
Optimal Exclusive Perpetual Grid Exploration by Luminous
Myopic Opaque Robots with Common Chirality

Quentin Bramas
Bramas@unistra.fr

ICUBE, University of Strasbourg
CNRS, France

Pascal Lafourcade
Pascal.Lafourcade@uca.fr

LIMOS, Univ. Clermont Auvergne
Aubière, France

Stéphane Devismes
Stephane.Devismes@univ-grenoble-

alpes.fr
Université Grenoble Alpes, VERIMAG

ABSTRACT
We consider swarms of luminous myopic opaque robots that run
in synchronous Look-Compute-Move cycles. These robots have
no global compass, but agree on a common chirality. In this con-
text, we propose optimal solutions to the perpetual exploration of
a finite grid. Precisely, we investigate optimality in terms of the
visibility range, number of robots, and number of colors. In more
detail, under the optimal visibility range one, we give an algorithm
which is optimal w.r.t. both the number of robots and colors: it uses
two robots and three colors. Under visibility two, we design two
algorithms: the first one uses three robots with an optimal number
of colors (i.e., one), the second one achieves the best trade-off be-
tween the number of robots and colors, i.e., it uses two robots and
two colors.

KEYWORDS
Luminous myopic robots, perpetual exploration, finite grid, chiral-
ity, opacity, exclusiveness.

ACM Reference Format:
Quentin Bramas, Pascal Lafourcade, and Stéphane Devismes. 2018. Optimal
Exclusive Perpetual Grid Exploration by Luminous Myopic Opaque Robots
with Common Chirality. In Woodstock ’18: ACM Symposium on Neural Gaze
Detection, June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
We consider swarms of autonomous robots endowed with visibility
sensors, motion actuators, and lights of different colors. These
so-called luminous robots [16] run in synchronous Look-Compute-
Move cycles, where they first sense the environment (Look), then
choose a destination and update their light color (Compute), and
finally move to the chosen destination (Move).

We deal with luminous robots having very low capabilities. First,
they are myopic, i.e., they are only able to sense their surroundings
within a limited visibility range. Then, they are opaque. Opacity
means that a robot is able to see another robot if and only if no
other robot lies in the line segment joining them. Furthermore, they
have no global compass, i.e., they agree neither on a North-South,
nor a East-West direction. Finally, except from their lights, robots
have neither persistent memories nor communication capabilities.

This study was partially supported by the French anr projects ANR-16-CE40-0023
(descartes) and ANR-16 CE25-0009-03 (estate).

Woodstock ’18, June 03–05, 2018, Woodstock, NY
2018. ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

However, they all agree on a common chirality, i.e., when a robot
is located on an axis of symmetry in its surroundings, it is able to
distinguish its two sides, one from another.

We are interested in coordinating such weak robots, endowed
with both typically small visibility range and few light colors (only
a constant number of them), to solve an infinite global task called
the perpetual exploration. In this problem, space is partitioned into
locations, e.g., rooms in a building, that should be visited by robots.
Here, we consider a finite discrete space which is conveniently
represented as a graph, where nodes represent locations and edges
represent the possibility for a robot to move from one location
to another, e.g., through a door or a corridor. In this context, the
perpetual exploration requires each node to be visited infinitely often
by at least one robot. The direct application of such an exploration
is, of course, patrolling in a zoned (maybe hazardous) area.

In this paper, we investigate optimal exclusive solutions to the
perpetual exploration of a finite grid, where exclusiveness [1] re-
quires any two robots to never simultaneously occupy the same
position nor traverse the same edge.

Related Work. The robots we consider are known as luminous
robots in the literature. They have been introduced by Peleg [16].

Up to now, exploration tasks have been considered in various
topologies, e.g., lines [13], rings [2, 7, 10, 14, 15], trees [12], torus [9],
finite [3, 8] and infinite grids [4, 5].

In the context of finite graphs, two main variants, respectively
called the terminating and perpetual exploration, have been consid-
ered. The terminating exploration requires every possible location
to be eventually visited by at least one robot, with the additional
constraint that all robots stop moving after task completion. In
contrast, the perpetual exploration requires each location to be
visited infinitely often by all or a part of robots. Terminating ex-
ploration has been tackled in [7–10, 12–14] while [2, 3] deal with
the perpetual exploration problem. Notice that Ooshita and Tixeuil
consider the two variants of the problem in [15].

In contrast with the present paper, a large part of the literature
is devoted to “non-myopic” robots, i.e., robots with an unbounded
visibility range, meaning that the snapshot of each robot captures
in the whole system configuration; see [2, 3, 8–10, 12–14]. In such a
context, robots are always assumed to be anonymous and oblivious,
i.e., they have no state and cannot remember the past. Furthermore,
opacity and chirality have never been considered in such settings.

Exploration algorithms satisfying exclusiveness are proposed in
both finite [2, 3] and infinite graphs [4, 5].

However, only few works dedicated to discrete environment,
e.g., in (infinite) graphs [4], assume robots have a common chirality.
Actually, up to now this property was rather considered in the 2D
Euclidean plan; see e.g., [11]. Now, the common chirality has an

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


Woodstock ’18, June 03–05, 2018, Woodstock, NY Quentin Bramas, et al.

Visibility # Robots # Colors Algorithm
finite 1 finite Impossible (Thm. 3.2)
finite 2 1 Impossible (Thm. 3.4)
1 2 2 Impossible (Thm. 3.5)
1 3 1 Impossible (Thm. 3.6)
1 2 3 Vone23
2 2 2 Vtwo22
2 3 1 Vtwo31

Table 1: Summary of our results.

impact on the number of robots necessary to solve exploration:
for example, with visibility range one and few colors (𝑂 (1)), five
(resp. six) synchronous robots are necessary and sufficient to ex-
plore an infinite grid with (resp. without) the common chirality
assumption [4, 5].

To the best of our knowledge, until now exploration with myopic
robots was only addressed in finite rings [7, 15] or infinite grid [4, 5].
Hence, the present work is the first study of (perpetual) exploration
with myopic (luminous) robots in finite grids.

Contribution. We investigate optimal solutions to the exclusive
Perpetual Finite Grid Exploration (PFGE) in synchronous settings
using luminous myopic opaque robots. Our contributions are sum-
marized in Table 1 and can be split into tight lower bounds and
algorithms matching those bounds.
Lower bounds: Under our settings, we establish several lower bou-

nds. First, we show in Theorem 3.2 that one robot is not
sufficient to solve the PFGE problem, whatever the visibility
range is. Then, we prove in Theorem 3.4 that two robots
with only one color are not able to solve the PFGE problem,
whatever the visibility range is. When the visibility range is
one, we demonstrate in Theorem 3.5 that it is impossible to
solve the PFGE problem with only two robots and two colors,
and in Theorem 3.5 that it is impossible to solve the PFGE
problem with only three robots and one color. Notice that
all these bounds hold even if exclusiveness is not required.

Optimal exclusive algorithms: According to the previous lower
bounds, we propose three optimal algorithms denoted by
Vone32, Vtwo

2
2 , and Vtwo

1
3, respectively. All these algorithms

achieve exclusiveness. Under visibility range one, Vone32
solves the PFGE problem using only two robots and three
colors. Under visibility range two, Vtwo22 solves the PFGE
problem using two robots and two colors, whileVtwo13 solves
the problem with three oblivious robots (equivalently, three
robots with only one color).

Notice also that we explain how to modify our non-oblivious
solutions to obtain terminating exploration algorithms, with a con-
stant overhead in terms of colors. Finally, we describe a simple
transformation to make Vone32 work in fully asynchronous setting,
yet under visibility range two.

Roadmap. Section 2 is devoted to the computational model and
definitions. In Section 3, we propose four impossibility results,
giving our lower bounds. In Section 4, we describe an algorithm

which is optimal not only w.r.t. the visibility range but the number
of robots and colors. In Section 5, we give two solutions for visibility
range two, the former uses three robots with an optimal number of
colors (one), and the latter achieves the best trade-off between the
number of robots (i.e., two) and the number of colors (i.e., two). We
conclude with extensions and perspectives in Section 6.

2 MODEL
We consider a set of 𝑛 > 0 robots located on a finite grid made of
L ≥ 𝑛 lines and C ≥ 𝑛 columns, i.e., robots evolve in the undirected
graph 𝐺 (𝑉 , 𝐸) where 𝑉 = {(𝑖, 𝑗) : 𝑖 ∈ [0, C − 1], 𝑗 ∈ [0,L − 1]}
and 𝐸 = {{(𝑖, 𝑗), (𝑘, 𝑙)} : (𝑖, 𝑗) ∈ 𝑉 ∧(𝑘, 𝑙) ∈ 𝑉 ∧ |𝑖−𝑘 | + | 𝑗−𝑙 | = 1}.
The size of the grid is then L × C. Grid coordinates are used for
the analysis only, i.e., robots cannot access them.

We assume discrete time and at each round, the robots syn-
chronously perform a Look-Compute-Move cycle. In the Look phase,
a robot gets a snapshot of the subgraph induced by the nodes within
distance Φ ∈ N∗ from its position. Φ is called the visibility range of
the robots. The snapshot is not oriented in any way as the robots
do not agree on a common North. However, it is implicitly ego-
centered since the robot that performs a Look phase is located at
the center of the subgraph in the obtained snapshot. Then, each
robot computes a destination (either Up, Left, Down, Right or Idle)
based only on the snapshot it received. Finally, it moves towards
its computed destination. We also assume that robots are opaque,
i.e., they obstruct the visibility in such way that if three robots are
aligned, the two extremities cannot see each other.

We forbid any two robots to occupy the same node simulta-
neously. A node is occupied when a robot is located at this node,
otherwise it is empty. Robots may have lights with different colors
that can be seen by robots within distance Φ from them. We denote
by Cl the set of all possible colors.

The state of a node is either the color of the light of the robot
located at this node, if it is occupied, or ⊥ otherwise. In the Look
phase, the snapshot includes the state of the nodes (within distance
Φ). During the compute phase, a robot may decide to change the
color of its light.

In all our algorithms, we also prevent any two robots from
traversing the same edge simultaneously. Since we already for-
bid them to occupy the same position simultaneously, this means
that we additionally prevent robots from swapping their position.
Algorithms verifying this property are said to be exclusive. How-
ever, to be as general as possible, we do not make this additional
assumption in our impossibility results.

Configurations. A configuration 𝐶 in a grid 𝐺 (𝑉 , 𝐸) is a set of
pairs (𝑝, 𝑐), where 𝑝 ∈ 𝑉 is an occupied node and 𝑐 ∈ Cl is the
color of the robot located at 𝑝 . A node 𝑝 is empty if and only if
∀𝑐, (𝑝, 𝑐) ∉ 𝐶 . We sometimes just write the set of occupied nodes
when the colors are clear from the context.

Views. We denote by 𝐺𝑟 the globally oriented view centered at the
robot 𝑟 , i.e., the subset of the configuration containing the states of
the nodes at distance at most Φ from 𝑟 , translated so that the coordi-
nates of 𝑟 is (0, 0). We use this globally oriented view in our analysis
to describe the movements of the robots (see, for example, Fig. 1):
when we say “the robot moves Up”, it is according to the globally



Optimal Exclusive Perpetual Grid Exploration by Luminous Myopic Opaque Robots with Common Chirality Woodstock ’18, June 03–05, 2018, Woodstock, NY

oriented view. However, since robots do not agree on a common
North, they have no access to the globally oriented view. When a
robot looks at its surroundings, it instead obtains a snapshot. To
model this, we assume that, the local view acquired by a robot 𝑟 in
the Look phase is the result of an arbitrary indistinguishable trans-
formation on 𝐺𝑟 . The set IT of indistinguishable transformations
contains the rotations of angle 0 (to have the identity), 𝜋/2, 𝜋 and
3𝜋/2, centered at 𝑟 . Moreover, since robots may obstruct visibility,
the function that removes the state of a node 𝑢 if there is another
robot between 𝑢 and 𝑟 is systematically applied to obtain the local
view. Finally, we assume that robots are self-inconsistent, meaning
that different transformations may be applied at different rounds.

It is important to note that when a robot 𝑟 computes a destination
𝑑 , it is relative to its local view 𝑓 (𝐺𝑟 ), which is the globally oriented
view transformed by some 𝑓 ∈ IT . So, the actual movement of the
robot in the globally oriented view is 𝑓 −1 (𝑑). For example, if 𝑑 = Up
but the robot sees the grid upside-down (𝑓 is the 𝜋-rotation), then
the robot moves Down = 𝑓 −1 (Up). In a configuration 𝐶 , 𝑉𝐶 (𝑖, 𝑗)
denotes the globally oriented view of a robot located at (𝑖, 𝑗).

Algorithm. An algorithm A is a tuple (Cl, Init,𝑇 ) where Cl is the
set of possible colors, Init is a mapping from any considered grid
to a non-empty set of initial configurations in that grid, and 𝑇 is
the transition function 𝑉𝑖𝑒𝑤𝑠 → {Idle,Up, Left, Down, Right} ×
Cl, where 𝑉𝑖𝑒𝑤𝑠 is the set of local views. When the robots are
in Configuration 𝐶 , a configuration 𝐶 ′ obtained after one round
satisfies: for all ((𝑖, 𝑗), 𝑐) ∈ 𝐶 ′, there exists a robot in 𝐶 with color
𝑐 ′ ∈ Cl and a transformation 𝑓 ∈ IT such that one of the following
conditions holds:

• ((𝑖, 𝑗), 𝑐 ′) ∈ 𝐶 and 𝑓 −1 (𝑇 (𝑓 (𝑉𝐶 (𝑖, 𝑗)))) = (Idle, 𝑐),
• ((𝑖 − 1, 𝑗), 𝑐 ′) ∈ 𝐶 and 𝑓 −1 (𝑇 (𝑓 (𝑉𝐶 (𝑖 − 1, 𝑗)))) = (𝑅𝑖𝑔ℎ𝑡, 𝑐),
• ((𝑖 + 1, 𝑗), 𝑐 ′) ∈ 𝐶 and 𝑓 −1 (𝑇 (𝑓 (𝑉𝐶 (𝑖 + 1, 𝑗)))) = (𝐿𝑒 𝑓 𝑡, 𝑐),
• ((𝑖, 𝑗 − 1), 𝑐 ′) ∈ 𝐶 and 𝑓 −1 (𝑇 (𝑓 (𝑉𝐶 (𝑖, 𝑗 − 1)))) = (𝑈𝑝, 𝑐), or
• ((𝑖, 𝑗 + 1), 𝑐 ′) ∈ 𝐶 and 𝑓 −1 (𝑇 (𝑓 (𝑉𝐶 (𝑖, 𝑗 + 1)))) = (𝐷𝑜𝑤𝑛, 𝑐).

We denote by 𝐶 ↦→ 𝐶 ′ the fact that 𝐶 ′ can be reached in one round
from 𝐶 (n.b., ↦→ is then a binary relation over configurations). An
execution of Algorithm A in a grid𝐺 is then a sequence (𝐶𝑖 )𝑖∈N of
configurations such that 𝐶0 ∈ Init (𝐺) and ∀𝑖 ≥ 0, 𝐶𝑖 ↦→ 𝐶𝑖+1.

Perpetual Finite Grid Exploration. An execution (𝐶𝑖 )𝑖∈N in a
grid𝐺 = (𝑉 , 𝐸) achieves the Perpetual Finite Grid Exploration (PFGE)
if for every node 𝑢 ∈ 𝑉 and for every time 𝑡 , there exists a time
𝑡 ′ ≥ 𝑡 such that 𝑢 is occupied in 𝐶𝑡 ′ .

An algorithm A that uses 𝑛 robots solves the Perpetual Finite
Grid Exploration (PFGE) problem if for every finite grid𝐺 = (𝑉 , 𝐸)
with at least 𝑛 lines and 𝑛 columns and every initial configuration
𝐶0 ∈ Init (𝐺), we have every execution of A in 𝐺 starting from 𝐶0
that achieves the PFGE.

Well-defined Algorithms. Recall that robots are assumed to be
self-inconsistent. In this context, we say that an algorithm (Cl, Init,𝑇 )
iswell-defined if the global destination computed by a robot does not
depend on the applied indistinguishable transformation 𝑓 , i.e., for
every globally oriented view 𝑉 , and every transformation 𝑓 ∈ IT ,
we have𝑇 (𝑉 ) = 𝑓 −1 (𝑇 (𝑓 (𝑉 ))). All our algorithms are well-defined.
However, to be as general as possible, we do not make this assump-
tion in our impossibility results. We notice that an execution of a

𝑅1 𝑅2 𝑅3

R R

R B

R R

R B

R R

R B

Figure 1: Examples of rules.

well-defined algorithm is uniquely determined by its initial config-
uration.

An Algorithm as a Set of Rules. We write an algorithm as a set
of rules, where a rule is a triplet (𝑉 ,𝑑, 𝑐) ∈ 𝑉𝑖𝑒𝑤𝑠 × {Idle,Up, Left,
Down, Right} × Cl.

We say that an algorithm (Cl, Init,𝑇 ) includes the rule (𝑉 ,𝑑, 𝑐),
if 𝑇 (𝑉 ) = (𝑑, 𝑐). By extension, the same rule applies to indistin-
guishable views, i.e., ∀𝑓 ∈ IT ,𝑇 (𝑓 (𝑉 )) = (𝑓 (𝑑), 𝑐). Consequently,
we forbid an algorithm to contain two rules (𝑉 ,𝑑, 𝑐) and (𝑉 ′, 𝑑 ′, 𝑐 ′)
such that 𝑉 ′ = 𝑓 (𝑉 ) for some 𝑓 ∈ IT . Hence, an algorithm corre-
sponds to a set of rules if each destination is the result of applying
one of its rules.

As an illustrative example, consider the rule 𝑅1 given in Fig. 1.
This rule is defined for robots having a visibility range of two. This
rule means that, when a blue robot 𝐵 sees three robots with color
𝑅, one on top, one on the left, and one in diagonal, then the blue
robot is dictated to move Up. Notice that, due to the opacity of the
robots, the state of the topmost node, and the leftmost node, are
not accessible. This is indicated by a cross inside the node (to help
the reader only). By extension the same rule applied if the view is
rotated by 𝜋 , but in that case, the destination would be Down.

In the same figure, rule 𝑅2 is a rule where the three black nodes
represent a part of the outer boundary of the grid, that we call
a wall in the remaining of the paper. Notice that a wall is never
hidden behind a robot (due to the opacity) as it simply represents
the absence of a node. In our algorithms, we often define similar
rules that apply regardless of the presence of a wall in some part of
the view. Thus, to avoid defining several time rules with very similar
views, we propose a notation to represent several rules in just one
picture. For example, rule 𝑅3 in Fig. 1 has three nodes hatched with
vertical lines, which means that the rule applies regardless of the
presence of a wall located at those nodes. In practice, every rule that
contains such vertical (resp. horizontal) hatched lines, represents
a set of rules obtained by replacing each of those lines either by
walls, or by empty nodes. For example, rule 𝑅3 in Fig. 1 is a concise
representation of rules 𝑅1 and 𝑅2.

For a more complex example, refer to the first rule in Fig. 13,
which represents a set of 33 rules, as there are 3 potential walls
(top, right, bottom), and the rule applies whether those walls are at
distance 1, 2 or more (i.e., not visible).

Algorithms having locally-defined initial configurations. In
a given grid, the set of possible initial configurations of an algo-
rithm can be reduced to a singleton. In such a case, the scalability
and flexibility of the algorithm is weak. To be more general, we pro-
pose algorithms with locally-defined sets of initial configurations.



Woodstock ’18, June 03–05, 2018, Woodstock, NY Quentin Bramas, et al.

Configurations in a locally-defined set of initial configurations are
defined by colors and relative positions of the robots only. Hence,
every two possible initial configurations are equal up to a transla-
tion applied to all robot positions and for a given grid, the set of all
possible initial configurations is closed by such translations.

3 IMPOSSIBILITY RESULTS
In this section we prove our four impossibility results; see Table 1
for a summary. Due to the lack of space, several proofs have been
moved in the appendix. The technical lemma below is trivial yet
very useful since it allows us to consider initial configurationswhere
one robot has an arbitrary position, without the loss of generality.

Lemma 3.1. Let A = (Cl, Init,𝑇 ) be an algorithm that solves the
PFGE problem using 𝑛 robots. For every grid 𝐺 with at least 𝑛 lines
and 𝑛 columns, for every node 𝑢 in 𝐺 , there exist a configuration 𝐶
where a robot is located at 𝑢 and an algorithm A′ = (Cl, Init ′,𝑇 )
where Init ′ is identical to Init unless𝐶 ∈ Init ′(𝐺) such that A′ solves
the PFGE problem using 𝑛 robots.

When there is a single robot that is far enough not to see any
wall (using the previous lemma, one can assume that the robot
is initially in a center of a large enough grid), then, due to to the
self-inconsistency assumption, there exists a possible execution
where the robot visits at most two adjacent nodes, hence follows.

Theorem 3.2. The PFGE problem is not solvable with only one
robot, for any finite visibility range.

Proof. Assume, by the contradiction, that A solves the PFGE
problem with one robot. Let Φ > 0 be the visibility range of the
robot. Consider a grid 𝐺 of size greater than (2Φ + 3) × (2Φ + 3).
By Lemma 3.1, we can assume, without the loss of generality, that
A solves the problem starting from the initial configuration where
the unique robot is at a center of 𝐺 . Thus, the robot sees no wall.
If the algorithm dictates the robot to stay idle, then the robot will
stay idle forever, a contradiction. So, the robot moves toward one
direction in the globally oriented view, say 𝑑 ∈ {Up,Down, Left,
Right}. Now, after the move, the robot is in the same situation: it
sees no wall. So, it will again move and the chosen destination in
its local view will be the same. However, since the robot is self-
inconsistent and the four possible destinations look identical, there
is a transformation 𝑓 ∈ IT such that the destination of the robot
in the globally oriented view is actually the opposite of 𝑑 . Hence,
there is a possible execution where the robot starts at a center of the
grid and forever alternates between two positions. The perpetual
exploration is not achieved in this execution, a contradiction. □

Remark 1. Consider any algorithm solving the PFGE problem with
two robots and any configuration where the two robots have the same
color and do not see the border of the grid. In this situation, there
exist two transformations (e.g., the identity transformation and the
𝜋-rotation), one for each robot, that make their local views identical.
In this case and even if the algorithm is not well-defined, whenever
one decides to move, the other moves too and the two robots move
in opposite direction in the global view, e.g., if one moves Up in the
global view, the other moves Down. Conversely, if one stays idle, the
other stays idle too. Moreover, if one robot decides to change its color,
the other also switches to the same color.

When there are only two robots, the following lemma states that,
in many large grids, there exists an execution where the two robots
eventually see each other, while one of them is located at a center.
This is useful to prove the next two theorems, involving only two
robots.

Lemma 3.3. Consider any algorithm A that solves the PFGE prob-
lem with two robots and a grid 𝐺 of size at least (4Φ + 6) × (4Φ + 6)
whose number of lines or columns is even.

Then, there exists an execution of A in𝐺 that contains a configu-
ration where the two robots see each other and one of them is located
at a center of 𝐺 .

Proof. We proceed by the contradiction. Remark first that 𝐺
contains at least two centers, 𝑐1 and 𝑐2, which are neighbors, by
definition. Then, by Lemma 3.1, we can consider, without loss of
generality, that A solves the PFGE problem starting from an initial
configuration𝐶 where a robot 𝑟 is located at one of the two centers
of 𝐺 . Let 𝑟 ′ be the other robot. Now, each time 𝑟 is located at 𝑐1 or
𝑐2, 𝑟 does not see any wall by construction of 𝐺 and does not see
𝑟 ′ by the contradiction. So, in such a case if 𝑟 decides to move, all
destinations look identical and there is a transformation that makes
it move from 𝑐1 to 𝑐2 if located at 𝑐1, and from 𝑐2 to 𝑐1 otherwise.
Hence, there is a possible execution where 𝑟 visits at most 𝑐1 and
𝑐2 and never sees 𝑟 ′. Consider now such an execution.

Let 𝑢1 be a node at distance Φ + 1 from 𝑐1 and distance Φ + 2
from 𝑐2. By construction of 𝐺 , 𝑢1 is at distance at least Φ + 2 from
a wall. Moreover, 𝑢1 is eventually visited because A solves the
PFGE problem. By construction, 𝑢1 is necessarily visited first by 𝑟 ′.
Moreover, 𝑟 stays at 𝑐1 or 𝑐2 and 𝑟 ′ is never in the visibility range of
𝑟 meanwhile. When the first visit of 𝑢1 by 𝑟 ′ occurs, robots neither
see each other nor any wall. Moreover, 𝑢1 as a neighboring node,
say 𝑢2, at distance Φ + 1 from a wall, distance Φ + 2 from 𝑐1, and
distance Φ + 3 from 𝑐2. From that point, there exist transformations
such that every time 𝑟 ′ decides to move, the applied transformation
makes 𝑟 ′ alternatively moves from 𝑢1 to 𝑢2, and vice versa, while
𝑟 still alternates between 𝑐1 and 𝑐2. Hence, from that point, there
exists a possible execution suffix where all nodes, except 𝑐1, 𝑐2, 𝑢1,
and 𝑢2, are never more visited, a contradiction. □

Theorem 3.4. The PFGE problem is not solvable with two robots
and only one color, for any finite visibility range.

Proof. Assume, by the contradiction, that an algorithm A solves
the PFGE problem with two robots and one color. Consider a grid
of size at least (4Φ+6) × (4Φ+6) whose number of lines or columns
is even. By Lemmas 3.1 and 3.3, we can assume, without the loss of
generality, that A solves the PFGE problem starting from an initial
configuration 𝐶 where a robot 𝑟 is located at a center of the grid
and the other is located within distance Φ from 𝑟 . Then, due to the
size of the grid (at least (4Φ + 6) × (4Φ + 6)), no robot sees a wall in
this initial configuration.

Consider now an execution, starting from 𝐶 , where every time
the robots see each other without seeing a wall, the applied trans-
formations are those that make the local views of the two robots
identical. Since initially both robots see each other and one of them
is in a center of the grid (i.e., at distance at least 2Φ + 3 from any
wall), the other robot is at distance at least Φ + 3 from any wall.



Optimal Exclusive Perpetual Grid Exploration by Luminous Myopic Opaque Robots with Common Chirality Woodstock ’18, June 03–05, 2018, Woodstock, NY

𝑉1 𝑉2

B

R

R

B

Figure 2: The two views of two robots with colors 𝑅 and 𝐵.

Hence, initially their local views are the same and their destinations
in the globally oriented view are opposite; see Remark 1 (of course,
they cannot stay idle). Thus, in that execution, the middle of the
two robots remains constant at least until one robots sees a wall.
More formally, if robots respectively have coordinates (𝑥,𝑦) and
(𝑥 ′, 𝑦′), then the two real numbers 𝑀𝑥 = 𝑥+𝑥 ′

2 and 𝑀𝑦 =
𝑦+𝑦′
2

remain constant until at least one robot sees a wall.
Initially, the robot 𝑟 located at a center, say at coordinates (𝑥,𝑦),

is at distance at least 2Φ + 3 from any wall, i.e., 𝑥 ≥ 2Φ + 3 and
𝑦 ≥ 2Φ + 3. The other robot being within distance Φ from 𝑟 , so
|𝑥 −𝑥 ′ | ≤ Φ and |𝑦 −𝑦′ | ≤ Φ. Thus, we have 𝑥 ′ ≥ Φ + 3, 𝑦′ ≥ Φ + 3,
𝑀𝑥 > 3

2Φ + 3, and𝑀𝑦 > 3
2Φ + 3.

Consider now the first visited node which is at distanceΦ+2 from
a wall. Without loss of generality, assume that one of the closest
wall is the left one, i.e., its abscissa is 𝑥 = Φ+2. Since no robot has yet
see a wall, we still have𝑀𝑥 > 3

2Φ + 3. By replacing 𝑥 by its current
value, we obtain: Φ+2+𝑥

′
2 > 3

2Φ+ 3 ⇔ 𝑥 ′ > 2Φ+ 4 ⇔ 𝑥 ′−𝑥 > Φ+ 2.
Hence, the two robots neither see each other, nor a wall. From that
point, using the same argument as in Theorem 3.2, we can construct
a possible execution suffix where each robot either stays idle or
alternates between two nodes. Now, in that suffix, there are many
nodes that are never visited, a contradiction. □

In the following, we say that a robot is isolated whenever no
other robot is within its visibility range.

Theorem 3.5. The PFGE problem is not solvable with two robots,
two colors and visibility range one.

Proof. Assume by the contradiction that an algorithm A solves
the PFGE problem in this setting. Consider a grid 𝐺 of size at least
10 × 10 whose number of lines or columns is even. By Lemmas 3.1
and 3.3 (recall that Φ = 1), we can assume, without the loss of
generality, that A solves the PFGE problem starting from an initial
configuration𝐶 where a robot 𝑟 is located at a center of the grid and
the other is located at the neighboring node. Moreover they have
different colors, since otherwise we have a contradiction using the
same argument as in the proof of Theorem 3.4. Indeed, the argument
remains valid even if robot can change their color because robots
with same views modify their color in the same way.

Let’s say that in𝐶 , a robot is blue (𝐵) and the other is red (𝑅). We
can choose an execution and the transformations such that, every
time a red robot sees a blue robot, its local view is 𝑉1 in Fig. 2 and
every time a blue robot sees a red robot, its local view is𝑉2, in Fig. 2.

A outputs a single destination 𝑑1, resp. 𝑑2, for the local view 𝑉1,
resp. local view𝑉2. Moreover, in𝐶 , robots initially have local views
𝑉1 and𝑉2. After one round, robots are either isolated, they have the
same color, or their views are 𝑉1 and 𝑉2 respectively (n.b., the two
robots still do not see the border of𝐺 in this latter case). If robots are

(𝑏) or (𝑐)

(3)

(2)

Figure 3: The movement leading to a contradiction.

isolated, we can construct a possible execution where robots remain
isolated forever and, depending on the algorithm, they either stay
idle or alternate between two positions forever. Hence, in that case,
the perpetual exploration is not achieved, a contradiction. If now
the robots have the same color after one round, then depending
on the algorithm, we can construct an execution where they either
stay idle or swap their position forever while maintaining their
colors identical, or they become isolated after the second round. In
the latter case, they still do not see the border of𝐺 , so we can make
the perpetual exploration fails, as previously explained.

Hence, the only remaining case is the one where their views of
the two robots are 𝑉1 and 𝑉2 after the first round. In this case, the
movements of robots are periodic while they do not reach a wall.
So, either robots alternate between two configurations, or the two
robots move in a straight line until at least one robot reaches a wall.

In the former case we immediately obtain a contradiction. So,
we focus now on the latter case: when a robots reaches a wall, there
exists a constant 𝑆 (independent of the size of the grid) such that
the two robots can either (1) remain indefinitely in a subgrid of size
𝑆 , or (2) remain in a subgrid of size 𝑆 for a finite number of rounds,
then leave the wall and move straight toward the opposite wall, or
(3) remain at distance at most 𝑆 from the wall until they reach a
corner. Fig. 3 illustrates the last two cases. In Case (1), some nodes
will not be visited if𝐺 is large enough, a contradiction. In Case (2),
when the robots leave the wall they must be in the same relative
positions as initially, rotated by angle 𝜋 (to move to the opposite
direction). Indeed, we have just seen that this is the onlyway the two
robots can travel without seeing walls. Hence, when reaching the
opposite wall, since they cannot distinguish between the two walls,
the robots will perform the same turn, remains in a subgrid of size
𝑆 for the same finite number of rounds, then leave the wall to move
straight towards the first wall. All the movements are the same as
the movement performed when reaching the first wall, but rotated
by 𝜋 . Hence, they will end up in the exact same initial position. The
two robots will continue this periodic movement infinitely, leaving
nodes unvisited if 𝐺 is large enough, a contradiction.

Consider now Case (3). After following the wall (staying at
distance at most 𝑆 from it until reaching another wall), the robots
reach the corner and again we have three possibilities: either (𝑎)
they remain in a subgrid of size at most 𝑆 ′ where 𝑆 ′ is a constant
(independent of the size of the grid), (𝑏) they follow a wall (either
the same one on the opposite direction, or the new encountered
one) for a finite number of rounds, then leave the wall to move in
straight line until reaching the opposite wall, or (𝑐) they follow



Woodstock ’18, June 03–05, 2018, Woodstock, NY Quentin Bramas, et al.

a wall until reaching another corner. In Case (𝑎), some nodes are
never visited if𝐺 is large enough, a contradiction. In Cases (𝑏) and
(𝑐), there exists a constant 𝑆 ′′ (independent of the size of the grid)
such that the robots always stay at distance at most 𝑆 ′′ from a wall,
and when they reach a new wall, the same thing occurs again, so if
𝐺 is large enough, some nodes that are far from all walls are never
visited, leading to a contradiction. □

Theorem 3.6. The PFGE problem is not solvable with three robots,
one color, and visibility range one.

Sketch of Proof. This theorem is proven by contradiction. As-
suming there exists an algorithm solving the PFGE problem in these
settings, we first show that, in large enough grids, there is a reach-
able configuration where the three robots are far from all walls. We
then show that it is possible, within one or two rounds, to make
one robot isolated while keeping all robots not seeing any wall (to
prove this, there are only few cases to consider, up to rotations,
with three robots, one colors, and visibility one). From this latter
situation, we show that it is possible to make all robots isolated
still while maintaining the walls out of the visibility range of all
robots. Being isolated and seeing no wall, robots either stay idle,
or there is an execution where each robot alternates between two
adjacent nodes while maintaining them isolated and seeing no wall,
a contradiction. □

4 VISIBILITY RANGE ONE: Vone32
Wepresent an algorithm, denoted byVone32, which assumes a visibil-
ity range one and uses two robots and three colors. By Theorem 3.2,
Vone32 is optimal w.r.t. the number of robots, and by Theorem 3.5,
Vone32 is also optimal w.r.t. the number of colors. An animation
illustrating the behavior of Vone32 is available online; see [6].

Initially, one robot, called the follower, has color 𝐹 and the other
robot, called the leader, has any of the two colors 𝐿 and 𝑅. The
initial positions of the two robots are arbitrary in the grid, except
that they should be neighbors. Hence, the set of all possible initial
configurations is locally-defined.

The follower is colored 𝐹 all along the execution, while the light
of the leader alternates between color 𝑅 and color 𝐿. Moreover, the
two robots always stay neighbors during the execution: we say
that they form a group all along the execution. For the purpose of
explanation only, we now consider an arbitrary orientation of the
grid (n.b., the robots do not know this orientation since they do not
agree on a common North): the four walls are respectively at the
top, bottom, left, and right in the grid.

For example, consider the initial configuration 𝐶 where (1) the
leader has color 𝑅, (2) the group of robots is placed along a line
linking the left wall to the right one, and (3) the leader is closer
from the left wall than the follower.

From 𝐶 , the group first performs an ascending phase: the group
moves straight from a wall to another (n.b., from 𝐶 , the group first
moves toward the left wall), moreover the group moves Up and
turns around every time it reaches a wall. Once the group reaches
the top wall, it does the same but now moves Down every time
it reaches a wall: it switches to a descending phase. So, the group
visits all the nodes following a serpentine belt alternating forever
between ascending and descending phases.

To achieve these principles, we use the relative positions of the
two robots as well as the two colors of the leader to give a kind of
direction. Actually, the follower always moves toward the leader
without changing its color. In contrast, the leader always moves
from its current position to one of its three free neighboring nodes.
In some particular cases, the leader uses its color to make the choice.
Overall, the leader takes all decisions on the behalf of the group.

For instance, if the robots do not see any wall, the leader moves
away from the follower and the follower follows the leader; see the
rules in Fig. 4. This makes the group move straight.

F L F R F L F R

Figure 4: Moving straight.

Consider now the case where the leader reaches a wall during
an ascending (resp. descending) phase and the leader is not on the
line along the top (resp. bottom) wall. Then, the group should turn
to reach the immediately upper (resp. lower) line. In this case, the
color of the leader is used to decide the rotation sense of the turn.
Precisely, a turn is performed in two rounds. Upon reaching the
wall, the leader turns Right if it has color 𝑅, Left otherwise (n.b., if
the destination line is Up, the phase is ascending, otherwise it is
descending). Moreover, at the second round of the turn, the leader
changes its color (i.e., it either switches from 𝑅 to 𝐿 or from 𝐿 to 𝑅)
while it leaves the wall. The corresponding rules are given in Fig. 5.
Moreover, an illustrative example is proposed in Fig. 6.

R F R

F

L
L F

F

L
R

Figure 5: Turning in front of a wall for 𝑅 and 𝐿 leader.

R F R F

R

F

L
F L

Figure 6: Sequence of configurations during a right turn in
an ascending phase.

The last case to study is when the leader reaches a corner after
that the group has traversed the line along the top (resp. bottom)
wall in an ascending (resp. descending) phase. In this case, the
leader detects that the group cannot further move Up (resp. Down).
For example, the leader has color 𝐿 but cannot turn Left because the
top wall is at its Left. In this case, the leader moves away from the
top wall and changes its color in the same step, i.e., it moves Right
and takes color 𝑅 if its color was 𝐿, it moves Left and takes color 𝐿
otherwise; see the rules in Fig. 7. Notice also that, after this turn,
the leader again changes its color while leaving the wall, using the



Optimal Exclusive Perpetual Grid Exploration by Luminous Myopic Opaque Robots with Common Chirality Woodstock ’18, June 03–05, 2018, Woodstock, NY

previous rules given in Fig. 5. Overall, after turning at such a corner,
the leader has changed its color twice, and consequently starts the
descending (resp. ascending) phase. An example where the group
switches from an ascending to a descending phase (resp. from a
descending to an ascending phase) is given in Fig. 8 (resp. Fig. 9).

F L
R

F R
L

Figure 7: Moving at a corner.

F L F L
R

F

R
L

L F

Figure 8: Sequence of configurations during a turn at a cor-
ner.

F R F R
L

L

F

R
R F

Figure 9: Sequence of configurations during a turn at an-
other corner.

Theorem 4.1. Vone23 solves the PGFE problem with two robots and
three colors.

Proof. By induction on𝑚 × 𝑛, where𝑚 is the number of lines
and 𝑛 is the number of columns of the grid. We have validated
several base cases, including even and odd values for the number
of lines, using our simulation tool [6]. Precisely, we have checked
that Vone23 solves the PGFE problem on every grid of size𝑚 ×𝑛 for
𝑚 = 2, 3 and𝑛 = 2. Such a checking is easy since, from a given initial
configuration, there is only one possible execution (the algorithm
is well-defined and the execution is synchronous). So, we just have
to execute the algorithm until reaching an already encountered
configuration: at that time all nodes should have been visited.

We assume now that Vone23 solves the PGFE problem in all grids
𝑥 × 𝑦 with 2 ≤ 𝑥 ≤ 𝑚 and 2 ≤ 𝑦 ≤ 𝑛 for some values𝑚 ≥ 3 and
𝑛 ≥ 2. We should show that Vone23 solves the PGFE problem in the
grids of size𝑚 × (𝑛 + 1) and (𝑚 + 1) × 𝑛.

Consider first the grid of size𝑚 × (𝑛 + 1). Then, it is easy to see
that after adding one column, our algorithm still solves the PGFE
problem. Indeed, when robots are traveling from the left to the
right, they move in a straight line periodically until they reach a
wall, so adding one column just increases by one the number of
times they perform their periodic movement.

Consider now the grid of size (𝑚 + 1) × 𝑛. Since𝑚 − 1 ≥ 2, the
induction hypothesis applies to the case (𝑚 − 1) × 𝑛, i.e., Vone23
solves the PGFE problem in the grid (𝑚 − 1) × 𝑛. Now, we can
remark that, after adding two lines, Vone23 still solves the PGFE.
Indeed, every time the robots travel horizontally from one wall to

the other and then come back, they are located exactly two lines
above their previous location when they left the wall the first time.
For example, assume (0, 0) represents the node at the bottom left
corner and consider the grid of size (𝑚 + 1) ×𝑛. If the configuration
is 𝐶1 = {((0, 𝑗), 𝐹 ), ((1, 𝑗), 𝐿)} at a given time, with 1 ≤ 𝑗 ≤ 𝑚 − 1,
then it is𝐶2 = {((0, 𝑗 + 2), 𝐹 ), ((1, 𝑗 + 2), 𝐿)} after 2𝑛 rounds. So, the
execution is similar from𝐶1 in the grid of size (𝑚 − 1) ×𝑛 and from
𝐶2 in the grid of size (𝑚 + 1) × 𝑛, i.e., adding two lines just implies
that they perform this periodic movement one more time. □

5 VISIBILITY RANGE TWO : Vtwo22 AND Vtwo13
Under visibility range of two, we can reduce the number of colors
to two still using two robots; see Subsection 5.1. We can also use
only one color, yet with three robots; see Subsection 5.2.

5.1 Algorithm Vtwo22
The principle of Algorithm Vtwo22 is similar to that of Algorithm
Vone32. For example, initially, the leader robot, with color 𝐿, should
be adjacent to a follower, with color 𝐹 (n.b., as a consequence,
the set of all possible initial configurations is still locally-defined).
However, instead of using two colors at the leader to distinguish the
right and left wall, we exploit the distance between the leader and
the follower. More precisely, when the leader reaches a wall while
being adjacent to the follower, the two robots perform a left turn,
as illustrated in Fig. 10. Conversely, if the leader is at distance two
from the follower when reaching a wall, the two robots perform a
right turn, as illustrated in Fig. 11.

L F F

L

F

L F L

Figure 10: Sequence of configurations during a left turn. The
same sequence occurs regardless of the presence of a wall at
the hatched nodes.

F L F

L

F

L L F

Figure 11: Sequence of configurations during a right turn.
The same sequence occurs regardless of the presence of a
wall at the hatched nodes.

When traveling from wall to wall, the two robots preserve their
distance. The leader moves away from the follower, regardless its
distance to the follower, the presence of walls at distance two, or the
presence of a wall at distance one on a specific side, as illustrated in
Fig. 12. The follower always follows the leader regardless of their
distance and the presence of walls, as dictated by rules shown in
Fig. 13. The only exception occurs when the follower is adjacent
to the leader, and there is a wall adjacent on its right. In that case,
the follower stays idle. This is done to separate the leader and the



Woodstock ’18, June 03–05, 2018, Woodstock, NY Quentin Bramas, et al.

follower during a left turn. We can see that in the second configu-
ration in the sequence shown in Fig. 10, the follower is adjacent to
the leader, but stays idle while the leader continues to move. After
that, the leader and the follower are at distance two.

L F L F

L F L F

Figure 12: When it sees no walls, the leader moves away
from the follower.

L F L F

Figure 13: The follower always follows the leader, except
when there is a wall immediately on its right.

The rules executed by the leader when reaching a wall are more
specific and depend on its distance to the follower. When the leader
reaches a wall and is at distance two (resp. distance one) from the
leader, then it turns right (resp. turns left); as shown in Fig. 14.

L F L F

Figure 14: When reaching a wall, the leader either turns
right or left depending on its distance with the follower.

If the leader has turned right, the rules shown in Fig. 15 dictate
the follower to move towards the wall, while the leader moves away
from the wall. Then, the follower moves along the wall towards
the leader, and the leader does not move, so that the leader and the
follower become adjacent. After that, the leader and the follower
are in a configuration from which they move straight towards the
opposite wall. The entire sequence is shown in Fig. 11.

L

F L

F

L

F

Figure 15: The rules to complete a right turn. After the turn
the follower and the leader are adjacent.

If the leader has turned left when it reached the wall, the rules
shown in Fig. 16 dictate the leader to move away from the wall
while the follower stays idle. Then, the follower moves along the
wall towards the leader while the leader moves away from the wall.
After that the leader and the follower are at distance two. The entire
sequence is shown in Fig. 10.

F

L F

L

F

L

Figure 16: The rules to complete a left turn. After the turn
the follower and the leader are at distance two.

The remaining rules apply when the robots reach a corner and
the phase should change (from ascending to descending, or con-
versely). When robots are adjacent and move along a wall on their
left side, they move while ignoring the wall until the leader sees
a wall in front of it. When this happens, the first rule in Fig. 17
dictates the leader to change its color. After that, both robots have
color 𝐹 . Then, they perform a special move to (1) turn around in
one round (the second and third rules in Fig. 17) by moving away
from the wall, and (2) reverse the leader and follower roles. The
complete sequence is illustrated in Fig. 18.

L F
F

F F F F
L

Figure 17: The rules tomove along awall when robots are ad-
jacent, until reaching a corner and then performing a right
turn by switching the leader and follower roles.

L F
F

F F
L

F L F L

Figure 18: Sequence of configurations at a corner.
The same thing occurs in the opposite direction when robots are

not adjacent, using the rules shown in Fig. 19.

F L
F

F F
L

F F

Figure 19: The rules to move along a wall when robots are
not adjacent, until reaching a corner and then performing a
left turn by switching the leader and follower roles.

Finally, there are three rules that are used in specific cases. The
first rule in Fig. 20 applies only once in specific initial configurations.



Optimal Exclusive Perpetual Grid Exploration by Luminous Myopic Opaque Robots with Common Chirality Woodstock ’18, June 03–05, 2018, Woodstock, NY

The second rule in Fig. 20 is used when the number of columns or
the number of lines is two. When this rule is executed, the robots
will move along the wall and the other rules apply as usual. The
last rule in Fig. 20 applies only in the grid of size 2 × 2. After this
rule is executed, the leader moves to an empty node, while the
follower moves to another empty node (by applying an existing
rule shown in Fig. 16), hence after one round, the configuration is
rotated by 𝜋/2 so that this occurs infinitely often while each node
is visited every two rounds. Those special cases can be visualized
in the animation in our complementary material [6].

L F L F

F

L

Figure 20: Three rules used in specific cases.
Theorem 5.1. Vtwo22 solves the PGFE problem with two robots,

having two colors and visibility range two.

Proof. The induction proof is similar to Theorem 4.1 for Vone32.
In particular, the base cases have been checked automatically using
the same simulation tool [6]. □

5.2 Algorithm Vtwo13
Our last algorithm, Algorithm Vtwo13, uses three anonymous obliv-
ious robots (i.e., three robots with only one color) under visibility
range two. The algorithm uses the same principle as the previous
ones, but two shapes are used to distinguish what to do when reach-
ing a wall. We respectively denote these two shapes by “<” and “L”.
We define the set of locally-defined initial configurations as the set
of configurations where the robots form an “<” shape. Fig. 21 (resp.
Fig. 22) shows the rules executed by the robots to move straight
when in the “<” shape (resp. when in the “L” shape). With those
rules, robots are able to move straight, regardless of the presence
of wall “behind” them, or on their “side”.

R

R

R

R

R

R

R

R

R

Figure 21: Rules to move straight for an “<” shape.

R

R R

R

R R R

R R

Figure 22: Rules to move straight for a “L” shape.
When a robot reaches a wall, the robots “turn around”.When two

robots become adjacent to a wall while robots are in an “<” shape,

two robots move down (if the wall is on the right in the global
view), so that the robots now form an “L” shape; as illustrated in
the sequence of configurations in Fig. 23. The rules executed by the
robots during this turn are shown in Fig. 24.

R

R

R

R

R

R

R

R R

R

R R

Figure 23: Sequence of configurations when robots in an “<”
shape reach a wall.

R

R

R

R

R

R

Figure 24: Rules to turn when robots are in an “<” shape.

When a robot becomes adjacent to a wall while robots are in
an “L” shape, it moves down (if the wall is left in the global view)
while another robot remains idle and the last one continues to
move towards the wall (because it does not see the wall as it is
obstructed). After that, the bottommost robot moves away from
the wall so that the robots form an “<” shape; as illustrated in the
sequence of configurations in Fig. 25. The rules executed by the
robots during this turn are shown in Fig. 26.

R

R R

R

R R

R

R

R

R

R

R

Figure 25: Sequence of configurations when robots in a “L”
shape reach a wall.

R

R R

R

R

Figure 26: Rules to turn when robots are in a “L” shape.

When the robots cannot perform a turn at a corner, they perform
a turn around without changing their shape. This always occurs
when they are in an “<” shape. The robot at the corner moves
away towards the position from it came from, the robot in the
middle moves up (instead of down during a standard turn), and the
topmost robot, which does not see the corner, moves down as usual;
as illustrated in the sequence of configurations in Fig. 27. The rules
executed by the robots during this turn are shown in Fig. 28.



Woodstock ’18, June 03–05, 2018, Woodstock, NY Quentin Bramas, et al.

R

R

R

R

R

R

R

R

R

R

R

R

Figure 27: Sequence of configurations when robots in an “<”
shape reach a corner.

R

R

R

R

R

R

Figure 28: Rules to turn at a corner.
Theorem 5.2. Vtwo13 solves the PGFE problem with three robots,

having only one color and visibility range two.

Proof. The induction proof is similar to Theorem 4.1 for Vone32.
In particular, the base cases have been checked automatically using
the same simulation tool [6]. □

6 CONCLUSION
We have proposed optimal synchronous solutions to the exclusive
PFGE problem for swarms of luminous myopic opaque robots. The
optimal algorithm Vone32 for visibility range one requires only two
robots and three colors. Yet, if we increase the visibility range to
two, we can either decrease the number of colors to two (Algorithm
Vtwo22), or decrease the number of colors to one (Algorithm Vtwo13)
but at the price of using one additional robot. We now present some
extensions and perspectives.

Asynchronous version of Algorithm Vone32. In the asynchronous
model, a Look-Compute-Move cycle is not atomic, yet each of the
three phases of a cycle is. At each round, a robot executes at most
one of the phases. The time between Look, Compute, and Move
phases at a given robot is finite yet unbounded.

Algorithm Vone32 can be modified to work in the asynchronous
model, yet using visibility range two. For this, the rules of the leader
remain the same: the leader moves if and only if it sees that the
follower was its neighbor in its previous Look phase. In contrast, the
follower now moves if and only if it sees the leader at distance two
in its previous look phase. In this case, it moves toward the leader,
as in the synchronous algorithm. It is easy to see that this version
works in the asynchronous model since all the robot movements are
sequential: each move of the synchronous algorithm is emulated
with exactly two moves in the asynchronous one.

From perpetual to terminating exploration. We can simply modify
our non-oblivious algorithms so that they terminate once all nodes
have been visited. We just have to duplicate states of the follower
(four times) to encode in them the number of corners it has already
visited and modify the rules accordingly. Using this encoding, when
the follower detects that it has reached a corner for the fourth time,
it definitely stops. Seeing the follower in a terminating state, the
leader also stops. Since the follower has visited the four corners,
we have the guarantee that all nodes have been visited meanwhile.

Perspectives. First, one can study the impact of removing the
common chirality on the lower bounds. Then, optimality for the
terminating variants needs to be investigated. In particular, find-
ing an optimal (w.r.t. the number of robots) anonymous oblivious
terminating solution under the small visibility range two seems to
be quite challenging. Finally, even if we have already given some
hints, the designing of asynchronous efficient solutions, still in the
myopic context, is definitely the most exciting perspective.

REFERENCES
[1] Roberto Baldoni, François Bonnet, Alessia Milani, and Michel Raynal. 2008.

Anonymous graph exploration without collision by mobile robots. Inf. Process.
Letters 109, 2 (2008), 98–103.

[2] Lélia Blin, Alessia Milani, Maria Potop-Butucaru, and Sébastien Tixeuil. 2010.
Exclusive Perpetual Ring Exploration without Chirality. InDistributed Computing,
24th International Symposium, DISC 2010, Cambridge, MA, USA, September 13-15,
2010. Proceedings, Nancy A. Lynch and Alexander A. Shvartsman (Eds.), Vol. 6343.
Springer, Boston, Massachusetts, USA, 312–327.

[3] François Bonnet, Alessia Milani, Maria Potop-Butucaru, and Sébastien Tixeuil.
2011. Asynchronous exclusive perpetual grid exploration without sense of di-
rection. In Proceedings of International Conference on Principles of Distributed
Systems (OPODIS 2011), Antonio Fernández Anta (Ed.). Springer Berlin / Hei-
delberg, Toulouse, France, 251–265. http://www.springerlink.com/content/
9l3v424157681707/

[4] Quentin Bramas, Stéphane Devismes, and Pascal Lafourcade. 2020. FindingWater
on Poleless using Melomaniac Myopic Chameleon Robots. In FUN 2020, 10th
International Conference on Fun with Algorithms. LiPICs, Favignana, Sicily, Italy.
to appear.

[5] Quentin Bramas, Stéphane Devismes, and Pascal Lafourcade. 2020. Infinite Grid
Exploration by Disoriented Robot. In NETYS’2020, the 8th International Conference
on NETworked sYStems. Springer, Marrakech, Morocco. to appear.

[6] Quentin Bramas, Stéphane Devismes, and Pascal Lafourcade. 2020. Optimal
Exclusive Perpetual Grid Exploration by Luminous Myopic Opaque Robots: The
Animations. https://doi.org/10.5281/zenodo.3947756.

[7] Ajoy Kumar Datta, Anissa Lamani, Lawrence L. Larmore, and Franck Petit. 2015.
Enabling Ring Exploration with Myopic Oblivious Robots. In 2015 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshop, IPDPS 2015. IEEE
Computer Society, Hyderabad, India, 490–499.

[8] Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond, and Sébastien
Tixeuil. 2020. Terminating Exploration of a Grid by an Optimal Number of
Asynchronous Oblivious Robots. Comput. J. 1 (03 2020). to appear.

[9] Stéphane Devismes, Anissa Lamani, Franck Petit, and Sébastien Tixeuil. 2019.
Optimal torus exploration by oblivious robots. Computing 101, 9 (2019), 1241–
1264.

[10] Stéphane Devismes, Franck Petit, and Sébastien Tixeuil. 2013. Optimal Proba-
bilistic Ring Exploration by Semi-synchronous Oblivious Robots. Theoretical
Computer Science (TCS) 498 (2013), 10–27.

[11] Yoann Dieudonné, Franck Petit, and Vincent Villain. 2010. Leader Election
Problem versus Pattern Formation Problem. In Distributed Computing, 24th Inter-
national Symposium, DISC 2010, Nancy A. Lynch and Alexander A. Shvartsman
(Eds.), Vol. 6343. Springer, Cambridge, MA, USA, 267–281.

[12] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. 2010. Remem-
bering without memory: Tree exploration by asynchronous oblivious robots.
Theor. Comput. Sci. 411, 14-15 (2010), 1583–1598.

[13] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. 2011. How
many oblivious robots can explore a line. Inf. Process. Lett. 111, 20 (2011), 1027–
1031.

[14] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. 2013. Com-
puting Without Communicating: Ring Exploration by Asynchronous Oblivious
Robots. Algorithmica 65, 3 (2013), 562–583.

[15] Fukuhito Ooshita and Sébastien Tixeuil. 2018. Ring Exploration with Myopic
Luminous Robots. In Stabilization, Safety, and Security of Distributed Systems -
20th International Symposium, SSS 2018, Taisuke Izumi and Petr Kuznetsov (Eds.),
Vol. 11201. Springer, Tokyo, Japan, 301–316.

[16] David Peleg. 2005. Distributed Coordination Algorithms for Mobile Robot
Swarms: New Directions and Challenges. In Distributed Computing – IWDC
2005, Ajit Pal, Ajay D. Kshemkalyani, Rajeev Kumar, and Arobinda Gupta (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 1–12.

http://www.springerlink.com/content/9l3v424157681707/
http://www.springerlink.com/content/9l3v424157681707/
https://doi.org/10.5281/zenodo.3947756


Optimal Exclusive Perpetual Grid Exploration by Luminous Myopic Opaque Robots with Common Chirality Woodstock ’18, June 03–05, 2018, Woodstock, NY

A OMITTED PROOFS
We first give a simple technical lemma that makes easier our im-
possibility proofs.

Lemma 3.1. Let A = (Cl, Init,𝑇 ) be an algorithm that solves the
PFGE problem using 𝑛 robots. For every grid 𝐺 with at least 𝑛 lines
and 𝑛 columns, for every node 𝑢 in 𝐺 , there exist a configuration 𝐶
where a robot is located at 𝑢 and an algorithm A′ = (Cl, Init ′,𝑇 )
where Init ′ is identical to Init unless𝐶 ∈ Init ′(𝐺) such that A′ solves
the PFGE problem using 𝑛 robots.

Proof. Let 𝑢 be a node of 𝐺 . If A solves the PFGE problem
in 𝐺 , then there is an execution 𝐶1,𝐶2, . . . ,𝐶𝑘 , . . . starting from
𝐶1 ∈ Init (𝐺) such that 𝑢 is occupied in 𝐶𝑘 .

Let 𝜀 ′ = 𝐶 ′
1 (= 𝐶𝑘 ),𝐶 ′

2, . . . an arbitrary execution suffix starting
from 𝐶𝑘 . Then, 𝐶1, . . . ,𝐶𝑘 ,𝐶

′
2,𝐶

′
3, . . . is a possible execution of A

starting from𝐶1. By hypothesis, each node is visited infinitely often
in this execution, and so is in 𝜀 ′. Hence, if we add 𝐶𝑘 as a possible
initial configuration, we still have an algorithm that solves the PFGE
problem in 𝐺 . □

Lemma A.1. Consider any algorithm A that solves the PFGE prob-
lem with three robots, one color, and visibility range one.

No execution of A contains a configuration where the three robots
are isolated and do not see any wall.

Proof. Assume, by the contradiction, that an execution of A
reaches a configuration 𝐶 where the three robots are isolated and
do not see any wall. By Lemma 3.1, we can assume, without the
loss of generality, that 𝐶 is this initial configuration.

Assume first that a robot remains idle in 𝐶 . Now, since each
robot has the same color and the same local view. All robots are
idle forever, a contradiction.

Assume now that a robot is enabled to move in 𝐶 . Again, each
robot has the same color and the same local view, so all robots are
enabled to move. Moreover, for each robot, each possible destina-
tion looks identical. Consider then the smallest rectangle 𝑅 that
encloses the three robots. There exist three transformations such
that applying each one to a robot make them move in such a way
that they are still isolated and inside 𝑅 in the reached configuration
𝐶 ′. In particular, they still do not see any wall in𝐶 ′. So, by repeating
the same mechanism, we construct a possible execution starting
from 𝐶 where several nodes are never visited (precisely, all nodes
outside 𝑅), a contradiction. □

Theorem 3.6. The PFGE problem is not solvable with three robots,
one color, and visibility range one.

Proof. Assume, by the contradiction, that an algorithm A solves
the PFGE problem with three robots, one color, and visibility range
one. Let 𝑟1, 𝑟2, and 𝑟3 be the three robots. Consider a grid 𝐺 of
size at least 22 × 22 whose number of lines or columns is even. By
Lemma 3.1 (recall that Φ = 1), we can assume, without the loss of
generality, that A solves the PFGE problem starting from an initial
configuration 𝐶 where a robot is located at a center of 𝐺 .

Claim 1: There is an execution starting from 𝐶 containing a
configuration where the robots are all at distance at least 6
from any wall.

Proof of the claim: Let 𝑟1 be the robot located at a center of
𝐺 in 𝐶 , hence at distance at least 11 from any wall. We have
two possibles cases in 𝐶:
• In 𝐶 , 𝑟1 sees a robot, say 𝑟2. So, 𝑟2 is at distance at least
10 from any wall. So, if 𝑟3 is at distance at most 4 from
𝑟2, we are done. Assume now that 𝑟3 is at distance at
least 5 from 𝑟2. Then, in the next step, 𝑟1 and 𝑟2 either
stay idle, swap their positions, or become isolated, yet
still at distance at least 10 and 9 respectively from any
wall. After this step, if 𝑟3 is at distance at least 6 from a
wall, we are done. Otherwise, 𝑟3 is at least at distance 5
and 4 from 𝑟1 and 𝑟2 respectively. If 𝑟1 and 𝑟2 are isolated,
either they remain idle, or they move but all positions
look identical in their respective snapshot. For each of
them, there is a transformation that makes them retrieves
their initial position. If they are adjacent (they were idle
or swapped their position), then they remains adjacent by
performing again the same move. Hence, there exists a
possible execution where while 𝑟3 is not at distance at least
6 from a wall, 𝑟1 (resp. 𝑟2) can at most alternate between
two neighboring positions. In this execution, a node at
distance 6 from a wall is visited first by 𝑟3, and when it
happens, all robots are at distance at least 6 from any wall.

• 𝑟1 is isolated in 𝐶 . While isolated, 𝑟1 is either idle, or there
is a possible step where it moves to a neighboring center,
thus remaining at distance 11 from any wall. Hence, in
such an execution, there is a node at distance 9 from any
wall that is visited first by another robot, say 𝑟2. When it
happens, either all robots are at distance 6 from a wall and
we are done, or 𝑟1 and 𝑟2 are both isolated and there exists
a possible execution suffix where they both alternates
between two positions without seeing a wall while they
are isolated: the two centers at distance 11 from any wall
for 𝑟1 and nodes at distance 9 and 8 from any wall for 𝑟2.
In such an execution, a node at distance 7 from a wall is
then eventually visited by 𝑟3 and when it happens, we are
done.

Claim 2: If initially no robot is isolated and all robots are at
distance at least 6 from any wall, then there is a reachable
configuration where all robots are at distance at least 4 from
any wall and at least one of them is isolated.
Proof of the claim: Since initially no robot is isolated, there are
only two kinds of possible initial configurations for the three
robots: either they form a line, or an L shape, as illustrated
in Fig. 29.
We now consider an execution with well-chosen transfor-
mations such that every time a robot sees only one another
robot, its local view is exactly 𝑉1 in Fig. 29. In the two kinds
of possible initial configurations, there are two robots, say
𝑟1 and 𝑟3, with the same view 𝑉1, so their destinations are
opposite in a line configuration, and rotated by 𝜋/2 in the
L configuration. Hence, they cannot move Up in 𝑉1, i.e., to-
wards 𝑟2, otherwise they create a collision. If they move
Down in 𝑉1, i.e., away from 𝑟2, then at least one of them be-
comes isolated, and we are done. We now show that moving
Left or Right in 𝑉1 also leads to at least one robot becoming
isolated. If the three robots initially form a line and if 𝑟1 and



Woodstock ’18, June 03–05, 2018, Woodstock, NY Quentin Bramas, et al.

𝑟1

𝑟2 𝑟3 𝑟1 𝑟2 𝑟3

R

R

L shape line the view 𝑉1 of 𝑟1 and 𝑟3

Figure 29: The two possible configurations where three
robots are connected, and the view of the robots 𝑟1 and 𝑟3
in both cases.

𝑟1

𝑟2 𝑟3

𝑟1

𝑟3

𝑟2

Figure 30: In an L shape, if robots 𝑟1 and 𝑟3 with view𝑉1 move
left, then, 𝑟2 has to move right not to isolate 𝑟1.

𝑟3 move on the Right or the Left in 𝑉1, then at least one of
them becomes isolated. If they do not move and 𝑟2 moves
without colliding, 𝑟2 becomes isolated. If no robots move, we
have a deadlock and so the exploration fails, a contradiction.
If the three robots initially form an L shape and if 𝑟1 and 𝑟3
move Left on𝑉1, then in the global view illustrated in Fig. 30,
𝑟3 moves down and 𝑟1 moves right. In this case, if 𝑟2 moves
towards 𝑟3, the robots form a line and we retrieve a previous
case. Otherwise, 𝑟1 or 𝑟3 becomes isolated; see Fig. 30. The
same thing happens if 𝑟1 and 𝑟3 move Right in 𝑉1. Overall,
since the robots were initially all at distance at least 6 from
any wall, after one or two rounds they are at distance at least
4 from any wall and at least one of them is isolated.

Claim 3: In all reachable configurations where all robots are at
distance at least 4 from any wall, no robot is isolated.
Proof of the claim: Assume by the contradiction that there is
an execution where the configuration at time 𝑡 satisfies the
following two conditions: (1) all robots are at distance at least
4 from any wall and (2) one robot, say 𝑟3, is isolated. Then,
the two other robots 𝑟1 and 𝑟2 are adjacent, otherwise we
obtain a contradiction Lemma A.1. Thus, in the next step, 𝑟1
and 𝑟2 are either idle, swap their positions, or move to be at
distance 3 from one another. In the first two cases, 𝑟3 either
stays idle or can alternate between two nodes (using the
appropriate transformations) without seeing the two other
robots, so there is an execution suffix where at most 4 nodes
are visited, a contradiction. In the third case, while 𝑟1 and 𝑟2
are moving away from each other, 𝑟3 either moves or is idle.
We assume that, if 𝑟3 moves between 𝑡 and 𝑡 + 1, then we
apply a transformation that makes it move away from 𝑟1 and
𝑟2 so that, in this case, it remains isolated at time 𝑡 + 1. So, at
time 𝑡 + 1, either each robot becomes isolated, or a robot, say
𝑟2, becomes adjacent to 𝑟3 at time 𝑡 + 1, but in this case 𝑟3
was necessarily idle in the step from 𝑡 to 𝑡 + 1. In the former
case, we obtain a contradiction by Lemma A.1 again since
no robot see a wall. In the latter case, 𝑟2 and 𝑟3 are adjacent
at time 𝑡 + 1 and are necessarily both at distance at least 3
from 𝑟1 (n.b., as 𝑟3 has stand idle, it was at distance 2 from

𝑟2 and so at distance at least 3 from 𝑟1 and by moving in this
opposite direction from 𝑟2, 𝑟1 has necessarily increased its
distance to 𝑟3 by one). So, 𝑟2 and 𝑟3 at time 𝑡 + 1 have exactly
the same view as 𝑟1 and 𝑟2 at time 𝑡 hence execute the same
rules and move at distance 3 from each other. Moreover, 𝑟1 is
necessarily idle at time 𝑡 + 1 since it is in the same situation
as 𝑟3 at time 𝑡 . So all the robots become isolated at time 𝑡 + 2
(recall that 𝑟1 and 𝑟2 are at distance 3 at time 𝑡 + 1). Overall,
it is possible to make all robots isolated within at most two
steps from time 𝑡 . Now, all robots were at distance at least 4
from any wall at time 𝑡 . So, in such a case, they still not see
any wall after the two steps and we obtain a contradiction
by Lemma A.1.

By Lemma 3.1 and Claim 1, we can assume, without loss of
generality, robots are initially in a configuration 𝐶0 where they are
all at distance at least 6 from any wall. By Lemma A.1, not all robots
are isolated in 𝐶0. Moreover, by Claim 2, there is a configuration
𝐶𝑖 reachable from 𝐶0 where (1) all robots are at distance at least 4
from any wall and (2) at least one of them is isolated, contradicting
then Claim 3.

□


	Abstract
	1 Introduction
	2 Model
	3 Impossibility Results
	4 Visibility range one: Vone23
	5 Visibility range two : Vtwo22 and Vtwo31
	5.1 Algorithm Vtwo22
	5.2 Algorithm Vtwo31

	6 Conclusion
	References
	A Omitted Proofs

