2𝑓 non-

conflicting prepare messages, it then multicast a commit message

(𝐶𝑂𝑀𝑀𝐼𝑇,𝑣,𝑛,𝐷 (𝑚),𝑖)𝜎𝑖 where 𝐷 (𝑚) is the digest of𝑚. A replica

accepts and appends a commit message to its log if the signature,

the view number check out and if ℎ<𝑛<𝐻 . As soon as a replica 𝑖

accepted 𝑓 +1 nonconflicting commit messages, it executes the op-

eration 𝑜 on its state machine replication and sends a reply message

to the client (𝑅𝐸𝑃𝐿𝑌,𝑣,𝑡,𝑐,𝑖,𝑟 )𝜎𝑖 where 𝑟 is the result of executing 𝑜 .

ViewChange. Each replica has a timer that counts down to zero. It

runs when the replica received a valid request and has not executed

it, and pauses otherwise. When the countdown reaches zero, the

replica stops accepting new messages and initiates a view change.

This is done by multicasting a view change message. When the

primary of view 𝑣+1 has received more than 2𝑓 , it multicasts a new

view message, and undertakes its role as primary.

Properties. Some details have been purposely omitted. We only

want to encapsulate the gist of PBFT, since we use a modified ver-

sion of it for consensus. PBFT relies on the assumption that for |R |
replicas, at most

⌊
| R |−1

3

⌋
are faulty and the rather weak syncrony

assumption that basically the delay time of communication of hon-

est nodes is less than a given upper bound. With this, it is shown

in [9] that PBFT achieves safety and liveness.

2.2 Hyperledger Fabric
Hyperledger Fabric [2, 15] is a permissioned blockchain framework.

It divides miners into two sets: on the one hand they have endorsers
who check transactions, and on the other they have orderers who
order transactions into blocks. When a client wishes to transact on

the blockchain, the client sends the transaction to a set of endorsers

who are accredited to endorse it. If deemed valid, the endorsers sign

it as a sign of endorsement and send it back to the client. When the

client collects enough endorsements, the client sends them to the or-

derers who then work on incorporating said transaction in a block.

The structure of Fabric is modulable, in the sense that it is possible

to define different endorsement policies for different types of trans-

actions, and it is possible to choose whatever consensus mechanism

for the orderers. For example, for a given type of transaction, there

must be unanimous endorsement of a given transaction for it to

be considered valid; and the orderers compete doing a Proof-of-

Work for creating the next block. Fabric does not follow the regular

order-execute, but rather the execute-order-validate. Order-execute
blockchains have many limitations, such as sequential execution on

all peers, non-deterministic code, and confidentiality of execution.

Fabric does provide some privacy, for instance through the use of

different channels. Indeed, users only have access to their subset

of channels. Another facet of privacy is through the execute-order-

validate architecture and the endorsement policies. Only a subset of

endorsers have to execute the transaction, and only the state after

execution is ultimately written into the blockchain, so those who

have access to the channel can see the resulting state but cannot

necessarily knowwhat the operation was. However, endorsers have

full knowledge of users and their operations.

2.3 Cryptographic Tools
Signatures schemes. Here we present digital signatures which are

at the foundation of our constructions. A signature scheme guar-

anties integrity, authentication and non-repudiation of digital trans-

missions. A Signature schemes S is a tuple of algorithms composed

of a key generation algorithm KeyGen(1𝔎) : ] returning a key pair

(pk,sk). The latest is used to sign through algorithm Sign(sk,𝑚) :
producing a signature 𝜎 on a message𝑚. This signature being veri-

fied by Verif (pk,𝑚,𝜎) : returning a bit 𝑏. It must achieve EUF-CMA
(Existential Unforgeability under Chosen Message Attack) [27].

Our transformations are based on three extensions of digital

signatures: blind signatures [27] BS= (KeyGenblind,BlindSign⟨·,·⟩,
VerifyBS), producing signatures to someone else on messages un-

known by the signer. Group signatures [11] GS = (KeyGengroup,
GroupSign,Verifygroup,OpenGroupSign) where users can output

signatures, where the said signature is not linkable to them but to

the group. This works under supervision of a group authority. Ring
signatures [29] RS = (KeyGenring,RingSign,Verifyring) work simi-

larly, but this time on a decentralized base. Refinements of group

and ring signatures called linkable group signatures and linkable
ring signatures allow achieving pseudonymity instead of anonymity.

The formers rely on an additional Link algorithm to provide a link

between the signatures. Here give their security properties:

Blind Signature. EUF-CMA and blindness

Ring Signature. EUF-CMA and anonymity

Group Signature. EUF-CMA, anonymity and traceability.

Authentication Channel. These processes mainly rely on digital

signature schemes. It can also be achieved through other means

among which we can cite message authentication codes. Authen-

ticated channel allows authenticated communications with a third

party. Public key infrastructure or certificates are among the most

used solutions. They do not directly address confidentiality of the

transmitted information, but most protocols guaranteeing authenti-

cations also address this issue through a key exchange mechanism

at the beginning of the communication. This is not a hypothesis

we need to make here in order to guarantee the security of our

blockchains. In our protocols, we assume that the administrator of

the blockchain (when it exists) has knowledge of all the entities’

identities that are allowed to transact on or mine the blockchain.

And when a key is used to interact through our protocol, it should

have been registered before by the authority after potential verifi-

cations. The authority’s public key pk𝑎𝑢𝑡ℎ is considered as a global

parameter and is not stated into the inputs of the algorithms.

While using blind signatures any peer has to authenticate them-

selves before the authority blind signs their message. In the upcom-

ing algorithms we put together both the authentication process

and the blind signature protocol and call it BlindSign. This aggre-
gation is denoted by BlindSign⟨U(𝑀,pkS,skU ),S(skS)⟩ for two
polynomial time algorithmsU and S.
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Figure 1: Transaction Flow of our BFT Consensus.

3 OURBLOCKCHAIN SignCons
Our generic SignCons blockchain is highly inspired by Hyperledger
Fabric’s modular blockchain framework [2, 15]. It comprises: (1)

a finite set Clients of authorized entities, (2) a finite setMiners of
authorized miners divided into two categories: (2a) a set Endor of
entities who endorse transactions of cardinal TotEnd and (2b) a set

Order of entities who achieve consensus of cardinality TotOrd. The
process is outlined in Figure 1 and goes as follows:

(1) Transaction Proposal. The user signs their operation and

sends it to the endorsers.

(2) Transaction Endorsement. Each endorser peer verifies the

transaction, and if valid, signs it (as a sign of endorsement)

and sends it back to the user.

(3) Broadcasting to Consensus. The client collects the en-

dorsements and when enough are received, sends them to

the orderers.

(4) Block Proposal. The orderer leader, upon receiving enough

endorsed transactions, creates a block and proposes it to the

other orderers.

(5) Block Preparation. The other orderers, upon receiving the

block from the leader, check it, and validate it by signing and

broadcasting it to the other orderers.

(6) Appending Block to Blockchain. Finally, when each or-

derer receives more than
2TotOrd

3
block validations, then each

orderer appends the new block to their local version of the

blockchain, and broadcasts the new block to users.

Each step is detailed into a corresponding algorithm. Steps 1, 2 and

3 are about gathering enough endorsements, and steps 3, 4, 5 and

6 are about incorporating the transaction in a block and reaching

Algorithm 1 TxProp(𝑜𝑏𝑐 ,Payload,sk𝑐𝑏𝑐 )
1: (verDep,stateUpdate)←−𝐸𝑋𝐸𝐶 (𝑜𝑏𝑐 ,Payload)
2: transprop←pk𝑐𝑏𝑐 | |Payload| |verDep| |stateUpdate
3: 𝜎←Sign(transprop,sk𝑐𝑏𝑐 )
4: return (transprop,𝜎)

Algorithm 2 TxEndors(transprop,𝜎,SecPolicies,pk𝑐𝑏𝑐 ,sk𝑒𝑝 )

1: if Verifypk𝑐𝑏𝑐
(transprop,𝜎)=0 or pk𝑐𝑏𝑐 ∉Clients :

2: return ⊥
3: (verDep𝑣𝑒𝑟 ,stateUpdate𝑣𝑒𝑟 )

←𝐸𝑋𝐸𝐶 (transprop .𝑜𝑏𝑐 ,transprop .Payload)
4: if transprop .verDep≠verDep𝑣𝑒𝑟 or SecPolicies=𝑖𝑛𝑣𝑎𝑙𝑖𝑑 or
transprop .stateUpdate≠stateUpdate𝑣𝑒𝑟 :

5: return ⊥
6: 𝜎𝑣𝑒𝑟←Signsk𝑒𝑝 (transprop)
7: return 𝜎𝑣𝑒𝑟

Algorithm 3 TxBrodOrd(transprop,{𝜎𝑣𝑒𝑟,𝑖 ,pk𝑖 }1≤𝑖≤𝑙 )
1: 𝑒𝑛𝑑𝑜𝑟𝑠𝑒𝑚𝑒𝑛𝑡𝑠←⊥
2: for all 1≤ 𝑖 ≤𝑘 do
3: if Verifypk𝑖 (transprop,𝜎𝑣𝑒𝑟,𝑖 )=1 and pk𝜎 ∈Endor :
4: 𝑒𝑛𝑑𝑜𝑟𝑠𝑒𝑚𝑒𝑛𝑡𝑠←𝑒𝑛𝑑𝑜𝑟𝑠𝑒𝑚𝑒𝑛𝑡𝑠∪{𝜎𝑣𝑒𝑟,𝑖 }
5: if |𝑒𝑛𝑑𝑜𝑟𝑠𝑒𝑚𝑒𝑛𝑡𝑠 | ≥ ⌊ TotEnd

2
⌋+1 :

6: 𝑏𝑙𝑜𝑏←(transprop,𝑒𝑛𝑑𝑜𝑟𝑠𝑒𝑚𝑒𝑛𝑡𝑠)
7: return blob
8: return ⊥

consensus: this is done in a very similar way to how PBFT works.

We go thoroughly through each step of our protocol:

Transaction Proposal. User client 𝑐𝑏𝑐 of public key pk𝑏𝑐 ∈ Clients
and secret key sk𝑏𝑐 applies Algorithm 1 where 𝑜𝑏𝑐 denotes the op-

eration with payload Payload. EXEC takes in the operation and its

payload, simulates the execution, outputs verDep and stateUpdate
that refer respectively to the set of variables invoked by the oper-

ation, and to the result of the simulation (these are later used to

prevent respectively double spending and non-deterministic execu-

tion). At the end of Algorithm 1, 𝑐𝑏𝑐 finds themself with transprop
and its signature 𝜎 , which they send to the endorsement peers.

Transaction Endorsement. Each endorsement peer 𝑒𝑝𝑏𝑐 of public key

pk𝑒𝑝 ∈Endor and of secret key sk𝑒𝑝 , upon receiving the transaction

proposal transprop and its signature 𝜎 , initiates Algorithm 2. The en-

dorsement peer simulates the execution of the operation. If it yields

different outputs as the one sent over (by checking verDep and

stateUpdate), the algorithm outputs ⊥. SecPolicies is an algorithm

returning valid or invalid based on the blockchain endorsement

policy and the current state of knowledge of the entity. If all checks

out, the algorithm outputs a signature of the operation. Known

optimization are possible using aggregation [7] or threshold [14]

signatures to fasten the endorsement.

Broadcasting to Consensus. As user client 𝑐𝑏𝑐 collects a new endorse-

ment of their operation, it applies Algorithm 3 until it has enough

endorsements to actually send them to the orderers as a message

blob= (transprop,{𝜎𝑣𝑒𝑟,𝑖 }1≤𝑖≤𝑙 ).
Block Proposal. The orderer leader, using Algorithm 4, verifies the

endorsements and checks SecPolicies: here this algorithm behaves
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Algorithm 4 TxComOrd(NewBlock, blob, SecPolicies,
{pk𝑒𝑝,𝑖 }1≤𝑖≤TotEnd,sk𝑜𝑟𝑑𝑙𝑒𝑎𝑑 )

1: 𝜎←𝑏𝑙𝑜𝑏.transprop .𝜎
2: counter=0
3: for all 𝜎 ∈ blob.𝑒𝑛𝑑𝑜𝑟𝑠𝑒𝑚𝑒𝑛𝑡𝑠 and pk𝑒𝑝,𝑖 associated and not

already used do
4: if Verifypk𝜎 (transprop,𝜎)=1 and pk𝑒𝑝,𝑖 ∈Endor :
5: counter=counter+1
6: if counter< ⌊ TotEnd

2
⌋+1 or SecPolicies=𝑖𝑛𝑣𝑎𝑙𝑖𝑑 :

7: return ⊥
8: else if NewBlock.𝑙𝑒𝑛𝑔𝑡ℎ=Blocksize :
9: 𝜎𝑜𝑟𝑑𝑙𝑒𝑎𝑑←Signsk𝑜𝑟𝑑𝑙𝑒𝑎𝑑

(NewBlock| |SecPolicies)
10: return NewBlock| |𝜎𝑜𝑟𝑑𝑙𝑒𝑎𝑑
11: else
12: return NewBlock←NewBlock| |blob

Algorithm 5 Prepare(Blocksize, NewBlock, 𝜎𝑜𝑟𝑑𝑙𝑒𝑎𝑑 , SecPolicies,
{pk𝑒𝑝,𝑖 }1≤𝑖≤TotEnd,sk𝑜𝑟𝑑 )

1: if Verifypk𝑙𝑒𝑎𝑑𝑒𝑟 (NewBlock| |SecPolicies,𝜎𝑜𝑟𝑑𝑙𝑒𝑎𝑑 )≠1 :
2: return ⊥
3: Set counter=0 and parse NewBlock= {blob𝑖 }1≤𝑖≤Blocksize
4: for all 1≤ 𝑖 ≤Blocksize do
5: for all 𝜎 ∈blob𝑖 .𝑒𝑛𝑑𝑜𝑟𝑠𝑒𝑚𝑒𝑛𝑡𝑠 and pk𝑒𝑝,𝑖 associated and not

already used do
6: if Verifypk𝜎 (blob𝑖 .transprop,𝜎)=1 and pk𝑒𝑝,𝑖 ∈Endor :
7: counter=counter+1
8: if (SecPolicies=𝑖𝑛𝑣𝑎𝑙𝑖𝑑) :
9: return ⊥
10: if counter< ⌊ TotEnd

2
⌋+1 :

11: return ⊥
12: 𝜎𝑜𝑟𝑑←Signsk𝑜𝑟𝑑 (NewBlock| |SecPolicies)
13: return (NewBlock,𝜎𝑜𝑟𝑑 )

such that it verifies that the verDep of 𝑏𝑙𝑜𝑏.transprop does not col-

lide with the verDep of a transaction already added to the current

block (this prevents any potential conflict among transactions). If

all the verifications check out, then either the leader creates a block

or waits for the next endorsed transaction.

Preparing Block. Upon receiving a block proposal, the orderer veri-

fies the validity of the block proposed by the leader, see Algorithm 5.

Sanity checks are conducted: verifying the authenticity of the newly

proposed block, checking the validity of the transactions’ approvals

(i.e., the signatures of the endorsers) and if the absolute majority of

endorsement is reached. If none of the blockchain policies have been

violated, the block is approved by broadcasting (NewBlock,𝜎𝑜𝑟𝑑 ).
Add Block to Blockchain. When enough valid prepare messages

(NewBlock,𝜎𝑜𝑟𝑑 ) have been received by an orderer from its peers,

it commits the changes to its local version of the blockchain. It

sends a message approval to the group as detailed in Algorithm 6.

The orderers’ consensus is highly inspired from PBFT [10], to

which we have added endorsers and modified the messages’ con-

tents. The orderers mimic the protocol described in [10] for orderer

leader’s update in order to ensure safety and liveness. Note that

what we call leader, they call primary. To quickly summarize the

view change: if the leader is inactive or misbehaving, then another

orderer can initiate a view change; it stops confirming new blocks,

Algorithm 6 BlockCom(NewBlock, {pk𝑜𝑟𝑑𝑖 , 𝜎𝑜𝑟𝑑𝑖 }1≤𝑖≤𝑙 ,
SecPolicies,sk𝑜𝑟𝑑 )

1: if NewBlock.𝑙𝑒𝑛𝑔𝑡ℎ≠Blocksize or 𝑙 ≤ ⌊ TotOrd3
⌋ :

2: return ⊥
3: for all 1≤ 𝑖 ≤ 𝑙 do
4: if Verifypk𝑜𝑟𝑑𝑖

(NewBlock| |SecPolicies,𝜎𝑜𝑟𝑑𝑖 )≠1 :
5: return ⊥
6: 𝜎𝐵𝑙𝑜𝑐𝑘𝐶𝑜𝑚←Signsk𝑜𝑟𝑑 (𝑁𝑒𝑤𝐵𝑙𝑜𝑐𝑘)
7: return 𝑁𝑒𝑤𝐵𝑙𝑜𝑐𝑘 | |𝜎𝐵𝑙𝑜𝑐𝑘𝐶𝑜𝑚

and proposes to the set of orderers to change leaders (as per a pre-

determined schedule). When enough of orderers reply positively,

the view change happens.

Network Model. We assume an asynchronous distributed system

where nodes are connected by a network who may fail to deliver

messages, delay them, duplicate them or deliver them out of or-

der. We allow for the adversary to coordinate faulty nodes, delay

communication, or delay correct nodes but not indefinitely.

4 PRIVACY PRESERVINGBLOCKCHAINS
In Section 3 we introduced a blockchain based on PBFT and re-

quiring a signature scheme. Our construction can be extended in

order to allow multiple privacy preserving settings. We can bring

anonymity for the issuers and pseudonymity for issuers, endorsers

and/or orderers through the use of privacy preserving signatures.

In particular, we use blind signatures, group signatures and ring

signatures. All these privacy preserving settings can be achieved

independently for any of the defined roles. In Section 5, we show

that composing any of these settings gives a secure blockchain.

4.1 User’s Anonymity
Based on Blind Signatures. Considering the permissioned BFT-

based consensus protocol introduced in Section 3, users sign their

transactions with own key. This causes a strong linkability issue

between the users and the transactions, affecting the privacy level

of the blockchain network. In order to overcome this issue, we

propose to hide the users’ identities by using blind signatures with

a trusted entity. Thus, the protocol follows the following steps:

(1) The client 𝑐𝑏𝑐 authenticates themselves with their registered

keys (pk𝑐𝑏𝑐 ,sk𝑐𝑏𝑐 ) to one of the membership authorities A,
(2) Once the authentication succeeds (i.e., pk𝑐𝑏𝑐 ∈ Clients), the

client initiates a blind signature process with A,
(3) The client derives a signature 𝜎 for its transaction request,

(4) We apply the consensus protocol introduced in Section 2.1 on

the client’s blindly signed transaction. The blind signature au-

thorize the client to transact on the blockchain.

Aiming to keep the same structure as the original construction,

we replace the user’s ID with a random value crand. Now, to ad-

dress the issue related to the digital signature, linking the client to a

transaction, we replace it with a blind signature scheme. TxProp de-

fined in Algorithm 7 is the modified version of the original TxProp
of Algorithm 1. To maintain consistency and liveness, we keep the

rest of the transactional flow unchanged. However, some steps are

modified to accept the blind signature scheme to authenticate the

clients and the peers. This variant of SignCons is called BlindCons.

Based on Group Signatures. In the previously presented transac-

tion mechanism, every transaction must first go through the author-

ity to be blind signed before anything else can be done with it. Using
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Algorithm 7 TxProp(𝑜𝑏𝑐 ,Payload,sk𝑐𝑏𝑐 )
1: (verDep,stateUpdate)←−𝐸𝑋𝐸𝐶 (𝑜𝑏𝑐 ,Payload)
2: crand𝑏𝑐

$←−N
3: transprop←crand𝑏𝑐 | |𝑜𝑏𝑐 | |Payload| |verDep| |stateUpdate
4: 𝜎←BlindSign⟨U(transprop,pk𝑎𝑢𝑡ℎ,sk𝑐𝑏𝑐 ),A(sk𝑎𝑢𝑡ℎ)⟩
5: return (transprop,𝜎)

a group signature there is a way to obtain a decentralized trans-

action proposal mechanism. Let GS = (KeyGengroup,GroupSign,
Verifygroup,OpenGroupSign) be a group signature scheme with

its usual security requirements (outlined in Section 2.3), this next

variant of our scheme enables any registered user to sign hiding

amongst the group of authorized users. We assume that authorized

users are registered with the authority and that a public record of

all of them is available. Hence, all keys are generated through a

protocol with the authority and registered in the Clients record.
We call GroupCons the variant of SignCons adopting group sig-

natures. This version is instantiated by replacing the signature in

Algorithm 1 (as well as the signature verifications) with a group

signature where the group consists of all the people having rights

to write in the blockchain. By using group signatures instead of

blind signatures, we can make the protocol less relying on the au-

thority while simultaneously giving the authority power to reveal

a message’s signer if need be. This revealing can be done using

the OpenGroupSign algorithm. Compared to the blind signature

construction, group signatures also limit the computational load on

the authority as it no longer needs to execute its part of the blind

signature protocol for each new transaction.

Based onRing Signatures. This version is instantiated by replacing
the signatures in Algorithm 1 (as well as the signature’s verifications

in Algorithm 2) with a ring signature where the ring consists of

(potentially all the) authorized users. We call this variant RingCons.
We thus come up with a private blockchain architecture with no

authority where transactions are unlinkable to their issuers. Let

𝑈 = 𝑢1,...,𝑢𝑛 be the set of authorized users. Suppose 𝑢1 wants to

make a transaction. In the regular SignCons protocol,𝑢1 would sign
its transaction using a regular signature protocol (Algorithm 1),

and then send it for endorsement (Algorithm 2). To anonymize

the user’s identity we change the type of signature: 𝑢1 signs the

transaction using a ring signature in the name of𝑈 (or in the name

of a subset of 𝑈 if 𝑈 is too big). That way the endorsers verifies

the ring signature in Algorithm 2, and can thus know that it was

indeed someone of 𝑆 that produced the signature without being

able to know which member it was (since it is a ring signature).

The rest of the protocol remains unchanged.

4.2 User’s Pseudonymity
Let GS𝑙𝑖𝑛𝑘 be a linkable group signature and let RS𝑙𝑖𝑛𝑘 be a linkable
ring signature. We keep on relying on the same idea and oper-

ate these two types of signatures. In this modified version of our

blockchain, the signature in the anonymized version of TxProp (Al-

gorithm 1) is replaced by one of these linkable signatures, again

the verification in Algorithm 2 is modified adequately. We call the

version using linkable group signature LinkRingCons and the other
version using linkable ring signature LinkGroupCons. These two
primitives retain the properties of being unlinkable to the signa-

ture issuer, however they allow for linking the transaction to other

transactions signed by the same secret key using the Link algorithm

(see Section 2.3). As such, signers remain unknown, but one can

track all the transactions created by the same entity. We emphasize

in Section 5 why this achieves pseudonymity, it is straight forward

to see that it does not achieve anonymity due to the linkability of

the signatures. LinkGroupCons being based on a group signature

requires an authority to be implemented, and gives it the power to

revoke the privacy of the signer. On the other hand, LinkRingCons
requires no authority and naturally is not revocable.

4.3 Endorser and Orderer Pseudonymity
In the current scheme, the endorsers and orderers are respectively

linked to the transactions they endorse and to the blocks they com-

mit. Enabling endorsers and orderers to use group or ring signature

would not be fruitful, since it enables each entity to produce an

unlimited number of different signatures without being detected,

which is problematic since we need to count the number of ap-

provals. Using linkable group signatures and linkable ring signa-

tures does help us keep the endorsers’ and the orderers’ privacy,

while at the same time restricting just enough of the excessive

anonymity that is brought by group and ring signatures.

Thus, taking the same perspective on this as in Section 4.2, we can

use linkable group signatures and linkable ring signatures in Algo-

rithm 2 for the endorsers and call it respectively EndGroupCons and
EndRingCons. The same modification is possible in Algorithms 5

and 6 for orderers, we call these protocols OrdGroupCons and
OrdRingCons. Note that an extra step needs to be added after ver-

ifying the signature (with Verifygroup and Verifyring): the verifier
must also check if this signature can be linked to another signature

of the same content (transaction or block) before taking it into ac-

count. For endorsers’ pseudonymity, this extra verification is done

in Algorithms 3 (executed by the orderer leader) and 4 (executed

by the orderers). As for orderers, this is done in Algorithm 6. Note

also that the orderer leader cannot use a pseudonym with these

constructions, since the other orderer peers must be able to check

that the leader’s status and that this allows block proposal.

We claim, and later prove (in Section 5), that it is impossible

to link the endorsers (respectively orderers) to their transaction

endorsement (respectively block generation), while concurrently

not allowing them to produce multiple acceptable signatures for

the same transaction endorsement (respectively block generation).

All the presented layers of constructions maintain a Byzantine

Fault Tolerant blockchain. They all allow some privacy for entities

of various roles. In fact, it is possible to combine any construction

for users (from Sections 4.1 and 4.2) with any of the constructions

for endorsers and orderers from the current Section.

5 PROTOCOL PROPERTIES
Under two hypotheses, our constructions satisfy Safety, Liveness,
Unforgeability of a block and some privacy preserving settings,

namely, Anonymity or Pseudonymity. The latter can be obtained for

any of the three existing roles: issuers, endorsers and orderers and

in any possible settings. For example, it is proven that composing

anonymity of the clients with pseudonymity for the endorsers is still

secure. Safety and Liveness are both inherited from PBFT, leading

to the first hypothesis being that the adversary cannot delay correct

nodes indefinitely. We model and prove the other security prop-

erties using game based formalism and reductions. In general, we

consider a security experiment where a PPT challenger C interacts

with a PPT adversaryA. The adversary simulates the behaviour of

a malicious entity, while the challenger runs the rest of the system
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honestly. Based on these, we show that the full security of our pro-

tocols also depends on the secure primitives used for instantiating

it. Any secure signature could instantiate ours blockchains.

Safety. A protocol is said to be consistent if it ensures that a trans-
action generated by a valid user stays immutable in the blockchain.

Our blockchains are based on PBFT which leads a consensus for

each of the deciding steps of our blockchain.

Definition 5.1 (Safety). A protocol BC is𝑇 -safe if a transaction tx
generated by an honest client 𝑐𝑐𝑏 to execute a valid operation 𝑜𝑏𝑐 ,

is confirmed and stays immutable in the blockchain after 𝑇 -round

of new blocks.

Theorem 5.2. Our new protocols based on PBFT are 1-safe if atmost
⌊𝑛−1

3
⌋ out of total 𝑛 orderer peers are malicious.

Proof sketch. The described protocols are BFT based consen-

sus. Safety is achieved by agreeing with the validity of the trans-

action through a byzantine agreement process. Hence, for a trans-

action tx that has reached a majority of valid endorsement for an

operation 𝑜𝑏𝑐 , the probability of not settling it in a new block and

having forks in the chain is neglected if we have at most ⌊𝑛−1
3
⌋

malicious orderers, out of total 𝑛 orderers as it has been shown

in [8, 10]. It is 1-consistent because we do not have any fork; hence

only one block is needed to wait to have a transaction validated. □

Liveness. The liveness property means that a consensus proto-

col ensures that if an honest client submits a valid transaction, a

new block is later appended to the chain with the transaction in it.

Hence, the protocol must ensure that the blockchain grows if valid

clients generate valid transactions.

Definition 5.3 (Liveness). A consensus protocol BC ensures live-
ness for a blockchain𝐶 if BC ensures that after a period of time 𝑡 ,

the new version of the blockchain𝐶′ verifies𝐶′ >𝐶 , if a valid client
𝑐𝑖𝑏𝑐 has broadcasted a valid transaction tx𝑖 during the time 𝑡 .

Theorem5.4. Ourprotocols satisfy livenesswhenatmost ⌊ TotEnd−1
2
⌋

out of a total of TotEnd endorsers and ⌊ TotOrd−1
3
⌋ out of total TotOrd

orderers are malicious.

Proof sketch. Our protocols are BFT-based consensus proto-

col. Thus, liveness is achieved if after the transaction endorsement

process, the ordering services propose a new block NewBlock with

the transactions broadcast by the clients during a period of time

𝑡 . Hence, for valid transactions tx𝑖 (i.e., accepted by the endorsers),

where 𝑖 ∈ N, issued by valid a client during a period of time 𝑡 ,

the probability that 𝐶′ =𝐶 is neglected if we have at most ⌊𝑛−1
3
⌋

out of total 𝑛 malicious orderers. A detailed proof for the type of

consensus we are using can be found in [9]. □

Unforgeability. An adversary against the unforgeability of a pro-

tocol tries to overstep the validation process of a transaction in

order to engrave a transaction in the blockchain without obtaining

the full transaction acceptance from the endorsers and the order-

ers. Our blockchain composes a validation procedure conducted by

the Issuer with the endorser and a consensus agreement made by

the orderers. This property ensures that these compositions retains

security i.e., no adversary could possibly overstep the validation pro-
cedure nor the consensus to engrave a block in the blockchain. The

formalism of this property is postponed to the technical report [1],

whereas a discussion on the arguments is conducted below.

Theorem 5.5 (informal). Consider a blockchainBC defined by
one of the above settings, i.e.,instantiated with some of the above de-
scribed signatures. For any security parameters𝔎,BC is unforgeable.

The proof of this property, relies on the unforgeability of the sig-

natures used in BC. While the versions using linkable group (resp.
ring) signature for the endorsers also depend on the traceability

(resp. linkability) of the signatures. Otherwise, it would be possible

for a single node to output multiple signatures. Hence, it is infea-

sible to append an invalid transaction to the existing blockchain

without being given the endorsers and orderers agreement.

Pseudonymity. A entity E and a witness𝑤 are said to be linked
in a group𝐺 ’s perspective, if it is possible for𝐺 to infer that E pro-

duced𝑤 based on the available information to 𝐺 . Pseudonymity of

an entity holds when E cannot be linked to the witnesses𝑤1,...,𝑤𝑘

it has produced, but this property does not prevent from linking

the witnesses one to each other. When linking𝑤𝑖 and𝑤 𝑗 is hard

for all 1≤ 𝑖 < 𝑗 ≤𝑘 , it is considered as a stronger privacy preserving

property called anonymity. We split the actors of our blockchain

into two groups, on one side the users and on the other side the

endorsers and orderers to consider their pseudonymity.

Users. Let A be an attacker against an user pseudonymity. Its
goal is to link it to a transaction tx it has produced. Nevertheless,
we assume that it is only possible to link tx to the client using in-

formation from the blockchain. As a consequence, we assume that

it would be hard to identify the provenance of a transaction due to

the redundancy of the sent communications as upon receiving a

message each entity broadcasts it to all its peers (gossip). This is

a classical assumption in blockchain. In order fulfil pseudonymity,

𝑜𝑏𝑐 and Payload should not leak information on the transaction

requester. A public transaction always reveals a certain amount of

information as this information is publicly enclosed, here we show

that no additional information is revealed throughout the protocol.

Theorem 5.8 (informal). Consider secure BS a blind signature,
GS a (linkable) group signature and RS a (linkable) ring signature.
Assume that an adversaryA is unable to identify a user at the origin of
a transaction based on 𝑜𝑏𝑐 and Payload. Then the consensus presented
in Section 4.2, instantiated with these signatures is pseudonymous.
Users sign their transaction with a signature mechanism and

sends it to the nodes. Once this is executed, they are no longer

involved in the process. Hence, what they output should be unlink-

able to them. This result relies directly on the anonymity properties

of the signatures considered in the article.

Endorsers and Orderers. Endorsers and orderers can be un-

linked from transactions and blocks they validated through the

use of linkable ring or group signatures. The linking algorithm Link
allows this feature, hence, enabling detection of nodes producing

multiple validations. The signature anonymity requirement pre-

vents from recovering the identity of the executant.

Theorem 5.9. Base on a secure linkable group (resp. ring) signature
theEndGroupCons, (resp.EndRingCons) protocol is pseudonymous for
the endorsers. Under the same conditions, the protocolsOrdGroupCons
and OrdRingCons are pseudonymous for the orderers (excluding the
orderer leader).

Arguments supporting these properties are the same the ones

evoked before for the users. A detailed argumentation of these

properties and their proofs is given in the Technical report [1].

Anonymity of the users. As stated before, anonymity is defined by

two requirements: (i) there should be no link between the clients
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and the transactions they produced, (ii) transaction of the same

user should not be linkable.We yet know thatBlindCons,RingCons,
GroupCons securely realize user’s pseudonymity, statement (i). In

fact, it is also possible to show that (ii) holds, as it appears that the

output transaction are in these cases unlinkable one to each other.

Theorem 5.10. Given that the client proceeds to a secure blind, ring
or group signature to authenticate its transaction as defined in Section 4,
anonymity of the client holds.

This theorem relies on the unkinkability of the signatures produced

by a user. The statement is proven in the technical report [1].

6 COMPLEXITY
Our approach is generic, hence allows to instantiate the protocol

with the most efficient signature schemes in the literature. In order

to provide a theoretical evaluation that can benefits from further

works on these primitives, we evaluate the number of executions

of each algorithm for the various entities in the blockchain. Let S𝐶
be the signature used by the clients, S𝐸 the signature used by the

endorsers and S𝑂 used by the orderers. These signatures can refer

to any of the signature schemes used in our blockchains as specified

through Section 3 and 4 due to modularity of our proposed con-

structions. In order to obtain a validated transaction, a client needs

to execute S𝐶 once and verify ⌊TotEnd/2⌋+1 signatures S𝐸 . In the

meantime, an endorser needs to verify a signature from S𝐶 once

and produce one signature S𝐸 . Now, in order to validate a block, the

orderer leader needs to verify Blocksize signatures S𝐶 , Blocksize ·
( ⌊TotEnd/2⌋ + 1) signatures S𝐸 and later 2(⌊2TotOrd/3⌋ + 1) sig-
natures S𝑂 . It also needs to produce two regular signatures. The

orderer verifies these signatures and Blocksize · ( ⌊TotEnd/2⌋ + 1)
signatures from the endorsers and 2(⌊2TotOrd/3⌋+1) signatures
from other orderers. An orderer also produces two signatures S𝑂 .
State-of-the-art blind, group or ring signature are known to be

less efficient than regular signature schemes. All still achieve con-

stant execution time [6, 16, 23]. Also their longer computation time

must be put into perspective with the time needed for the numerous

communications require by a blockchain. As the order of magnitude

of a signature execution does not generally exceed the order of mag-

nitude of a RTT (Round-Trip Time), the overhead brought by bring-

ing anonymity to our blockchain seems acceptable. Blind signature

usually requires 2 (at best) or 3 additional communication yielding

as much aditional communications. Again this does not increase

much the number of communications of the blockchain, hence has

low impact on the performance. On another hand group and ring sig-

natures requires to obtain the keys of the members of a ring. In the

case of group signatures, we can assume that they are all provided by

the registration authority on demand. This considered, for an equiv-

alent level of security, our protocol is expected to be less efficient

than a blockchain without any anonymity, as a counterpart it brings

more security for its peers as their identity is not publicly disclosed.

7 CONCLUSION
In this paper we bring forth a blockchain solution to the apparent

dilemma of combining private permissioned blockchains with pri-

vacy. We divide the miners into endorsers and orderers. And we

propose different constructions for different entities privacy (user,

endorser or orderer). The different constructions use different build-

ing blocks and have different use cases. Some yield anonymity and

others pseudonymity, some rely on an authority, some propose pri-

vacy revocation rights, some require less computation than others.

We sketched security arguments providing the security of our con-

struction. Arguments based on game-based proofs show their secu-

rity in [1]. As future works, we envision extending our results in the

UC model, by considering the ideal functionality presented in [17].
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