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Quentin Bramas1, Stéphane Devismes2, and Pascal Lafourcade3

1 University of Strasbourg, ICUBE, CNRS
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Abstract. We study the infinite grid exploration (IGE) problem by a swarm
of autonomous mobile robots. Those robots are opaque, have limited visibility
capabilities, and run using synchronous Look-Compute-Move cycles. They all
agree on a common chirality, but have no global compass. Finally, they may use
lights of different colors that can be seen by robots in their surroundings, but
except from that, robots have neither persistent memories, nor communication
mean. We show that using only three fixed colors, six robots, with a visibility
range restricted to one, are necessary and sufficient to solve the non-exclusive IGE
problem. We show that using modifiable colors with only five states, five such
robots, with a visibility range restricted to one, are necessary and sufficient to
solve the (exclusive) IGE problem. Assuming a visibility range of two, we also
provide an algorithm that solves the IGE problem using only seven identical robots
without any light.

1 Introduction

We deal with a swarm of mobile robots having low computation and communication
capabilities. The robots we consider are opaque (i.e., a robot is able to see another robot
if and only if no other robot lies in the line segment joining them) and run in synchronous
Look-Compute-Move cycles, where they can sense their surroundings within a limited
visibility range. All robots agree on a common chirality (i.e., when a robot is located
on an axis of symmetry in its surroundings, it is able to distinguish its two sides one
from another), but have no global compass (they agree neither on a North-South, nor a
East-West direction). However, they may use lights of different colors [17]. These lights
can be seen by robots in their surroundings. However, except from those lights, robots
have neither persistent memories nor communication capabilities.

We are interested in coordinating such weak robots, endowed with both typically
small visibility range (i.e., one or two) and few light colors (only a constant number
of them), to solve an infinite task in an infinite discrete environment. As an attempt to
tackle this general problem, we consider the exploration of an infinite grid, where nodes
represent locations that can be sensed by robots and edges represent the possibility for a
robot to move from one location to another. The exploration task requires each node to
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be visited within finite time by at least one robot. In the following, we refer to it as the
Infinite Grid Exploration (IGE) problem.

Contribution. We give both negative and positive results. We first show that if robots
have a common chirality but a bounded visibility range, the IGE problem is unsolv-
able with:

– two robots, even if those robots agree on common North (the proof of this result is
essentially an adaptation to our context of the impossibility proof given in [13]);

– three or four robots equipped with self-inconsistent compasses (i.e., the compasses
may change throughout the execution).

– five robots equipped with self-inconsistent compasses if the visibility range is
restricted to one, and the lights have fixed (i.e., non-modifiable) colors.

We then propose three algorithms, respectively called AFixed
1 , AModifiable

1 , and Anolight
2 ,

for solving the IGE problem using opaque robots equipped with self-inconsistent com-
pass, yet agreeing on a common chirality. In particular, AModifiable

1 and Anolight
2 addi-

tionally satisfy exclusiveness [2], which requires any two robots to never simultaneously
occupy the same position nor traverse the same edge. In more detail, Algorithm AFixed

1

solves the non-exclusive IGE problem using six robots with visibility range restricted to
one, and only three fixed (i.e., non-modifiable) colors. In this setting, the algorithm is op-
timal in terms of number of robots. In Algorithm AModifiable

1 , five robots use modifiable
colors with only five states, still with visibility range one. In this setting, the algorithm
is optimal in terms of number of robots; moreover it ensures exclusiveness. Algorithm
Anolight

2 requires seven identical robots without light (i.e., seven anonymous oblivious4

robots) and ensures exclusiveness, yet assuming visibility range two. In order to help the
reader, animations are available online [6], for each of the three algorithms.

Related Work. The model of robots with lights (also called luminous robots) has been
proposed by Peleg in [17]. In [8], the authors use robots with lights and compare the
computational power of such robots with respect to the three main execution models:
fully-synchronous, semi-synchronous, and asynchronous. Solutions for dedicated prob-
lems such as weak gathering or mutual visibility have been respectively investigated
in [15] and [16].

Mobile robot computing in infinite environments has been first studied in the con-
tinuous two-dimensional Euclidean space. In this context, studied problems are mostly
terminating tasks, such as pattern formation [11] and gathering [14], i.e., problems
where robots aim at eventually stopping in a particular configuration specified by their
relative positions. A notable exception is the flocking problem [18], i.e., the infinite task
consisting of forming a desired pattern with the robots and make them moving together
while maintaining that formation.

When considering a discrete environment, space is defined as a graph, where the
nodes represent the possible locations that a robot can take and the edges the possibility
for a robot to move from one location to another. In this setting, researchers have first
considered finite graphs and two variants of the exploration problem, respectively called
the terminating and perpetual exploration. The terminating exploration requires every
possible location to be eventually visited by at least one robot, with the additional

4 Oblivious means that robots cannot remember the past.
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constraint that all robots stop moving after task completion. In contrast, the perpetual
exploration requires each location to be visited infinitely often by all or a part of robots.
In [9], authors solve terminating exploration of any finite grid using few asynchronous
anonymous oblivious robots, yet assuming unbounded visibility range. The exclusive
perpetual exploration of a finite grid is considered in the same model in [3].

Various terminating problems have been investigated in infinite grids such as arbi-
trary pattern formation [4], mutual visibility [1], and gathering [10,12]. The possibly
closest related work to our paper is that of Emek et al. [13]. They consider the treasure
search problem in an unbounded-size grid which is closely related to the IGE problem;
see [7]. They consider robots that operate in two models: the semi-synchronous and
synchronous ones. However, they do not impose the exclusivity at all since their robots
can only sense the states of the robots located at the same node (in that sense, the visibil-
ity range is zero). The main difference with our settings is that they assume all robots
agree on a global compass, i.e., they all agree on the same directions North-South and
East-West; while we only assume here a common chirality. This difference makes the
problem somehow easier to solve, indeed they propose two algorithms that respectively
need three synchronous and four semi-synchronous robots, while in our settings we show
that at least five robots are necessary to solve the IGE problem (even in its non-exclusive
variant). Notice that they also exclude solutions for two robots.

In a followup paper [7], Brandt et al. extend the impossibility result of Emek et
al. Indeed, they show the impossibility of exploring an infinite grid with three semi-
synchronous deterministic robots that agree on a common coordinate system. Although
proven using similar techniques, this result is not correlated to ours. Indeed, the lower
bound of Brandt et al. holds for robots that are weaker in terms of synchrony assumption
(semi-synchrony vs. fully synchrony in our case), but stronger in terms of coordination
capabilities (common coordinate system vs. self-inconsistent compass with a common
chirality in our case). In other words, our impossibility results do not (even indirectly)
follow from those of Brandt et al. since in our model difficulties arise from the lack of
coordination capabilities and not the level asynchrony. As a matter of facts, based on
the results of Emek et al. [13], four (asynchronous) robots are actually necessary and
sufficient in their settings, while we show that it is five in our context.
Roadmap. In the next section, we define our computational model. In Section 3, we
present several lower bounds on the number of robots to solve the IGE problem. In
Section 4 and Section 5, we propose algorithms solving the IGE problem under visibility
range one and two, respectively. We conclude with some perspectives in Section 6.

Due to the lack of space, some technical results are omitted.

2 Model

We consider a set of n > 0 robots located on an infinite grid graph with vertex set
in Z × Z, i.e., there is an edge between two nodes (i, j) and (k, l) if and only if the
Manhattan distance between those two nodes, i.e., |i− k|+ |j − l|, is one. Notice that
coordinates are used for the analysis only, i.e., robots cannot access them.

We assume time is discrete and at each round, the robots synchronously perform a
Look-Compute-Move cycle. In the Look phase, a robot gets a snapshot of the subgraph
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induced by the nodes within distance Φ ∈ N∗ from its position. Φ is called the visibility
range of the robots. The snapshot is not oriented in any way as the robots do not agree
on a common North. However, it is implicitly ego-centered since the robot that performs
a Look phase is located at the center of the subgraph in the obtained snapshot. Then,
each robot computes a destination (either Up, Left, Down, Right or Idle) based only on
the snapshot it received. Finally, it moves towards its computed destination. We also
assume that robots are opaque and can obstruct the visibility so that if three robots are
aligned, the two extremities cannot see each other.

Robots may have lights with different colors that can be seen by robots within
distance Φ from them. Let Cl be the set of possible colors. Even when an algorithm
does not achieve exclusiveness, we forbid any two robots to occupy the same node
simultaneously. A node is occupied when a robot is located at this node, otherwise it is
empty. The state of a node is either the light color of the robot located at this node, if it
is occupied, or ⊥ otherwise. In the Look phase, the snapshot includes the state of the
nodes (at distance Φ). During the compute phase, and if colors are modifiable, a robot
may decide to change its color. Otherwise, colors are said to be fixed.

Configurations. A configuration C is a set of pairs (p, c) where p ∈ Z × Z is an
occupied node and c ∈ Cl is the light color of the robot located at p. A node p is empty
if and only if ∀c, (p, c) /∈ C. We sometimes just write the set of occupied nodes when
the colors are clear from the context. Also, for better readability, we sometimes partition
the configuration into several subsets C1, . . . , Ck and write C = {C1, . . . , Ck} instead
of writing (C = C1 ∪ . . . ∪ Ck) ∧ (∀i 6= j, Ci ∩ Cj = ∅).
Views. We denote by Gr the globally oriented view centered at the robot r, i.e., the
subset of the configuration containing the states of the nodes at distance at most Φ
from r, translated so that the coordinates of r is (0, 0). We use this globally oriented
view in our analysis to describe the movements of the robots: when we say “the robot
moves Up”, it is according to the globally oriented view. However, since robots do not
agree on a common North, they have no access to the globally oriented view. Instead,
when a robot looks at its surroundings, it obtains a snapshot. To model this, we assume
that, the local view acquired by a robot r in the Look phase is the result of an arbitrary
indistinguishable transformation onGr. The set IT of indistinguishable transformations
is closed by composition and depends on the assumptions we make on the robots. The
rotations of angle π/2, and consequently of angle π and 3π/2, centered at r are in IT if
and only if the robots do not agree on a common North direction. A mirroring is in IT
if and only if the robots do not agree on a common chirality (they cannot distinguish
between clockwise and counterclockwise). Moreover, in the obstructed visibility model,
the function that removes the state of a node u if there is another robot between u
and r is in IT and is systematically applied. For a robot r, if the same transformation
fr ∈ IT is used for every look phase of r, we say that r is self-consistent. Otherwise,
the adversary can choose a different transformation for each look phase, and r is said to
be self-inconsistent.

In the remaining of the paper, all our algorithms assume that all robots agree on
a common chirality, i.e., they can distinguish two mirrored views, but we make no
assumption on the self-consistency of the coordinate system. On the other hand, we give
impossibility results for stronger models when possible.
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When a robot r computes a destination d, it is relative to its local view f(Gr), which
is its globally oriented view Gr transformed by some f ∈ IT . It is important to see
that the actual movement of the robot in its globally oriented view Gr, and so in the
configuration, is f−1(d). Indeed, if d = Up but the robot sees the grid upside-down (f is
the π-rotation), then the robot moves Down = f−1(Up). In a configuration C, VC(i, j)
denotes the globally oriented view of a robot located at (i, j).

Algorithm. An algorithm A is a tuple (Cl , I, T ) where Cl is the set of possible colors,
I is the initial configuration, and T is the transition function V iews→ {Idle, Up, Left ,
Down , Right} × Cl , where V iews is the set of globally oriented views.

Recall that we assume in our algorithms that the robots are not self-consistent. In
this context, we say that an algorithm (Cl , I, T ) is well-defined if the global destination
computed by a robot does not depend on the transformation f chosen by the adversary,
i.e., for every globally oriented view V , and every transformation f ∈ IT , we have
T (V ) = f−1(T (f(V ))). This is usually a property obtained by construction of the
algorithm, as we describe the destination d for a given globally oriented view V and then
assume that the destination computed from local view f(V ) is f(d), for any f ∈ IT . We
can extend the transition function T to the entire configuration. When the robots are in
configuration C, the configuration obtained after one round of execution is denoted T (C)
and contains the pair ((i, j), c) if and only if ∃c′ ∈ Cl for which one of the following
conditions holds

– ((i, j), c′) ∈ C and T (VC(i, j)) = (Idle, c),
– ((i− 1, j), c′) ∈ C and T (VC(i− 1, j)) = (Right, c),
– ((i+ 1, j), c′) ∈ C and T (VC(i+ 1, j)) = (Left, c),
– ((i, j − 1), c′) ∈ C and T (VC(i, j − 1)) = (Up, c),
– ((i, j + 1), c′) ∈ C and T (VC(i, j + 1)) = (Down, c).

The execution of algorithmA is the sequence (Ci)i∈N of configurations such thatC0 = I
and ∀i ≥ 0, Ci+1 = T (Ci). We sometimes write A(C) instead of T (C).

Infinite Grid Exploration. An algorithm A solves the infinite grid exploration (IGE)
problem if in the execution (Ci)i∈N of A and for every node (i, j) ∈ Z× Z of the grid,
there exists t ∈ N such that (i, j) is occupied in Ct.

Notations. t(i,j)(C) denotes the translation of the configuration C of vector (i, j).

3 Impossibility Results

The lemma below states the intuitive, yet non trivial, idea that, to explore an infinite grid,
the maximum distance between the two farthest robots should tend to infinity. This claim
is the cornerstone of our impossibility results.

Lemma 1. Let (Ci)i∈N be an execution of an algorithm A. Let di be the distance
between the two farthest robots inCi. IfA solves the IGE problem, then lim

i→+∞
di = +∞.

Proof. We proceed by the contradiction. So we suppose there exists a bound B > 0
such that there are infinitely many configurations in the execution where the distance
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between every pair of robots is less than B. In other words, there is a subsequence of
(Ci)i∈N where the distance between every pair of robots is less than B. Let (bi)i∈N be
the sequence of indices of this subsequence, i.e., (bi)i∈N is a strictly increasing sequence
of integers such that dbi < B.

When all robots are at distance less than B, then the occupied positions are included
in a square sub-grid of size B × B. Since the number of possible configurations in-
cluded in a sub-grid of size B ×B is finite, there must be two indices k and l such that
Cbl = t(Cbk) and k < l for a given translation t. The movements done by the robots in
configurations Cbk and Cbl are the same because each robot has the same globally ori-
ented view in both configurations, only their positions change. Thus Cbl+1 = t(Cbk+1)
and so on so forth, so that ∀i, Cbl+i = t(Cbk+i). We obtain that the configurations are
periodic (with period P = bl − bk) and a node u is visited if and only if it is visited
before round bl or if there exists a node v visited between round bk and bl such that
u = tq(v) with q > 0. So, we claim that there exists a node that is never visited.

To prove this claim, we now exhibit such a node. Let I be the set of integers i such
that (t−1)i(0, 0) is visited before round bl applied i times. I is finite because the number
of nodes visited before bl is finite. Letm be the maximum integer in I (or 0 if I is empty).
Let u = (t−1)m+1(0, 0). Then, clearly u is not visited before round bl, otherwise we
have a contradiction with the maximality of m. Moreover, u cannot be visited after
round bl, otherwise u would be equals to tq(v) for a given integer q and a given node v,
visited between round bk and bl, i.e., v = (t−1)q(u) = (t−1)q+m+1(0, 0), which also
contradicts the maximality of m. Thus u is never visited. �

Theorem 1. No algorithm can solve the IGE problems using two robots, even if robots
agree on common North and chirality.

Proof. By Lemma 1, there is a configuration from which the two robots will no more see
each other (their distance will remain greater than an arbitrary bound B ≥ Φ). For each
robot, its next move will only depend on its color. Since the number of color is finite, the
movements of each robot are then periodic. So, from that point, each robot r moves by
periodically performing the same translation tr, and thus some nodes are never visited.
�

Lemma 2. Assume the robots are equipped with self-inconsistent compasses, yet agree
on a common chirality. Whenever a robot does not see any other one, it either stays idle
or the adversary can make it alternatively move between two chosen adjacent nodes.

Proof. If such a robot does not stay idle, it moves toward a direction d ∈ {Up,Down,
Left, Right} but since its orientation is not self-consistent, the adversary can choose,
for each activation, a transformation f ∈ IT such that the destination f−1(d) in the
globally oriented view alternate between two chosen directions (e.g., Up and Down). �

Theorem 2. It is impossible to solve the IGE problem using three robots equipped with
self-inconsistent compasses that agree on a common chirality.

Proof. By Lemma 1, there is a configuration where two robots are always at distance at
least B (say B > 2 · Φ+ 2), so that it is impossible for any robot to see the all others
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in the same snapshot. Now, since there are three robots, at least one robot r does not
see any other robot. By Lemma 2, if r stays alone, then it remains idle or the adversary
can make it alternatively move between two nodes infinitely often. Moreover, the two
other robots cannot explore the grid alone, by Theorem 1. Now, they cannot both move
towards r because in such a case the distance between the farthest robots would become
less than B, a contradiction. Finally, if one of the two other robots moves towards r,
at some point all robots are out of the visibility range of each other. In that case, the
adversary can make the exploration fail, by Lemma 2. �

Due to the lack of space, the proofs of the next two theorems are only sketched.

Theorem 3. It is impossible to solve the IGE problem using four robots equipped with
self-inconsistent compasses that agree on a common chirality.

Proof Outline. Assume, by contradiction, that an algorithm A solves the IGE problem
using four robots equipped with self-inconsistent compasses that agree on a common
chirality. Then, using Lemma 1, we consider a round where the two farthest robots, called
here extremities, are always at distance B � Φ. Since we know three robots are not
enough, no robot stays alone forever. Therefore, infinitely often, there is a moving group
of two robots traveling from one extremity to the other. Moreover, whenever traveling
an arbitrary long distance, a group of robots necessarily uses periodic movements. We
can then show that these periodic movements induce that after some time, the moving
group travels infinitely often between two extremities by periodically performing the
same translation. This latter claim implies that, after some time, the movements of the
robots depend only on configurations of bounded size, which in turn implies that the
movements of the two extremities are periodic. Since extremities eventually perform
periodic movements, they each one move inside a strip of bounded width that grows
in only one direction. Hence, whether they move along collinear vectors or not, the
algorithm misses nodes forever in the exploration process. �

Theorem 4. It is impossible to solve the IGE problem using five robots with self-
inconsistent compasses, a common chirality, fixed colors, and visibility range one.

Proof Outline. One can observe that the main argument of Theorem 3 works with more
than one robot at an extremity as soon as they stay idle or move a finite distance when they
are not in the range of the other robots, because that makes their movements independent
from their distance to the other extremities, and hence makes their movements periodic.

Since there are five robots, there cannot be more than two robots left by the moving
group at an extremity, and if there are two robots at an extremity, they cannot move
forever because that would mean those two robots never meet the other robots afterwards
(all robots move at the same speed). So, in the settings of this theorem, the movements
of the extremities are periodic.

We can also deduce that the path taken by a moving group of robots, to travel
between extremities, is either a vertical line or an horizontal line. In this case, whether
the extremities move along collinear vectors or not, the algorithm misses nodes forever
in the exploration process. �
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4 Infinite Grid Exploration with Φ = 1

In this section, we present two algorithms assuming visibility range one. The former, Al-
gorithmAFixed

1 , uses six robots with three fixed colors. The latter, AlgorithmAModifiable
1 ,

uses five robots with five modifiable colors and additionally achieves exclusiveness.
Recall that animations of these two algorithms are available in our complementary mate-
rial [6]. The fact that the rules of these algorithms are well-defined has been checked
by the script that generated those animations. This has been done by making sure that
(1) the view of any rule cannot be transformed into the view of another rule using a
combination of π2 -rotations, and (2) for each rule, the global destination does not depend
on the applied local indistinguishable transformation.

4.1 An algorithm using six robots and three fixed colors

Algorithm Overview. First, our robots are divided into two categories: the beacon
robots — four robots with colorB — and the moving group — two robots with respective
color L and F . The beacons are used to delimit the area which is already explored. The
moving group aims at reaching the beacons one by one. Each time a beacon is reached by
the moving group, it moves once in the diagonal (two hops) to take the newly explored
nodes into account. The moving group then continues toward the next beacon, and so on.
Each time the moving group comes back to the first beacon, a so-called phase terminates:
the border of the area initially delimited by the four beacons is now fully visited, and
the area newly delimited by the beacons is bigger; see Fig. 2 to visualize the increasing
area that is explored by the moving group (rL is a particular robot of the moving group,
whose role will be explained later).

The moving group successfully performs a phase independently of the distance
between the beacons, so that infinitely many growing phases are achieved in sequence.
The IGE is then solved as any node of the grid is eventually included in the area delimited
by the beacons. Note that we use the same technique for the two other algorithms, yet
using areas of different shapes.

smallest enclosing rectangle

B

B

F L B

B

Fig. 1: Initial configuration
of Algorithm AFixed

1 .

Nodes visited by rL
in Phase 1

Nodes visited by rL
in Phase 2

Nodes visited by rL
in Phase 3

Nodes visited by rL
in Phase 4

B

B

F L B

B

Fig. 2: Visited area after four phases for Afixed
1 .

Definition of Algorithm AFixed
1 . We use the set of colors Cl = {L,F,B} to partially

distinguish robots. The moving group is composed of two robots: one with light color L
called the leader, and the other with light color F called the follower. The four remaining
robots, i.e., the beacons, have light color B. The initial configuration I of AFixed

1 is
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defined as follows: I = {((−1, 0), F ), ((0, 0), L), ((0,−1), B), ((2, 0), B), ((1, 2), B),
((−2, 1), B)}; see Fig. 1.

Recall that AFixed
1 executes in phases. At the beginning of each phase, we consider

the smallest enclosing rectangle, denoted by SER, that encloses the four beacon robots,
e.g., in Fig. 1, the SER of the initial configuration I is drawn with solid lines. During a
phase, the follower robot rF explores the borders of the SER, while the leader robot rL
visits the borders of the largest rectangle strictly inside the SER. First, the moving group
{rL, rF } moves straight until the leader robot becomes a neighbor of a beacon robot.
Then, the positions of three robots are adjusted so that (1) the moving group {rL, rF }
makes a turn, and (2) the beacon robot moves diagonally (two hops) in order to expand
the SER. (Notice the execution starts by an adjustment.) Overall, at the end of Phase i
(and so at the beginning of Phase i+ 1), both the length and width of SER increases by
two.

The rules of AFixed
1 are defined in Figs. 4, 5, and 6. Some rules aim at moving the

group of robots {rL, rF } straight and the others are used to manage an adjustment. In
the following, we detail how {rL, rF } moves straight toward a beacon robot, does a left
turn, and how the reached beacon robot moves diagonally. Recall that the rules below
also describe the algorithm behavior on equivalent, rotated, local views.

Using Rules of Fig. 6, if we apply AFixed
1 to {((i, j), L), ((i+ 1, j), F )}, we obtain

{((i, j+1), L), ((i+1, j+1), F )}, i.e., the two robots go through the translation t(0,1).
So, the group {rL, rF } moves on a straight line when isolated. If we rotate the two
robots with angle π/2, π, or 3π/2, then the moving group will move to the left, down,
or right, respectively. In fact, the direction of the translation actually depends on the
relative positions of rL and rF .

B

L F

(a) RstrF is executed.

B F

L

(b) RtrnB1 and RtrnF1

are executed.

F B

L

(c) RstrL, RtrnB2 , and
RtrnF2 are executed.

B

F

L

(d) RstrL and RstrF

are executed.

Fig. 3: Robots performing a turn.

Before giving the rules for the adjustments and in order to clearly explain how our
algorithm works, we show in Fig. 3 the global configurations that occur when the moving
group reaches the upper right beacon robot. In the first round, the follower (only) moves
straight, as previously, to become neighbor of the beacon. In the second round, the
beacon and the follower swap their positions, while the leader stays idle. In the third
round, the beacon moves up to finalize its diagonal motion, while the moving group
{rL, rF } starts to move again in a straight line toward the left.
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B F

L

B F

Fig. 4:RtrnB1 andRtrnF1 .

F B

L

F B

Fig. 5:RtrnB2 andRtrnF2 .

L F

L F

Fig. 6:RstrL andRstrF .

In more details, for the first round, there is no rule when rL sees a beacon robot,
thus, when it happens rL stays idle and rF continues to move up one more time. For
the second round, according to the rules of Fig. 4, when rF only sees the beacon
robot, it moves towards it, and when the beacon sees both rF and rL, it moves toward
rF , so that they swap their positions, while rL stays idle. Finally, the beacon robot
makes a last move up, and the moving group moves away from the beacon, according
to the two rules of Fig. 5 and the rule of Fig. 6 that makes the leader move straight.
With those rules, and with M = {((i, j), L), ((i + 1, j), F )}, X = {((i, j + 1), B)},
we can see that by applying AFixed

1 three times starting from {M,X} we obtain
{((i−1, j), L), ((i−1, j+1), F ), ((i+1, j+2), B)}, i.e., {ρ(M), t(1,1)(X)}, where
ρ is the rotation centered at (i− 0.5, j − 0.5) of angle π/2.

B

B

L B

F

B

ρ

Fig. 7: Configuration after
three rounds from C0.

Theorem 5. Algorithm AFixed
1 solves the IGE prob-

lem using six robots and fixed colors having common
chirality and a visibility range of one.

Proof. We denote by I = C0 = {M0, C0
0 , C

0
1 , C

0
2 , C

0
3}

the initial configuration given in Fig. 1, where M0 =
{((−1, 0), F ), ((0, 0), L)}, C0

0 = {((0,−1), B)},
C0

1 = {((2, 0), B)}, C0
2 = {((1, 2), B)}, and

C0
3 = {((−2, 1), B)}. We define the configuration

Ci = {M i, Ci0, C
i
1, C

i
2, C

i
3} in Phase i, where M i =

t(−i,−i)(M
0), Ci0 = t(−i,−i)(C

0
0 ), C

i
1 = t(i,−i)(C

0
1 ),

Ci2 = t(i,i)(C
0
2 ), and Ci3 = t(−i,i)(C

0
3 ). We now prove

that starting with a configuration Ci, the configuration
Ci+1 is eventually reached. Since the initial configuration of our algorithm is C0, this
implies that every configuration Ci, for every i ≥ 0, is gradually reached. By doing so,
the leader robot visits all edges of growing rectangles. Consider the first configuration
Ci of Phase i. In Ci, the distance between rL and the beacon robot on its right is 2i+ 2.
Indeed, starting from Ci, the robot rL starts from (−i,−i) and that beacon robot starts
from (i+ 2,−i).
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By executing the algorithm, we remark (see Fig. 7) that after three rounds (1)
the configuration is {ρ(M i), Ci+1

0 , Ci1, C
i
2, C

i
3} (where ρ is the rotation with center

(0.5, 0.5) of angle π/2) and (2) rL is at distance 2i+ 1 from the bottom down beacon.
From that point, the moving group {rL, rF } starts moving one node to the right at each
round (due to the first two rules) until robot rL sees a beacon robot r in Ci1; this event
occurs at round 3 + 2i, i.e., three plus the number of empty nodes between rL and r.
After three more rounds, the moving group performs a left turn again and bottom right
beacon robot is translated by a vector (1,−1).

Thus, at round 3+2i+3, the configuration is {t(2i,0)(ρ2(M i)), Ci+1
0 , Ci+1

1 , Ci2, C
i
3}.

After 2i+ 3 more rounds, the moving group reaches the top right beacon robot, and per-
forms another left turn. So, at round 3+2(2i+3) the configuration is {t(2i,2i)(ρ3(M i)),

Ci+1
0 , Ci+1

1 , Ci+1
2 , Ci3}. Similarly, at round 3 + 3(2i + 3) + 1 the configuration is

{t(−1,2i)(ρ4(M i)), Ci+1
0 , Ci+1

1 , Ci+1
2 , Ci+1

3 }. We observe that the moving group
{rL, rF } required one extra round (as compared to other beacon robots) to reach the
beacon robot in Ci3.

Then, after 2i+1 more rounds, the group of robots {rL, rF }moves 2i+1 nodes down
to reach the bottom left beacon robot again, so that, at round (3+3(2i+3)+1)+2i+1,
the configuration is {t(−1,−1)(ρ4(M i)), Ci+1

0 , Ci+1
1 , Ci+1

2 , Ci3} = Ci+1.
Recursively, if the robots start from configuration C0, they reach configuration Ci in

finite time, for any i ≥ 0. Also, the nodes Vi visited by rL between Phase i and i + 1
contains the edges of the rectangle{
t(−i,−i)(−1, 0), t(i,−i)(1, 0), t(i,i)(1, 1), t(−i,i)(−1, 1)

}
; see Fig. 2. Since

⋃
i≥0 Vi =

Z× Z, our algorithm solves the infinite grid exploration problem. �

4.2 An algorithm using five robots and five modifiable colors

Algorithm AModifiable
1 we present now solves the exclusive IGE problem using a mini-

mum number of robots. As compared to the previous algorithm, to use one less robot, the
moving group of two robots moves along a triangle, delimited by three beacon robots, in-
stead of a rectangle. Except the shape of the growing polygonal, the principles are similar
to the previous algorithm. Notice that we require modifiable colors to allow the moving
group to follow a diagonal and to make adjustments without violating exclusiveness.

R

G

B

Y

Y

Fig. 8: Initial configuration I
of AModifiable

1 .

B

Y P B P
Y

B

Y P

Fig. 9: Sequence of moves for a diagonal motion.

The set of colors is Cl = {R, Y,G,B, P}. Notice that, to reduce the number of
used colors, the meaning of each color changes according to the stage of the exploration,
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B

Y Y
P

B P

Y
Y

P

B

Y

P

G

Y

G B

Y

Fig. 10: Sequence of moves for a turn at the bottom beacon robot. A letter is written near
each arrow to define the new color of the moving robot in case of change.

i.e., along the exploration they are used for different purposes. The initial configuration
I is given in Fig. 8. The three beacon robots at the corners of the growing triangle
respectively hold light colors Y , G, and R. The principle of the algorithm is as follows:
starting from the initial configuration I and using the diagonal movements described in
Fig. 9, the moving group, composed of the two robots initially with lights colored B and
Y , goes to the bottom beacon robot Y . During a diagonal move, the color of the light of
the robot in the moving group initially colored Y alternates at each move between Y and
P , while the light of the robot initially colored B has a fixed color. Robots in the group
alternatively move horizontally and vertically (when one moves horizontally, the other
moves vertically) according to the colors of the group, either {B, Y } or {B,P}. After
the turn at the bottom beacon robot, described in Fig. 10, the lights of the moving group
are now colored G and B and the group moves with fixed colors similarly to the previous
algorithm, until reaching the third beacon robot. Precisely, they move up towards the top
right beacon robot, turns left, and then moves straight to the left towards the third beacon
robot, following rules that are identical to the previous algorithm, except that at some
point two robots swap their color (and so their role) instead of swapping positions so
that the algorithm remains exclusive; precisely a member of the moving group becomes
a beacon and conversely. Upon reaching the third beacon robot, the robots perform a
turn following the sequence described in Fig. 11. After the turn at the top left beacon
robot, the lights of the moving group have again colors B and Y and again moves in
diagonal. All rules are given in Fig. 12.

B

G GY

B

G YP G P B
Y

G

B

Y P

Fig. 11: Sequence of moves of a left turn at the top left beacon robot.
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Rules for the diagonal move (the fourth rule is also used during the first and the last turns):

B

Y
P

B P
Y

B P B

Y

For the first turn:

B

Y Y
P

Y Y B P

Y
Y

P

Y
P

Y

P
Y

B

Y

P

G

G Y

The rules below allow two robots to move in straight line toward a beacon, turn left, and then move
in straight line towards the next beacon. Actually, they are identical to the previous algorithm,
except that the two robots swap their colors instead of swapping their positions.

G B G B R B

R

R B

G

B

B R B R

G

Rules for the last turn:

B

G G
Y

G G

B

G Y
P

G P G P B
Y

Fig. 12: Rules for Algorithm AModifiable
1 .
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Nodes visited during Phase 1

Nodes visited during Phase 2

Nodes visited during Phase 3

R

G

B

Y

Y

Fig. 13: Visited triangles after three phases for AModifiable
1 .

Due to the lack of space, the proof of the next theorem (which follows the same
sketch as the one of Theorem 5) has been omitted.

Theorem 6. Algorithm AModifiable
1 solves the exclusive IGE problem using five robots,

five modifiable colors, and a visibility range of one.

5 Infinite Grid Exploration with Φ = 2 and no light

In this section, we describe Algorithm Anolight
2 which solves the exclusive IGE problem

assuming visibility range two, yet using no light (or equivalently, using lights with
the same fixed color for all robots), i.e., using anonymous oblivious robots. Recall
that an animation of this algorithm is available in our complementary material [6]. As
previously, the fact that the rules of this algorithm are well-defined and unambiguous
has been checked by the script that generated those animations.

First, one can observe that since the visibility range is two, the obstructed visibility
can impact the local view of a robot because a robot at distance one can hide a robot
behind it at distance two. So, the rules of Anolight

2 should not depend on the states of the
nodes that are hidden by a robot. To make it clear, those nodes will be crossed out in the
illustrations of our rules, in Figures 15, 16, and 17.

The principle of our algorithm is similar to the first two ones. We still proceed by
phases. In Phase i (i ≥ 1), a moving group, this time of three robots, traverses the edges
of a square of length 2i (see Fig. 14). The three moving robots are always placed in such
a way that exactly one of them, the leader, has one robot of the group on its horizontal
axis and the other on its vertical axis. Again, the two non-leader robots of the group are
called the followers. Notice however that the leadership changes during a phase. Finally,
as previously, the non-members of the moving group are called the beacon robots.

The overall idea is that the moving group moves straight according to the relative
positions of its members until a follower detects a beacon at distance two. Then, an
adjustment is performed in two rounds to push away the beacon and to make the moving
group turn left.
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Square of Phase 1

Square of Phase 2

Square of Phase 3

Square of Phase 4

R

R

R R

R

R

R

Fig. 14: Initial configuration I of Anolight
2 and visited squares after four phases.

R R

R

R R

R R R

R

Fig. 15: Moving on a straight line for Anolight
2 .

R

R

R

R R

R

Fig. 16: First round.

R

R

R

R R

Fig. 17: Second round.

The initial configuration is presented in Fig. 14 and the rules are given in Figs. 15, 16,
and 17. During Phase i (i ≥ 1), the visited square is actually the one of length 2i whose
center is the initial position of the bottom follower; see Fig. 14. For the movements
along a straight line, the moving group forms a right angle. Each of the three moving
robots sees the others, can determine its position in the group, and so knows the current
direction to follow. Then, when the moving group is close enough from a beacon robot
(see the first configuration in Fig. 18), an adjustment is done in two rounds. In the



16 Bramas et al.

R

R R

R

R

R

R R

R

R

R R

Fig. 18: Sequence moves for a left turn.

first round, a beacon robot sees a follower in diagonal and moves up. Simultaneously,
that follower moves towards the node on the right of that beacon robot. The two other
members of the moving group move straight, as previously. In the second round, the
beacon robot moves away, on the left of the aforementioned follower it sees at distance
two (i.e., on the right from a global point of view described in Fig. 18). Simultaneously,
that follower, which sees the beacon robot at distance two, catches up with the other
robots of the moving group that are on its left and stay idle. Then, the moving group
moves again along a straight line, and so on.

Due to the lack of space, the proof of the next theorem has been omitted. Again it
follows the same sketch of the proof of Theorem 5.

Theorem 7. Algorithm Anolight
2 solves the exclusive IGE problem using seven robots

without lights and a visibility range of two.

6 Conclusion and Perspectives

We have considered the problem of exploring an infinite discrete environment, namely an
infinite grid-shaped graph, using a small number of mobile synchronous robots with low
computation and communication capabilities. In particular, our robots are opaque and
only agree on a common chirality. We have shown that using few fixed colors (actually
three), six robots, with a visibility range restricted to one, are necessary and sufficient
to solve the non-exclusive IGE problem. We have also shown that using modifiable
colors with few states (actually five), five such robots, with a visibility range restricted
to one, are necessary and sufficient to solve the (exclusive) Infinite Grid Exploration
(IGE) problem. We also provide an algorithm that the exclusive IGE problem using
seven oblivious anonymous robots, yet assuming visibility range two.

A direct perspective of this work is to study the optimality, in terms of number of
robots, when we consider the case of anonymous oblivious robots (i.e., robots without
any light). Another line of research would be to study the impact of removing the chirality
assumption. As a long-term perspective, we envision to study the IGE problem in fully
asynchronous settings.
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18. Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of
autonomous mobile robots. Journal of Systems and Software 84(1), 29–36 (2011)

https://doi.org/10.5281/zenodo.2625730

	Infinite Grid Exploration by Disoriented Robots 

