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Matthieu Giraud1, and Pascal Lafourcade1
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Abstract. Delegating the computation of a polynomial to a server in a
verifiable way is challenging. An even more challenging problem is ensur-
ing that this polynomial remains hidden to clients who are able to query
such a server. In this paper, we formally define the notion of Private Poly-
nomial Evaluation (PPE). Our main contribution is to design a rigorous
security model along with relations between the different security prop-
erties. We define polynomial protection (PP), proof unforgeability (UNF),
and indistinguishability against chosen function attack (IND-CFA), which
formalizes the resistance of a PPE against attackers trying to guess which
polynomial is used among two polynomials of their choice. As a second
contribution, we give a cryptanalysis of two PPE schemes of the liter-
ature. Finally, we design a PPE scheme called PIPE and we prove that
it is PP-, UNF- and IND-CFA-secure under the decisional Diffie-Hellman
assumption in the random oracle model.

1 Introduction

Mathematical models are powerful tools that are used to make predictions about
a system’s behaviour. The idea is to collect a large set of data for a period of
time and use it to build a function predicting the evolution of the system in the
future. This topic has many applications, for instance, meteorology or economics.
It can be used to predict the weather or the behaviour of stock exchange.

Consider a company that collects and stores a very large set of data, for
example about the state of the soil, such as humidity, acidity, temperature and
mineral content. Using it, it computes some function that predicts the state of the
soil for next years. The clients are farmers who want to anticipate the state of the
soil during the sowing periods to determine how much seeds to buy and when
to plant them. The company gives its client access to the prediction function
through a cloud server. A paying client can then interact with the server to
evaluate the function on his own data. For economic reasons, the company does
not want the clients to be able to recover the prediction function. Moreover, the
clients do not trust the server: it might be corrupted to produce incorrect results.
Hence, the server should provide a proof that its output is correct with regards
to the secret prediction function. A similar scenario was studied in [GFLL15],
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where a server receives medical data collected by sensors worn by the users, and
provides the users with an evaluation of their health status. More precisely, the
company defines a polynomial f which returns meaningful information, such as
potential diseases. Then, it uploads this polynomial to the server, and sells to
the end users the ability to query that function with their own medical data.

The underlying problem is how to delegate computations on a secret poly-
nomial function to a server in a verifiable way. By secret we mean that no user
should be able to retrieve the polynomial used by the server. By verifiable we
mean that the server must be able to prove the correctness of its computation. To
solve this problem, we propose the Private Polynomial Evaluation (PPE) prim-
itive, which ensures that: (i) the polynomial f is protected as much as possible,
and (ii) the user is able to verify the result given by the server.

Figure 1 illustrates a PPE scheme where x is the user data and f(x) is the
evaluation of the data by the function f of the company. Moreover, the proof
π sent by the server and the verification key vk sent by the company allow the
user to verify the correctness of the delegated computation.
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Server

Company

x
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Fig. 1: Illustration of a PPE scheme.

Consider a company using a PPE
scheme for prediction functions. An at-
tacker wants to guess which prediction
function is used by the company. Assume
this attacker gains access to some of the
data used to build the prediction function,
for instance by corrupting a technician.
Thus, the attacker can build several pre-
diction functions by using different math-
ematical models and the collected data,
and try to distinguish which of these func-
tions is used by the company. Intuitively,
in a secure PPE scheme, this task should
be as hard as if the server only returned
f(x), and no additionnal information for
verification. We formalise this notion and design a PPE scheme having this se-
curity property.

Contributions:

– We give a cryptanalysis of two PPE schemes, the first one presented by Guo
et al. [GFLL15] and the second one presented by Gajera et al. [GND16]. Our
attack allows an adversary to recover the secret polynomial in a single query.

– Our main contribution is to provide a formal definition and security frame-
work for PPE schemes. We define two one-way notions, Weak Polynomial
Protection (WPP) and Polynomial Protection (PP), stating that a user lim-
ited to k queries cannot recover the polynomial, where k is the degree of
the polynomial. Additionally, we define IND-CFA which formalises the idea
that no adversary can guess which of two polynomials of his choice is used.
In essence, the proof of a correct computation should not reveal any infor-
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mation about the polynomial. We finally study the relations between these
notions.

– We design PIPE (for Private IND-CFA Polynomial Evaluation), an efficient
IND-CFA-secure PPE scheme. This scheme combines the Verifiable Secret
Sharing introduced by Feldman [Fel87] and the ElGamal encryption scheme
in order to achieve verifiability and IND-CFA security. We also formally prove
its security under the DDH assumption in the random oracle model.

Related works: Verifiable Computation (VC) refers to the cryptographic primi-
tives where an untrusted server can prove the correctness of its output. It was
introduced in [GGP10]. The aim of a such primitive is to allow a client with lim-
ited computational power to delegate difficult computations. Primitives where
everyone can check the correctness of the computation are said to be publicly ver-
ifiable [PRV12]. This subject has led to a dense literature [PST13,CRR12,FG12]
[CKKC13,PHGR13]. In 2012, Canetti et al. [CRR12] proposed formal security
models for VC. Fiore and Gennaro [FG12] propose a scheme for polynomial eval-
uations and matrix computations. Unlike our paper, these works consider that
the polynomial used by the server is public.

To the best of our knowledge, four papers study how to hide the function
used by the server [GFLL15,GND16,KZG10,NP99]. Kate et al. define a primitive
called commitment to polynomials (CTP) [KZG10]. In this primitive, a user
commits to a hidden polynomial f and reveals some points (x, y) together with
a proof that f(x) = y. The user can open the commitment a posteriori to reveal
the polynomial. CTP is close to PPE: the verification key in a PPE scheme
can be viewed as a commitment in a CTP scheme, the main difference is that
this verification key is computed by a trusted party (the company) and the
points are evaluated by an untrusted party (the server). The authors formalise
the hardness of guessing the polynomial knowing less than k points. In this
model, the polynomial is randomly chosen, then they does not consider the case
where the adversary tries to distinguish the committed polynomial between two
chosen polynomials as in our IND-CFA model. Moreover, Kate et al. design two
CTP schemes in [KZG10]. The first one is not IND-CFA since the commitment
algorithm is deterministic. We prove that the second scheme is IND-CFA-secure
in the extended version [BDG+17]. Moreover, we show that our scheme PIPE
can be used as a CTP scheme, and we compare it to the scheme of Kate et
al.. We show that our scheme solves an open problem described by Kate et al.:
designing a scheme that is secure under a weaker assumption than t-SDDH.

Independently of Kate et al. [KZG10], Guo et al. [GFLL15] propose a scheme
with similar security properties to delegate the computation of a secret health
related function on the users’ health record. The polynomials are explicitly as-
sumed to have low coefficients and degree, which greatly reduces their random-
ness. However, the authors give neither security models nor proof. Later, Gajera
et al. [GND16] show that any user can guess the polynomial using the Lagrange’s
interpolation on several points. They propose a scheme where the degree k is
hidden and claim that it does not suffer from this kind of attack. We show that
hiding the degree k is useless and that no scheme can be secure when user query
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more than k points to the server. Moreover, we give a cryptanalysis on these
both schemes which requires only one query to the server. To the best of our
knowledge, we present the first security model for Indistinguishability Against
Chosen Function Attack (IND-CFA).

Finally, there has been lots of work done on a similar but slightly differ-
ent topic, Oblivious Polynomial Evaluation (OPE), introduced by Naor and
Pinkas [NP99]. In OPE, there are two parties. One party A holds a polynomial
f and another party B holds an element x. The aim of OPE is that the party
B receives f(x) in such a way that A learns nothing about x and B learns
nothing about f , except f(x). Researchers have studied OPE extensively and
shown that it can be used to solve various cryptographic problems, such as set
membership, oblivious keyword search, data entanglement, set-intersection and
more [FIPR05,FNP04,LP02]. Despite the similarities between OPE and PPE,
they are different in nature. In particular, OPE does not consider the verifia-
bility of f(x), whereas it is a crucial point in PPE. Additionally, in a PPE, the
requirement that the server does not learn anything about x is relaxed. In our
scheme, the major contribution to computational cost is due to computation
of the proof on server side and verification of computation on user side. Since
OPE doesn’t consider verifying computation, we feel that it would not be fair
to compare the performances.

Outline: In the next section we recall the cryptographic notions used in this pa-
per. In Section 3, we show how to break schemes proposed by Guo et al. [GFLL15]
and by Gajera et al. [GND16]. In Section 4, we propose security models for PPE
schemes. Finally, in Section 5, we present our PPE scheme PIPE and we prove
that it is IND-CFA-secure before concluding.

2 Cryptographic Tools

We start by recalling the basic cryptographic assumptions used in this paper.
In the following, we denote by poly(λ) the set of probabilistic polynomial time
algorithms with respect to the security parameter λ.

Definition 1 (Discrete Logarithm assumption [DH76]). Let p be a prime
number generated according to a security parameter λ ∈ N. Let G be a multi-
plicative group of order p, and g ∈ G be a generator. The discrete logarithm
assumption (DL) in (G, p, g) states that there exists a negligible function ε such

that for all x
$← Z∗p and A ∈ poly(λ): Pr [x′ ← A(gx) : x = x′] ≤ ε(λ)

Definition 2 (Decisional Diffie-Hellman assumption [Bon98]). Let p be
a prime number generated according to a security parameter λ ∈ N. Let G be
a multiplicative group of order p, and g ∈ G be a generator. The Decisional
Diffie-Hellman assumption (DDH) in (G, p, g) states that there exists a negligible
function ε such that for all (x, y, z)← (Z∗p)3 and A ∈ poly(λ):

|Pr [b← A(gx, gy, gz) : b = 1]− Pr [b← A(gx, gy, gx·y) : b = 1]| ≤ ε(λ)
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In the following, we recall definition and security requirements of public key
cryptosystems.

Definition 3 (Public Key Encryption). A Public Key Encryption (PKE)
scheme is defined by three algorithms (Gen,Enc,Dec) as follows:

Gen(λ): It returns a public/private key pair (pk, sk).
Encpk(m): It returns the ciphertext c of the message m.
Decsk(c): It returns the plaintext m from the ciphertext c.

ExpIND-CPA
Π,A (λ):

b
$← {0, 1}

(pk, sk)← Gen(λ);
b′ ← AEncpk(LRb(·,·))(λ, pk)
return (b = b′)

Fig. 2: IND-CPA experi-
ment [BBM00].

A PKE scheme Π = (Gen,Enc, Dec)
is indistinguishable under chosen-plaintext
attack (IND-CPA) if for any probabilistic
polynomial-time (PPT) adversary A, the dif-
ference between 1

2 and the probability that
A wins the IND-CPA experiment presented
in Figure 2 is negligible in λ. The oracle
Encpk(LRb(·, ·)) takes (m0,m1) as input and
returns Encpk(mb). The standard definition of
CPA experiment allows the adversary to call
this oracle only one time. However, Bellare
et al. [BBM00] prove that the two definitions
of CPA security are equivalent using a hybrid
argument. For instance, the ElGamal encryption is IND-CPA.

Definition 4 (ElGamal Encryption [ElG85]). The ElGamal PKE scheme
is defined as follows:

Gen(λ): It returns pk = (G, p, g, h) and sk = x where G is a multiplicative group
of prime order p, g is a generator of G, h = gx and x is uniform in Z∗p.

Encpk(m): It returns (c, d) = (gr, hr ·m) where r is randomly chosen in Z∗p.
Decsk((c, d)): It returns m = d · c−x.

A zero-knowledge proof (ZKP) allows a prover knowing a witness to con-
vince a verifier that a statement s is in a given language without leaking any
information except s. We recall the definition of a non-interactive ZKP.

Definition 5 (NIZKP [FS87]). A non-interactive ZKP (NIZKP) for a lan-
guage L is a couple of algorithms (Prove,Verify) such that:

Prove(s, w): It outputs a proof π that s ∈ L using the witness w.
Verify(s, π): It checks whether π is a valid proof that s ∈ L and outputs a bit.

A NIZKP proof verifies the following properties:

Completeness For any statement s ∈ L and the corresponding witness w, we
have that Verify(s,Prove(s, w)) = 1.

Soundness There is no polynomial time adversary A such that A(L) outputs
(s, π) such that Verify(s, π) = 1 and s 6∈ L with non-negligible probability.
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Zero-knowledge. A proof π leaks no information, i.e. there exists a PPT al-
gorithm Sim (called the simulator) such that outputs of Prove(s, w) and the
outputs of Sim(s) follow the same probability distribution.

We use the NIZKP given by Chaum and Pedersen [CP93] to prove the equal-
ity of two discrete logarithms. Let G be a multiplicative group, the language is
the set of all statements (g1, h1, g2, h2) ∈ G4 such that logg1(h1) = logg2(h2) = x.

Definition 6 (LogEq [CP93]). Let G be a multiplicative group of prime order
p and H be a hash function, L be the set of all (g1, h1, g2, h2) ∈ G4 where
logg1(h1) = logg2(h2). We define the NIZKP LogEq = (Prove,Verify) for L as
follow:

Prove((g1, h1, g2, h2), w): Using the witness w = logg1(h1), it picks r
$← Z∗p,

computes A = gr1, B = gr2, z = H(A,B) and ω = r + w · z. It outputs
π = (A,B, ω).

Verify((g1, h1, g2, h2), π): Using π = (A,B, ω), it computes z = H(A,B). If gω1 =
A · hz1 and gω2 = B · hz2 then it outputs 1, else it outputs 0.

LogEq is unconditionally complete, sound and zero-knowledge in the ROM.

We recall Lagrange’s interpolation formula to find the single polynomial f of
degree at most k from k + 1 points (xi, yi) such that f(xi) = yi.

Definition 7 (Lagrange’s interpolation). Let k be an integer and F be a
field. For all i ∈ {0, . . . , k}, let (xi, yi) ∈ F 2 such that for all i1, i2 ∈ {0, . . . , k},
xi1 6= xi2 . There exists one and only one polynomial f of degree at most k such
that for all i ∈ {0, . . . , n}, f(xi) = yi. This polynomial is given by Lagrange’s
interpolation formula:

f(x) =

k∑
i=0

yi · k∏
j=0,j 6=i

x− xj
xi − xj

 .

In the following, we denote the set of polynomials with coefficients in the
field F by F [X] and we denote the set of all f ∈ F [X] of degree k by F [X]k.

3 Cryptanalysis of [GFLL15] and [GND16]

We start by presenting the inherent limitation of PPE schemes, then we ex-
plain how to break those presented by Guo et al. [GFLL15] and by Gajera et
al. [GND16].

3.1 Inherent Limitation

In the scheme [GFLL15], the degree k of the polynomial f is public. Gajera et
al. [GND16] use it to mount an attack: a user queries k + 1 points to guess the
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polynomial using Lagrange’s interpolation. To fix this weakness, they propose
a scheme where k is secret. However, any user can guess k and f after k + 1
interactions with the server. To do so, the attacker chooses an input x0 and sends
it to the server. He receives y0 and computes the polynomial f0 of degree 0 using
Lagrange’s interpolation on (x0, y0). Next, the attacker chooses a second and a
different input x1 and asks y1 = f(x1) to the server. He computes the polynomial
f1 of degree 1 using Lagrange’s interpolation on {(x0, y0), (x1, y1)}. By repeating
this process until the interpolation gives the same polynomial fi = fi+1 for two
consecutive iterations, he recovers the degree and the polynomial. This problem
is an inherent limitation of PPE schemes and was already considered in the
security model of Kate et al. [KZG10]. Thus, to preserve the protection of the
polynomial, the server must refuse to evaluate more than k points for each client
and we must assume that clients do not collude to collect more than k points.

3.2 Cryptanalysis of [GFLL15] and [GND16]

In addition to the protection of f , the scheme [GFLL15] requires that the user’s
data is encrypted for the server. More formally, the user uses an encryption
algorithm to compute x′ = Enck(x) and sends this cipher to the server which
returns y′. Then, the user computes y = Deck(y′) such that y = f(x) where f is
the secret polynomial. The encryption scheme is based on the discrete logarithm
assumption. The decryption algorithm works in two steps: first the user computes
a value h such that h = gf(x) where g is a generator of a multiplicative group
of large prime order n, next he computes the discrete logarithm of h in base
g using Pollard’s lambda method [Pol78]. The authors assume that the size of
f(x) is reasonable: more formally, they define a set of possible inputs X and
M ∈ N such that ∀x ∈ X , 0 ≤ f(x) < M . The authors assume that the users
can efficiently perform Pollard’s lambda algorithm on any h = gy where y < M .
Actually, for practical reasons, since h = gf(x) mod n and logg(h) = f(x), we
assume that 0 ≤ f(x) < n for any input x of reasonable size, i.e. x� n. Hence,
the authors of [GFLL15] consider f as a positive polynomial in Z with sufficiently
small coefficients.

It is easy to evaluate a small M ′ such that M ′ > M by choosing M ′ such that
Pollard’s lambda algorithm on gM

′
is computable by a powerful server but is

too slow for a practical application. For example, if Pollard’s lambda algorithm
takes less than one minute for the server but more than one hour for the user’s
computer, we can assume that M ′ > M and attacks that are polynomial in M ′

are practical. To sum up, the user has the following tools:

– M ′ ∈ N such that ∀x ∈ X , 0 ≤ f(x) < M ′ and such that algorithms that
require p(M ′) operations (where p is a polynomial) are easily computable.

– A server which returns y = f(x) for any input x. This server can be used at
most k times where k is the degree of the polynomial.

Finally, note that the authors assume that 0 ≤ f(x) for any x and that
X ⊂ N. We show that any user can guess the secret polynomial during his first
interaction with the server. We first prove the following two properties.
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Property 1. For any polynomial f ∈ Z[X] and any integers x and y, there exists
P ∈ Z such that

f(x+ y) = f(x) + y · P .

Proof. Seen as a polynomial in y, f(x + y) − f(x) has a root at y = 0. By the
Factor Theorem y divide f(x + y) − f(x). Hence, there exists P ∈ Z such that
f(x+ y)− f(x) = y · P , i.e. f(x+ y) = f(x) + y · P .

Note that for any positive integers a and b such that a < b, we have a
mod b = a. Then, we can deduce the following property from Property 1.

Property 2. For any polynomial f ∈ Z[X] and any integers x and y such that
0 ≤ f(x) < y and 0 ≤ f(x+ y), it holds that

f(x+ y) mod y = f(x) .

Proof. From the previous property, we have f(x+y) = f(x)+y ·P , where P is an
integer. Assume P < 0, we define P ′ = −P > 0, then f(x+y) = f(x)−y ·P ′ ≥ 0.
Hence we have f(x) ≥ y · P ′ > f(x) · P ′.

– If 0 < f(x) then we deduce 1 = f(x)/f(x) > P ′ and 1 > P ′.
– If f(x) = 0 then 0 ≥ y · P ′ > 0.

In both cases, we obtain a contradiction. We conclude that 0 ≤ P . Finally, we
deduce f(x+ y) mod y = f(x) + y · P mod y = f(x).

Our attack on [GFLL15] works as follows. The attacker chooses a vector of

k integers (x1, x2, . . . , xk) ∈ Nk such that, for all 0 < i ≤ k, x′i =
∑i
j=1 xj where

x′i ∈ X .
For the sake of clarity, we show to begin with the attack in the case where

{1, . . . , k} ⊂ X . Thus the attacker chooses the vector (x1, x2, . . . , xk) = (1, 1, . . . , 1)
and sends x = k+M ′ to the server that returns the encryption of y = f(x). Pol-

lard’s lambda algorithm complexity [Pol78] on M ′ is O(M ′
1/2

). We consider that
k �M ′ (for instance k ≈ 10 as in [GFLL15]), thus x < 2 ·M ′, the complexity of

the decryption with Pollard’s lambda algorithm is O(f(2M ′)1/2) ≈ O(M ′
k/2

).
For all 1 ≤ i ≤ k, the attacker computes M ′i = k − i+M ′ and yi = y mod M ′i .

Since for all a ∈ X ,M ′ > f(a), we have for all 1 ≤ i ≤ k,M ′i = k− i+M ′ ≥
M ′ > f(a). Using Property 2 and since i ∈ X , we deduce that

yi = f(x) mod M ′i

= f(k +M ′) mod M ′i

= f(k − i+ i+M ′) mod M ′i

= f (i+M ′i) mod M ′i = f(i) .

Hence, the attacker obtains k + 1 points from one single queried point and
uses Lagrange’s interpolation on ((1, y1), (2, y2), . . . , (k, yk), (x, y)) to guess f .
Then, the attacker can compute f with reasonable computation time.
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Now, we show the generalized case for any set X where |X | ≥ k. To begin,
the attacker chooses a vector of k integers (x1, . . . , xk) such that, for all 1 ≤
j ≤ k, xj > 0 and: x′i =

(∑i
j=1 xj

)
where x′i ∈ X . Then the attacker sends the

query x =
(∑k

i=1 xi

)
+ M ′ to the server such that M ′ ∈ N and for all a ∈ X

we have M ′ > f(a). After he sends the query to the server, the attacker receives
the encryption of y = f(x).

Pollard’s lambda algorithm complexity [Pol78] on M ′ is O(M ′
1/2

). We con-
sider that k << M ′, k ≈ 10 as in [GFLL15], thus x < 2 ·M ′, the complexity of

the decryption with Pollard’s lambda algorithm is O(f(2M ′)1/2) ≈ O(M ′
k/2

).

With the y = f(x) returned by the server, the attacker computes for all
1 ≤ i ≤ k:

M ′i =

k∑
j=i+1

xj +M ′ .

Then we define yi for all 1 ≤ i ≤ k such that yi = y mod M ′i . Since for all
a ∈ X ,M ′ > f(a), we have for all 1 ≤ i ≤ k and for all a ∈ X :

M ′i =

k∑
j=i+1

xj +M ′ ≥M ′ > f(a) .

Using Properties 1 and 2 of Section 3 and since x′i ∈ X , we deduce:

yi = f(x) mod M ′i = f

(
k∑
i=1

xi +M ′

)
mod M ′i

= f

 k∑
j=i+1

xj +

i∑
j=1

xj +M ′

 mod M ′i = f

 i∑
j=1

xj +M ′i

 mod M ′i

= f

 i∑
j=1

xj

 = f(x′i) .

Finally, the attacker knows the k points of f : (x′i, f(x′i)) for 1 ≤ i ≤ k,
and also (x, f(x)). Hence, using Lagrange’s interpolation, the attacker is able to
retrieve the polynomial f .

It is possible to attack the scheme of Gajera et al. [GND16] in a similar way.
Indeed, as in [GFLL15], the user knows a value M such that ∀x ∈ X , f(x) < M .
A simple countermeasure could be to not allow the user to evaluate inputs that
are not in X . Unfortunally, this is not possible in these two schemes since the
user encrypts his data x. Hence, the server does not know whether x ∈ X or
not.
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4 Security Models

We revisit the formal security models for PPE schemes for two main reasons:
(i) Kate et al. [KZG10] propose some models where the secret polynomial is
randomly chosen. However, they present several practical applications where
the polynomial is not actually random, and some information, such as bounds
for f(x) or candidates for f , can be infered easily from the context. Their models
are clearly not sufficient for analysing the security of this kind of applications.
(ii) The schemes presented by Guo et al. [GFLL15] and Gajera et al. [GND16]
consider polynomials that are not randomly chosen. The authors give neither
security models nor security proofs. We show previously a practical attack on
these two schemes where a user exploits some public information. To avoid such
attacks, we need a model where public information does not give significant
advantage.

Our goal is to design a model where the public parameters and the server’s
proofs of correctness give no advantage to an attacker. Ideally, we would like
the attacker to have no more chances of guessing the polynomial than if he only
had access to a server reliably returning polynomial evaluations with no proof
of correctness. Our security model considers an attacker that tries to determine
which polynomial is used by a PPE among two polynomials of his choice. This
model is inspired by the IND-CPA model used in public key cryptography.

4.1 Formal Definition

In order to be able to define our security model, we first need to formally define
a Private Polynomial Evaluation scheme.

Definition 8. A Private Polynomial Evaluation (PPE) scheme is composed of
four algorithms (setup, init, compute, verif) such that:

setup(λ): It returns a ring F and a public setup pub.
init(pub, f): It returns a server key sk and a verification key vk according to the

polynomial f ∈ F [X].
compute(pub, vk, x, sk, f): It returns y and a proof π that y = f(x).
verif(pub, vk, x, y, π): It returns 1 if the proof π is “accepted” otherwise 0.

4.2 Security models

We start be redifining the notion of weak security presented in the literature.
We then introduce the notion of chosen function attack and the natural notion
of unforgeability. Proofs for Theorems 2, 3 and 4 are given in [BDG+17].

Polynomial Protection We introduce the Polynomial Protection (PP) secu-
rity. A PPE is PP-secure if no adversary can output a new point (not computed
by the server) of the secret polynomial f with a better probability than by guess-
ing. In this model, the polynomial is randomly chosen and the adversary cannot
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use the server more than k times, where k is the degree of f . This security model
is similar to the Hiding Model [KZG10] except that the adversary chooses the
points to be evaluated. We define the Weak Polynomial Protection (WPP) as
the same model as PP except that the adversary has no access to the server.

Definition 9 (PP and WPP). Let Π be a PPE, A be a probabilistic polynomial
time (PPT) adversary. ∀k ∈ N, the k-Polynomial Protection (k-PP) experiment
for A against Π denoted by Expk-PPΠ,A (λ) is defined in Figure 3, where A has access
to the server oracle COPP(·). We define the advantage of the adversary A against
the k-PP experiment by:

Advk-PPΠ,A (λ) = Pr
[
1← Expk-PPΠ,A (λ)

]
.

A scheme Π is k-PP-secure if this advantage is negligible for any A ∈ poly(λ).
We define the k-Weak Polynomial Protection (k-WPP) experiment as the

k-PP experiment except that A does not have access to the oracle COPP(·). In a
similar way, we define the WPP advantage and security.

The only difference between PP and WPP is that the adversary has no access
to the oracle in WPP, so PP security implies the WPP security.

Theorem 1. For any Π and k, if Π is k-PP-secure then Π is k-WPP-secure.

Chosen Function Attack We define a model for indistinguishability against
chosen function attack. In this model, the adversary chooses two polynomials
(f0, f1) and tries to guess the polynomial fb used by the server, where b ∈ {0, 1}.
The adversary has access to a server that evaluates and proves the correctness of
y = fb(x) only if f0(x) = f1(x). This is an inherent limitation: if the adversary
can evaluate another point (x, y) such that f0(x) 6= f1(x), then he can compare
y with f0(x) and f1(x) and recover b. In practice, an adversary chooses (f0, f1)
such that f0 6= f1, but with k points (xi, yi) such that f0(xi) = f1(xi). It
allows the adversary to maximize his oracle calls in order to increase his chances
of success. We remark that schemes [GFLL15] and [GND16] are not IND-CFA-
secure: users know a value M and the set of inputs X such that ∀x ∈ X , f(x) <
M . An attacker may choose two polynomials f0 and f1 such that for a chosen
a, f0(a) < M and f1(a) > M . Since X is public, the attacker returns f0 if and
only if a ∈ X .

Definition 10 (IND-CFA). Let Π be a PPE, A = (A1,A2) be a two-party
PPT adversary and k be an integer. The k-Indistinguishability against Chosen
Function Attack (k-IND-CFA) experiment for A against Π is defined in Figure 3,
where A has access to the server oracle COCFA(·). The advantage of the adversary
A against the k-IND-CFA experiment is given by:

Advk-IND-CFA
Π,A (λ) =

∣∣∣∣12 − Pr
[
1← Expk-IND-CFA

Π,A (λ)
]∣∣∣∣ .

A scheme Π is k-IND-CFA-secure if this advantage is negligible for any A ∈
poly(λ)2.
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Expk-PPΠ,A (λ):
(pub, F )← setup(λ);

f
$← F [X]k;

Σ ← ∅;
c← 0;
(sk, vk)← init(pub, f);
(x∗, y∗)← ACOPP(·)(pub, vk, F, k);
If (x∗, y∗) 6∈ Σ and f(x∗) = y∗:
Then return 1;
Else return 0;

ExpUNF
Π,A(λ):

(pub, F )← setup(λ);
(f, st)← A1(pub, F );
(sk, vk)← init(pub, f);
(x∗, y∗, π∗)← A2(pub, sk, vk, F, f, st);
If f(x∗) 6= y∗ and verif(pub, vk, x∗, y∗, π∗):
Then return 1;
Else return 0;

Expk-IND-CFA
Π,A (λ):

b
$← {0, 1}∗;

(pub, F )← setup(λ);
(f0, f1, st)← A1(pub, F, k);
(sk, vk)← init(pub, fb);

b∗ ← ACOCFA(·)
2 (pub, vk, F, k, st);

If f0 6∈ F [X]k or f1 6∈ F [X]k:
Then return 0;
Else return (b = b∗);

COPP(x):
(y, π)← compute(pub, vk, x, sk, f);
c← c+ 1;
Σ ← Σ ∪ {(x, y)};
If c = k + 1:
Then return ⊥;
Else return (y, π);

COCFA(x):
(y, π)← compute(pub, vk, x, sk, fb);
If f0(x) 6= f1(x):
Then return ⊥;
Else return (y, π);

Fig. 3: Security experiments and oracles definitions.

k-IND-CFA k-WPP

andZK k-PP

Fig. 4: Security relations.

In Theorem 2, we prove that
IND-CFA security implies WPP secu-
rity: if there exists an adversary A
against the WPP experiment who is
able to decrypt a random polynomial
from the public values, then we can
use it to guess fb in an IND-CFA ex-
periment for any chosen polynomials
(f0, f1). However, surprisingly, it is not
true for the PP security (Theorem 3).
The reason is that the oracle of the IND-CFA experiment has restriction, so it
cannot be used to simulate the oracle of the PP experiment in a security reduc-
tion.

Theorem 2. If Π is a k-IND-CFA-secure PPE, then it is k-WPP-secure.

Theorem 3. Let Π be a k-IND-CFA-secure PPE, it does not imply that Π is
k-PP.

However, we would like to have a simple and sufficient condition under which
the IND-CFA security implies the PP security. For this, we define the proof induced
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by a PPE which is the proof algorithm used by the algorithm compute. We show
that if this proof system is zero-knowledge, then the IND-CFA security implies
the PP security.

Definition 11. Let Π = (setup, init, compute, verif) be a PPE, the non-interactive
proof inducted by Π, denoted PΠ = (proofΠ , verΠ) is defined as follows. For any
λ, k ∈ N, (pub, F )← setup(λ), f ∈ F [X]k and (vk, sk)← init(pub, f):

proofΠ((pub, vk, x, y), (f, sk)): returns π, where (y′, π)← compute(pub, vk, x, sk, f).
verΠ((pub, vk, x, y), π): runs b← verif(pub, vk, x, y, π) and returns it.

We say that Π is Zero-Knowledge (ZK) if PΠ is Zero-Knowledge.

Theorem 4. Let Π be a ZK and k-IND-CFA-secure PPE, then Π is k-PP-
secure.

In Figure 4, we recall all relations between our security properties.

Unforgeability Finally, we define the unforgeability property for a PPE. A
PPE is unforgeable when a dishonest server cannot produce a valid proof on the
point (x, y) when f(x) 6= y. The secret polynomial f is chosen by the server.

Definition 12. Let Π be a PPE, A = (A1,A2) be a two-party PPT adversary.
The Unforgeability (UNF) experiment for A against Π is defined in Figure 3.
We define the advantage of the adversary A against the UNF experiment by:

AdvUNFΠ,A(λ) = Pr
[
1← ExpUNFΠ,A(λ)

]
.

A scheme Π is UNF-secure if this advantage is negligible for any A ∈ poly(λ)2.

4.3 Security against collusion attacks

To conclude, our security model implicitly prevents all non-inherent collusion
attacks, because in our context the clients have no secret information. There are
two kinds of collusion scenarios:

A client colludes with the server: If a client colludes with the server, then
the server can obviously give him the secret polynomial. This limitation is
inherent and cannot be prevented. On the other hand, all keys known by the
clients are public and known to the server, the server has no advantage in
colluding with a client. In particular, the collusion does not allow the server
to forge fake validity proofs for others clients.

Several clients collude together: All clients have the same verification keys.
Thus, a client gains no advantage by colluding with other clients, as long as
the total number of known points is less than k after collusion. Obviously
the inherent limitation of PPE still holds: if the collusion of clients learn
more than k points, then they can guess the polynomial.
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5 PIPE Description

We recall Feldman’s Verifiable Secret Sharing (VSS) scheme and build a simple
k-PP PPE that is not k-IND-CFA. We then propose some modifications based
on the Feldman’s VSS and the ElGamal scheme in order design our secure PPE
scheme PIPE that is k-IND-CFA. We analyse its security and compare it with the
scheme of Kate et al. [KZG10].

5.1 Feldman’s Verifiable Secret Sharing

Feldman’s VSS [Fel87] is based on Shamir’s Secret Sharing [Sha79], where each
share is a point (x, y) of a secret polynomial f of degree k. Knowing more than k
shares, one can guess the polynomial f and can compute the secret s = f(0). In
Feldman’s VSS, there is a public value that allows anybody to check the validity
of a share. For any point (x, y), anybody can check if y is f(x) or not. This
scheme works as follows. Let G be a multiplicative group of prime order p where
DL is hard. Let f ∈ Z∗p[X] be the secret polynomial and ai ∈ F be a coefficient
for all 0 ≤ i ≤ k such that

f(x) =

k∑
i=0

ai · xi .

Let g ∈ G be a generator of G. For all i ∈ {0, . . . , k}, we set hi = gai . Values
g and {hi}0≤i≤k are public, however, the coefficients ai are hidden under DL

hypothesis. We remark that f(x) = y if and only if gy =
∏k
i=0 h

xi

i since

k∏
i=0

hx
i

i =

k∏
i=0

gai·x
i

= g
∑k

i=0 ai·x
i

= gf(x) .

Then, we can use it to check that (x, y) is a valid share.

5.2 Our Scheme: PIPE

Feldman’s VSS can be used to design a PPE that is k-PP-secure: using the public
values g and {hi}0≤i≤k, any user can check that the point (x, y) computed by
the server is a point of f . However, in a practical use, the polynomial f is not
randomly chosen in a large set. An IND-CFA attacker knows that f = f0 or f = f1
for two known polynomials (f0, f1), since he knows the coefficients {a0,i}0≤i≤k
and {a1,i}0≤i≤k of these two polynomials, he can compute the values {ga0,i}0≤i≤k
and {ga1,i}0≤i≤k and he can compare it with the public set {hi}0≤i≤k.

In order to construct our k-IND-CFA PPE, called PIPE, we give an ElGamal
key pair (pk, sk) to the server where pk = (G, p, g, h) and h = gsk and we encrypt
all the hi. Then for all i ∈ {0, . . . , k}, the users do not know hi = gai but know
the ElGamal ciphertext (ci, di) such that ci = gri and di = hri · hi where ri is
randomly chosen. Since ElGamal is IND-CPA-secure, an attacker that chooses
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two polynomials (f0, f1) cannot distinguish, for 0 ≤ i ≤ k, if the ciphertext
(ci, di) encrypts a coefficient of f0 or of f1. Thus, the attacks on the previous
scheme are no longer possible.

Moreover, the user can check that f(x) = y for a point (x, y) using the values

{(ci, di)}0≤i≤k. We set r(x) =
∑k
i=0 ri · xi. The user computes:

c =

k∏
i=0

cx
i

i =

k∏
i=0

gri·x
i

= g

k∑
i=0

ri·xi

= gr(x) .

On the other hand, he computes:

d′ =

k∏
i=0

dx
i

i =

(
k∏
i=0

hri·x
i

)
·

(
k∏
i=0

gai·x
i

)
= h

k∑
i=0

ri·xi

· g
k∑

i=0
ai·xi

= hr(x) · gf(x) .

Finally, (c, d′) = (gr(x), hr(x) · gf(x)) is an ElGamal ciphertext of gf(x). Then,
to convince the user that (x, y) is a valid point of f , the server proves that (c, d′)
is a ciphertext of gy using a NIZKP of logg(c) = logh(d′/gy).

This leads us to the following formal definition of our scheme PIPE.

Definition 13. Let PIPE = (setup, init, compute, verif) be a PPE defined by:

setup(λ): Using the security parameter λ, it generates G a group of prime order
p and a generator g ∈ G. It chooses a hash function H : {0, 1}∗ → Z∗p and it
sets F = Z∗p. It sets pub = (G, p, g,H) and returns (pub, F ).

init(pub, f): We set f(x) =
∑k
i=0 ai · xi. This algorithm picks sk

$← Z∗p and

computes pk = gsk. For all i ∈ {0, . . . , k}, it picks ri
$← Z∗p and computes

ci = gri and di = pkri · gai . Finally, it sets vk = ({(ci, di)}0≤i≤k, pk) and
returns (vk, sk).

compute(pub, vk, x, sk, f): Using vk which is equal to ({(ci, di)}0≤i≤k, pk), this

algorithm picks θ
$← Z∗p and computes

c =

k∏
i=0

cx
i

i , π = (gθ, cθ, θ +H(gθ, cθ) · sk) .

Finally, it returns (f(x), π).
verif(pub, vk, x, y, π): Using vk = ({(ci, di)}0≤i≤k, pk) and π = (A,B, ω), this

algorithm computes

c =

k∏
i=0

cx
i

i , d =

(∏k
i=0 d

xi

i

)
gy

.

If gω = A ·pkH(A,B) and cω = B ·dH(A,B), then the algorithm returns 1, else
it returns 0.



16

Table 1: Comparison of PIPE and PolyCommitPed.

Setup size Key size Verif. cost Pairing Assumption Security

PIPE O(1) O(k) O(k) Paring free DDH IND-CFA

PolyCommitPed [KZG10] O(k) O(1) O(1) Pairing based t-SDH IND-CFA

5.3 Security

We prove the security of PIPE in our security model:

Lemma 1. For any k ∈ N, PIPE is k-IND-CFA-secure under the DDH assump-
tion in the ROM.

Lemma 2. PIPE is unconditionally ZK-secure in the ROM.

Lemma 3. PIPE is unconditionally UNF-secure in the ROM.

Proofs of Lemmas 1 2 and 3 are presented in [BDG+17]. Using Lemma 4,
Lemma 2 and Theorem 4, we have that PIPE is k-PP-secure. Hence, using
Lemma 1 and Theorem 2, we deduce that PIPE is k-WPP-secure. Finally, we
have the following theorem.

Theorem 5. For any k ∈ N, PIPE is is ZK, k-IND-CFA, k-PP, k-WPP and
UNF-secure under the DDH assumption in the ROM.

5.4 Comparison with PolyCommitPed

Kate et al. [KZG10] propose two CTP schemes that can be used as PPE schemes.
Even if Kate et al. security model does not take into account IND-CFA security,
we prove in [BDG+17] that one of these two schemes, called PolyCommitPed,
is IND-CFA-secure. We recall the PolyCommitPed scheme in Appendix A and we
compare PIPE with this scheme in this section. Table 1 resumes this comparison.

The PIPE verification algorithm is in O(k) and the PolyCommitPed one is in
constant time. However, the PolyCommitPed verification algorithm requires sev-
eral pairing computations which are significantly costly in terms of computation
time whereas PIPE only requires exponentiations and multiplication in a prime
order group. Consequently, PIPE will be more efficient than PolyCommitPed for
sufficiently small polynomial degree k.

The main advantage of PolyCommitPed is that the verification key size is
constant whereas the verification key size of PIPE is in O(k). However, the public
setup size of PolyCommitPed is in O(k) whereas the PIPE one is in constant. Since
the client knows both the verification key and the public setup, PolyCommitPed is
advantageous only if each client has access to several polynomials simultaneously.

PIPE is secure under the DDH assumption whereas PolyCommitPed is secure
under the t-SDH assumption. Note that finding a scheme that is secure under
a weaker assumption than t-SDH was an open problem mentionned by Kate
et al. [KZG10]. Finally, note that the security PolyCommitPed is proven in the
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standard model. A simple way to obtain a version of PIPE that is secure in the
standard model is to use the interactive version of LogEq [CP93] instead of the
non-interactive one in the algorithm. In return, it requires an interaction between
the client and the server during the evaluation algorithm.

6 CFA Security for Commitments to Polynomials

Our scheme can be used as a commitment to polynomials scheme [KZG10] that
is CFA-secure. We give an overview of a such scheme in Figure 5. To commit a
polynomial f , the committer computes (vk, sk) ← init(pub, f) and returns the
commitment vk to the user corresponding to the encryption of coefficients of the
polynomial f . Then, the user sends his data to the committer (xi in Figure 5)
and receives the results with correctness proof ((f(xi), proof) in Figure 5). To
open the commitment, the committer reveals to the user the key vk together with
f (open(vk, f) in Figure 5), then the user can open all the ElGamal ciphertexts
of vk and check that they encrypt gai where ai are the coefficients of f .

Alice Committer

vk = commit(f)

xi

(f(xi), proof)

. . .
open(vk, f)

Fig. 5: PIPE scheme used as a commitment to polynomials scheme [KZG10].

7 Anonymous Private Polynomial Evaluation

In a practical scenario, the company does not allow anybody to interact freely
with the computation server. The company distributes authentication keys to the
clients, and the server uses a protocol to authenticate the client at the beginning
of each interaction. It allows the server to verify that a client does not request to
evaluate more than k points, where k is the degree of the polynomial. However,
for a lot of applications, preserving the privacy of the clients is important. Guo et
al. [GFLL15] propose an anonymous authentication mechanism for their scheme,
which is broken and fixed by Gajera et al. [GND16].

We remark that anonymous authentication for PPE prevents the server from
knowing how much points of the polynomial it gives to each client, leading to
security issues. To solve this problem, we suggest that the server uses k-times
anonymous authentication [TFS04]: this primitive allows a client to anonymously
authenticate k times. If a client exceeds this limit, the server can identify him.
Using such a scheme, the server can refuse to respond if the user requires more
point evaluations than allowed, and the privacy of honest users is preserved.
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8 Conclusion

In this paper, we gave a formal definition for a primitive called PPE. This primi-
tive allows a company to delegate computations on a secret polynomial for users
in a verifiable way. In essence, the user sends x and receives y from the server
along with a proof of y = f(x); even though he does not know the polynomial
f . We proposed a security model of indistinguishability against chosen func-
tion attack (IND-CFA) and we built a PPE scheme called PIPE which is secure
in this model. We proved that another scheme called PolyCommitPed [KZG10]
is IND-CFA-secure, and we compared it with PIPE. Moreover, we exhibited a
critical flaw in two papers which proposed schemes tackling the same problem.
In the future, we aim at designing a scheme that is pairing free and that uses
constant size verification keys. Another possible extension is to add practical
privacy mechanism to protect the data sent by the users.
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A PolyCommitPed Scheme [KZG10]

We recall the PolyCommitPed construction presented by Kate et al. [KZG10].

Definition 14. PolyCommitPed = (setup, init, compute, verif) is a PPE scheme
defined as follows:

setup(λ): Using the security parameter λ, it generates two groups G and GT of
prime order p (providing λ-bit security) such that there exists a symmetric
bilinear pairing e : G×G→ GT . Moreover, it chooses two generators g and h

of G and picks α← Z∗p. It sets F = Z∗p, pub = (G,GT , p, e, g, h, (gα, . . . , gα
k

),

(hα, . . . , hα
k

)) and returns (pub, F ).

init(pub, f): Using f(x) =
∑k
i=0 ai ·xi, this algorithm chooses a random polyno-

mial of degree k, r(x) =
∑k
i=0 ri · xi ∈ Zp[x] and sets sk = r(x). It computes

C =
∏k
i=0(gα

i

)ai(hα
i

)ri = gf(α)hr(α) and sets vk = C. Finally, it returns
(sk, vk).

compute(pub, vk, xi, sk, f): This algorithm computes ψi(x) = (f(x)−f(xi))/(x−
xi) and ψ̂i(x) = (r(x) − r(xi))/(x − xi). Let (γ0, . . . , γk) and (γ̂0, . . . , γ̂k)

be such that ψi(x) =
∑k
j=0 γj · xj and ψ̂i(x) =

∑k
j=0 γ̂j · xj. It computes

wi =
∏k
j=0(gα

j

)γj (hα
j

)γ̂j = gψi(α)hψ̂i(α). It sets π = (xi, r(xi), wi) and
returns (f(xi), π).

verif(pub, vk, xi, f(xi), π): If e(C, g) equals to e(wi, (g
α)−xi)e(gf(xi)hr(xi), g), the

algorithm outputs 1, else it outputs 0.


