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Abstract
Modern networks increasingly rely on Software-Defined Network-

ing (SDN) to achieve flexibility and efficiency, which makes it more

critical to ensure their security. Particularly, it is crucial to ensure

the integrity of packets routing within the Network.

In this paper, we address key security challenges within SDN

architectures with a particular focus on the data plane. We ex-

plore these challenges through the lens of a security solution called

SDNsec. We identify three fundamental security properties, namely

payload integrity, route integrity and accountability. We define

these security properties in the formal framework of the applied

Π-Calculus. Likewise, we suggest two levels of route integrity:

strong and weak, depending on the protocol’s requirements. We

use ProVerif, a cryptographic protocol verifier, to conduct a formal

analysis of the security of SDNsec.

Thanks to our models, we discover several flaws on all the afore-

mentioned properties. In response, we propose corrective measures

to enhance SDNsec’s security. Moreover, to ensure that such attacks

are feasible and that our improvements are effective, we implement

and test SDNsec and our corrected solution using the RYU controller

and Mininet network emulator.

CCS Concepts
• Security and privacy→ Formal security models; Security
protocols; • Networks→ Network protocols.
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1 Introduction
Software-Defined Networking has emerged as a trans formative

paradigm in network management and architecture, decoupling the

control plane from the data plane to enable centralized control and

programmability. However, alongside the benefits, SDN presents

significant security challenges that need to be addressed.

In order to enhance various security aspects within SDN, re-

searchers have proposed a range of solutions targeting different

SDN planes. For instance, FLOWGUARD [25] is a robust framework

developed to strengthen firewall security in SDN, particularly those

utilizing OpenFlow [36]. As network states and configurations un-

dergo frequent modifications, FLOWGUARD employs techniques

such as flow path tracking, header space analysis, and dependency-

breaking methods to identify and resolve firewall policy violations.

Solutions also include adapting traditional intrusion detection

systems (IDS) like Snort to SDN environments (e.g., SnortFlow [47])

and employingMoving Target Defense (MTD) techniques [28], such

as randomizing network paths between source and target [26], to

make it harder for attackers to exploit specific vulnerabilities. Mid-

dleboxes, such as FlowVisor [43], act as intermediaries between

the control plane and data plane, adding an extra layer of secu-

rity. Techniques like multi-path routing are employed to obfuscate

communication paths and prevent eavesdropping [19], while traffic

isolation through network slicing [41] ensures that sensitive data

remains confidential.

As our work focuses on SDN data plane security, we concen-

trate on security solutions tailored to this layer, with a particular

emphasis on SDNsec [40]. The data plane in SDN is vulnerable

to attacks from compromised switches, which can redirect traffic

for eavesdropping, bypass security measures, or disrupt service

by dropping packets. This layer often lacks accountability mecha-

nisms to ensure that network policies are correctly applied, which

leads to undetected policy violations. To address these challenges,
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SDNsec has been developed as a security extension designed to

enhance traceability and verification of packet routing rules within

the data plane, adding cryptographic features such as Message

Authentication Codes (MAC).

Contributions. We present a formal verification of SDNsec, fo-

cusing on three key security properties: payload integrity, route

integrity, and accountability. Our work involves a comprehensive

approach that includes: (i) the formal definitions of these secu-

rity properties, (ii) a formal modeling of SDNsec, and (iii) analysis

of these properties using ProVerif [6], a cryptographic protocol

verifier based on the applied Π-Calculus [1]. More precisely, our

contributions include the following:

• We give a clear description of SDNsec protocol. Then we pro-

pose a formal generic model in applied Π-Calculus for SDN
protocols. For this, we consider a network topology where

all switches are connected to one another. This provides the

intruder with the possibility of establishing any connection

between any entities, modeling the most powerful intruders

in order to have the strongest security.

• We define relevant security properties to SDN protocols. We

consider: payload integrity ensuring that data remain un-

altered during transmission, route integrity ensuring that

packets adhere to the designated network path, and account-

ability ensuring the ability of the controller to blame who

would be responsible of a dishonest misbehavior.

• To thoroughly assess these properties, we develop models

to formally analyze payload integrity, route integrity and

accountability for SDN-based protocols. We formally define

route integrity and propose two distinct versions of this se-

curity property: Weak Route Integrity, and Strong Route In-

tegrity (Strong route integrity being the combination of two

sub-properties: local route integrity and transitional route

integrity). We also define accountability mainly following

the definitions of Bruni et al [8].

• We perform a formal analysis of SDNsec using ProVerif for

our models of payload integrity, route integrity, and account-

ability properties. We identify attacks and develop corre-

sponding corrective measures.

• Additionally, we implement the enhanced solution using

the SDN controller RYU [46], and the network emulator

Mininet [24]. This practical implementation allows us to

demonstrate that our attacks are possible and to test our cor-

rections in realistic virtual network environments, demon-

strating their effectiveness in a controlled setting.

All our ProVerif files and RYU implementation codes are available

in our anonymous artifacts [4].

Outline. We start by presenting how SDNsec works in details. We

explain how cryptographic primitives and its architecture should

enhance security. In Section 4, we propose a generic formal model

for SDN protocol in the applied Π-Calculus. In Section 5, we define

our three security properties: payload integrity, route integrity, and

accountability for SDN protocols. In Section 6, we apply our mod-

els for SDN to SDNsec to analyze these three security properties.

Thanks to ProVerif, we discover flaws regarding each property. We

also propose corrective measures to refine the SDNsec solution

based on our findings and re-validates these adjustments using

ProVerif to confirm whether the attacks have been addressed. Fi-

nally, in Section 7, we detail the implementation using the RYU

controller and Mininet. We discuss ethics in Section 8 conclude and

discuss future perspectives in Section 9.

2 Related Work
Related work can be grouped into two categories. The various ap-

proaches proposed in the literature to address the vulnerabilities in

the data plane of SDN architectures is presented first. An overview

of the automated verification of cryptographic protocols and their

application to SDN protocols follows.

Securing the data plane of SDN architectures. Real-time verifica-

tion of network state and protection against malicious activities

are some of the most common mechanisms that address the vul-

nerabilities within the data plan of SDN architectures. Numerous

related works are introduced by Charfadine [39].

VeriFlow is introduced by Khurshid et al. [29] as a real-time

verification tool designed to identify malicious flow rules inserted

in OpenFlow switches. It intercepts rule changes from the SDN

controller before they are applied to network devices, verifying their

impact on the network in real-time. By dividing the network into

equivalence classes (ECs) that represent sets of packets with similar

forwarding behaviors, VeriFlow focuses on the relevant portions of

the network affected by each rule. It constructs forwarding graphs

for these ECs to model packet traversal through the network checks

these graphs against network invariants.

Avant-Guard is proposed by Shin et al. [45] aiming at safeguard-

ing the connection between the data plane and control plane in SDN

architectures from flooding attacks. It achieves this by augment-

ing OpenFlow switches with an additional hardware component,

specifically a TCP proxy, to counteract TCP-based attacks. This

proxy works by issuing a SYN-ACK response and then forwarding

the SYN packet to confirm the presence of both the source and des-

tination. Only when both endpoints are validated is the connection

deemed legitimate.

Yegneswaran et al. [49] develop FortNox, a platform designed

to help a NOX controller verify rule inconsistencies in real time.

Before OpenFlow applications can modify these rules, FortNox

uses digital signatures and security constraints to authorize or

deny the changes. This platform, through a software extension on

the NOX controller, dynamically analyzes rule conflicts using a

dedicated algorithm. Consequently, when an authenticated security

application inserts a flow rule, FortNox prevents other applications

from adding conflicting rules on the same SDN network.

Black and Scott-Hayward [5] provide a comprehensive survey

on the verification of adversarial data planes in software-defined

networks. In 2020, Zhang et al. propose FlOw Counter Equation

System (FOCES) [51], a method to detect misrouting and malicious

switches in SDN by applying a network-wide flow conservation

principle. It models the expected forwarding behavior using a Flow

Counter Matrix (FCM) that captures the relationship between all

flows and rules in the network. FOCES periodically collects flow

counters from switches and checks if these counters satisfy the

constraints defined by the FCM. Inconsistencies in the counters
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Solution Cryptography Misrouting
Detection

Payload Integrity
Verification

VeriFlow [29] ✗ ✗ ✗

Avant-Guard [45] ✗ ✗ ✗

FortNox [49] ✗ ✗ ✗

Sphinx [21] ✗ ✗ ✗

FlowMon [27] ✗ ✗ ✗

WedgeTail [42] ✗ ✓ ✗

FOCES [51] ✗ ✓ ✗

WhiteRabbit [44] ✗ ✓ ✗

REV [50] ✓ ✓ ✗

SDNsec [40] ✓ ✓ ✗

✓: Property satisfied ✗: Property violated or cryptography not in use
Table 1: Comparison of SDN security solutions

indicate forwarding anomalies, such as path deviations, switch by-

passes, or early packet drops, revealing the presence of misrouting

or malicious activity.

Shimizu et al. present WhiteRabbit [44], a scalable SDN Data-

Plane verification method through time scheduling. WhiteRabbit

ensures the consistency of forwarding states in SDN by performing

a byte consistency check by comparing the byte count of packets

passing through consecutive switches along the expected path. Any

significant discrepancies indicate potential misrouting or malicious

activities. WhiteRabbit constructs a flow graph based on controller-

issued FLOW_MOD messages, and validates actual packet paths

against this graph to identify deviations, ensuring the detection of

compromised switches altering routes.

Dhawan et al. introduce SPHINX [21], a framework that uses

flow graphs to represent and validate network operations in real-

time. This allows for the detection of both known and unknown

attacks on network topology and data plane forwarding. SPHINX

incrementally verifies network updates using these flow graphs and

raises alerts for suspicious changes. It monitors packet statistics and

verifies them against expected values using flow conservation prin-

ciples. By continuously checking for consistency in these statistics

across the network, Sphinx identifies discrepancies that indicate

malicious activity.

Shaghaghi et al. propose WedgeTail [42], a trajectory-based sam-

pling mechanism to prioritize the inspection of forwarding devices

efficiently. It calculates expected packet trajectories using a vir-

tual network replica and compares them with actual trajectories to

detect malicious actions such as packet drops, misrouting, and gen-

eration. WedgeTail can autonomously identify and localize these

malicious devices without relying on predefined rules, making it

adaptable to various SDN setups. Evaluations in simulated environ-

ments demonstrate its effectiveness in detecting and responding to

malicious forwarding devices.

Additionally, Kamisinski et al. present FlowMon [27], two anom-

aly detection algorithms identifying compromised switches based

on their behaviors. The first detects packet droppers by comparing

the number of packets received and transmitted on each switch

port. The second identifies packet swappers by analyzing the dis-

crepancies between expected and actual forwarding paths. Flow-

Mon effectively detects these malicious behaviors in real-time by

leveraging the OpenFlow protocol for collecting switch statistics.

Simulation results demonstrate that FlowMon can accurately detect

both packet droppers and swappers with minimal false positives.

Furthermore, Zhang et al. introduce Rule Enforcement Verifica-

tion (REV) [50] to ensure correct rule enforcement in SDN. Unlike

previous methods such as SDNsec, which rely on Message Authen-

tication Codes (MAC) and result in high communication overhead,

REV utilizes compressive MACs to significantly reduce switch-to-

controller traffic by 97% and increase verification throughput by

8 times. Additionally, it detects misrouting by tagging packets at

their entry point with a cryptographic hash, which is updated by

each switch along the expected path using a secret key shared with

the controller. The destination switch reports the final tag to the

controller, which verifies it against the expected value. If a packet

bypasses any intended switches or deviates from the expected path,

the final tag does not match the expected tag, indicating a malicious

activity.

Finally, SDNsec [40] is proposed by Sasaki et al. It is a secu-

rity extension designed to ensure traceability of packet routing

rules within the data plane of SDN. In other words, it verifies that

flow rules are correctly applied at the infrastructure layer. Authors

proposed a mechanism that ensures switches forward packets ac-

cording to the controller’s instructions and validates the packet

paths. This allows the controller to re-actively verify that the data

plane is following the specified rules. This solution guarantees con-

sistent updates to flow rules, ensuring that the data plane behaves

as expected during re-configurations.

Table 1 summarizes these information. As far as we know, none

of the listed solutions have been analyzed using formal modeling

tools. Most analyzes have been conducted using network simulators,

emulators, testbeds, or prototype implementations.
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Automated verification for cryptographic protocols. After the ini-
tial work of Lowe in 1995 [34] based on [22], several tools have been

developed during the last decades among [3, 6, 10–13, 17, 23, 37].

We chose ProVerif, one of the most efficient tools [18, 33].

For security definitions, many works have proposed definitions

for classical security properties like secrecy, authentication, or pri-

vacy [14, 16, 20, 35], but, up to our knowledge, only few one work

study routing protocols [2, 9, 15, 48]. In [9], the authors propose a

simple formal model for dynamic source routing protocol, however

it does not provide any verification with a tool, hence this work

remains theoretical and focus on a different security property for

routing protocols. In [9], the authors are performing computational

simulation based analysis to discover attacks on two secure ad hoc

routing protocols, SRP and Ariadne but they do not analyze SDNsec.

In contrast to our approach, they do a manual analysis and do not

use an automatic verification tool. In [2], they studied wireless com-

munication and proposed a new intrudermodel to catch thewireless

communication in applied Π-Calculus, meaning that the intruder

can only attack nodes in his range. We consider wire communica-

tions and such attacker is not adapted to the analysis of SDNsec.

For accountability definition, after the pioneer work of Küsters et

al. [32] several works have studied this property [8, 31, 38]. We use

the approach proposed by [8] to formalize accountability adapted

to SDN protocols.

3 Overview of SDNsec Solutions
SDNsec is a security extension for the SDN data plane proposed

in [40]. It enhances network security by ensuring data packets

follow authorized paths. It incorporates the use of Message Authen-

tication Codes (MACs) to maintain the integrity of forwarding rules

through path enforcement and includes a path validation mecha-

nism for additional security. The SDNsec data plane incorporates

both edge and core switches.

Edge switches. These switches are located at the network’s pe-

riphery. They are equippedwith flow tables, which they use to direct

traffic either entering or exiting the network. The edge switches

interact differently based on their role:

• Ingress switches receive packets from source hosts and deter-

mine the appropriate forwarding actions. If required informa-

tion is not found, they contact the controller for instructions.

• Egress switches receive packets from core switches and route

them to their final destinations.

Core switches. These switches are situated centrally within the

network and focus on efficiently forwarding packets according

to embedded forwarding information. They perform minimal pro-

cessing, simply verifying the integrity of each packet’s forwarding

details and routing them accordingly. If discrepancies are found

during verification, the packets are discarded, and the controller is

alerted. Additionally, core switches maintain a record of alternative

routing paths to be utilized in the event of link failures, ensuring

continuity of service and facilitating ongoing flow monitoring. In

Figure 1, we illustrate the comprehensive architecture of SDNsec

includes a controller, two endpoints, 𝐻1 and 𝐻2, an ingress switch

𝑆0, an egress switch 𝑆𝑛 , and intermediate core switches 𝑆1 to 𝑆𝑛−1.

The controller distributes secret symmetric keys, represented as 𝐾0

. . .𝐾𝑛 to each switch in the network.

𝐻1 𝑆0 𝑆1

. . .

Controller

𝑆𝑖

. . .

𝑆𝑛 𝐻2

𝐾0 𝐾1 𝐾𝑖
𝐾𝑛. . . . . .

. . . . . .

Figure 1: The SDNsec Network Architecture.

Thus, whenever ingress switch 𝑆0 receives a packet from end-

point𝐻1, it checks its flow table according to packet’s header details.

If a rule is found containing the forwarding information installed

by the controller, 𝑆0 assigns a sequence number, calculates security

fields later described, and forwards the packet to a core switch

through one of its outbound interface, later referenced as 𝑒𝑔𝑟 (𝑆0),
as specified by the rule. If no rule is found, 𝑆0 requests forward-

ing information from the controller. The controller computes the

required information and sends it to 𝑆0, which then assigns a se-

quence number, calculates the security fields, and forwards the

packet through 𝑒𝑔𝑟 (𝑆0).
As the packet arrives at 𝑆1, 𝑆1 extracts the security fields from

the packet and checks them according to its own secret key 𝐾1. If

the MAC is valid, then 𝑆1 increments the sequence number, and

forwards the packet to 𝑆2 via 𝑒𝑔𝑟 (𝑆1) and so on. If the MAC is

invalid, then 𝑆1 drops the packet and notifies the controller.

When the packet reaches the egress edge switch 𝑆𝑛 , the same

process is repeated. If the MAC is valid, then 𝑆2 forwards the packet

to its destination 𝐻2 and sends its PVF to the controller who will

check it re-actively. If the controller receives the expected PVF, path

enforcement is confirmed, otherwise, the controller requests the

PVF from previous switches to detect where the path was altered.

3.1 SDNsec Security Fields
SDNsec involves two components adding security fields to mes-

sages: Forwarding Entries (FE) and Path Validation Fields (PVF).

3.1.1 Forwarding Entries. Path computation involves the controller

deciding the route that the packet should take and computing the

forwarding information for the decided path. This involves calculat-

ing the egress interface for each packet along the path, embedding

a sequence of these interfaces in the packet, along with an expi-

ration time and flow identifier for each path. As part of SDNsec,

cryptographic mechanisms ensure each packet’s FE, employing

Message Authentication Codes (MACs) calculated with a shared

secret key. Each 𝐹𝐸 (𝑆𝑖 ) for a switch 𝑆𝑖 includes a MAC covering

egress interface, expiration time, and flow identifier, along with

forwarding entry of the previous switch, computed as follows:

𝐵 = 𝐹𝑙𝑜𝑤𝐼𝐷 ∥ 𝐸𝑥𝑝𝑇𝑖𝑚𝑒
𝐹𝐸 (𝑆𝑖 ) = 𝑒𝑔𝑟 (𝑆𝑖 ) ∥ 𝑀𝐴𝐶 (𝑆𝑖 )
𝑀𝐴𝐶 (𝑆𝑖 ) = 𝑀𝐴𝐶𝐾𝑖

(𝑒𝑔𝑟 (𝑆𝑖 ) ∥ 𝐹𝐸 (𝑆𝑖−1) ∥ 𝐵)
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Where:

• FlowID (Flow Identifier): is a 3-byte integer, generated by the

controller, that uniquely identifies a flow and indexes its

information. This allows both the controller and switches to

efficiently search for flow information.

• ExpTime (Expiration Time): is a four-byte timestamp gener-

ated by the controller, indicating when the flow becomes

invalid, prompting switches to discard the flow information.

• FE (Forwarding Entry): is calculated by the controller and

contains one byte for the egress interface through which the

switch must forward the packet to the next switch, along

with a 7-byte MAC that ensures the integrity of the path.

• egr(𝑆𝑖 ): represents the egress interface of the switch 𝑆𝑖 through
which the packet is forwarded to the next hop.

The concatenation symbol ∥ represents the process of joining

two or more sequences of data together end-to-end. Additionally,

since the communications between switches and the controller is

assumed secure by SDNsec, 𝐹𝐸 (𝑆0) is not utilized by the first-hop

switch and is computed as: 𝐹𝐸 (𝑆0) = 𝐵. Finally 𝐹𝐸 (𝑆0) is then used

in the computation of forwarding entry for switch 𝑆1.

3.1.2 Path Validation Field. Path verification is operated re-actively
to verify the path taken by packets using a Path Validation Field
(PVF) embedded in each packet, which contains a MAC computed

over the previous switch’s validation field and mutable per-packet

information, including the flow identifier and a sequence number.

This MAC validation allows the controller to confirm the authentic-

ity of the path traveled by the packet and it is computed as follows:

𝐶 = 𝐹𝑙𝑜𝑤𝐼𝐷 ∥ 𝑆𝑒𝑞𝑁𝑜
𝑃𝑉 𝐹 (𝑆0) = 𝑀𝐴𝐶𝐾0 (𝐶)
𝑃𝑉 𝐹 (𝑆𝑖 ) = 𝑀𝐴𝐶𝐾𝑖

(𝑃𝑉 𝐹 (𝑆𝑖−1) ∥ 𝐶)
Where:

• SeqNo (Sequence Number): is a 24-bit number maintained

by the ingress switch, choosing a unique SeqNo for each

flow entry. As it forwards packets, each switch updates the

SeqNo. This SeqNo helps randomize the PVF and detect

replay attacks, where a malicious switch might reuse valid

PVFs to approve a rogue path.

• Path Validation Field (PVF): is an 8-byte cryptographicmarker

used by the controller to validate the path. Each switch cal-

culates it based on equation given above. Upon request, the

switch sends the packet header and its PVF to the controller.

As 𝑆0 is the first switch of the path, no previous PVF can be in-

cluded in the computation of 𝑃𝑉 𝐹 (𝑆0) leading 𝑃𝑉 𝐹 (𝑆0) = 𝑀𝐴𝐶𝐾0 (𝐶).

3.2 SDNsec Packet Headers
The packet header used in SDNsec protocol is depicted in Figure 2.

It including several fields for forwarding, path validation, and link-

failure recovery. We note that the third byte consists of three fields:

the packet type (1 bit), a “do not detour” flag (1 bit), and a link

failure counter (6 bits):

• PktType (Packet Type): A single bit flag indicating if the

packet is multicast/broadcast or unicast.

• FE Ptr (Forwarding Entry Pointer): A one-byte pointer to the

forwarding entry (FE) that each switch on the path must

examine. Each switch updates and encrypts this value ac-

cordingly. The forwarding entry pointer ensures that the

next-hop switch checks the correct FE.

• LFC (Link Failure Counter): A 6-bit counter indicating the

number of failed links the packet encounters on its path to

the destination.

• EgressID (Egress Switch ID): A 2-byte ID for identifying the

egress switch when a core switch suffers a link failure and

needs to determine an alternate path to the egress switch.

We choose to not address issues related to link failures, and our

models do not account for any information related.

0 1 2 3 4 5 6 7

Ethernet FE ptr ExpTime

FlowID
Egress Switch

ID

sequence number

Path Validation Field

Egress

𝐼𝐹1

𝑀𝐴𝐶1

}
FE(𝑆1)

Egress

𝐼𝐹2

𝑀𝐴𝐶2

}
FE(𝑆2)

Egress

𝐼𝐹𝑖
𝑀𝐴𝐶𝑖

}
FE(𝑆𝑖 )

Egress

𝐼𝐹𝑛
𝑀𝐴𝐶𝑛

}
FE(𝑆𝑛 )

L3 Data

Figure 2: SDNsec Packet Header Layout.

4 Modeling SDN Protocols
We first introduce the applied Π-Calculus [1]. We then give a formal

model for SDN protocols in this framework.

4.1 The Applied Π-Calculus
The applied Π-Calculus is an extension of the process calculus

the Π-Calculus. It is among the most used languages for modeling

security protocols in formal verification of cryptographic protocols.

It is also the input language of ProVerif. In the following, we do

not go into the full details of the calculus syntax and semantics.

Instead, we focus on the grammar of the calculus that is relevant

for modeling our security properties [1].

In the applied Π-Calculus, systems are described as processes.

Given two processes 𝑃 and𝑄 , 𝑃 |𝑄 denotes the parallel composition

of 𝑃 and𝑄 . Given a name 𝑛, for example a secret key 𝑠𝑘 , the process

𝜈𝑛 · 𝑃 makes a new private name then runs 𝑃 . Processes can also be

extended with active substitutions. We write 𝑃𝜎𝑠𝑘 when the free

variable 𝑥 of 𝑃 is substituted by 𝑠𝑘 . An extended process is called

close, when all its free variables are replaced by active substitutions.

To reason about the security properties, a syntactical extension

of the applied Π-Calculus, used by many tools, consists of anno-

tating processes using events. Therefore, the reachability of the

events and/or the correspondence between them are often used to

formalize trace based security properties.
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4.2 Model of SDN Protocols
An SDN protocol involves four main parties: a controller𝐶 , ingress

switches 𝑆𝑖 , egress switches 𝑆𝑒 and core switches 𝑆𝑐 . In the fol-

lowing, we give a formal specification of SDN protocols in the

applied Π-Calculus. However, we should first make some assump-

tions about the topology of the network we are considering. Since,

we consider the Dolev-Yao’s attacker (that controls the entire net-

work), we make the assumption that all entities can communicate

with one another. This enables the attacker to establish any con-

nection between any node in the network. The topology of the

network model is thus a complete graph between all entities. In

addition to that, in our model, we let the users choose the length

of the route of their choice. We first give a general definition in

applied Π-Calculus for any SDN protocol with one controller and

some switches.

Definition 4.1 (SDN Protocol). An SDN Protocol is a tuple (𝐶, 𝑆𝑖 ,
𝑆𝑒 , 𝑆𝑐 , �̃�𝑝 ) where 𝐶 is the process executed by the controller, 𝑆𝑖
is the process executed by the ingress switches, 𝑆𝑒 is the process

executed by the egress switches, 𝑆𝑐 is a process executed by the

core switches and �̃�𝑝 is a set of private channel names to allow

communication between these entities.

We note that different processes can be run by the same entity,

depending on the protocol and the roles played by the switches

within it. Moreover, we do not impose any restrictions on the set

of private channel names, which may be empty when the SDN

protocol does not require private channels.

Definition 4.2 (SDN instance). An SDN instance is a closed process
𝑆𝑃 = 𝜈�̃�·(𝑆𝑖𝜎𝑖𝑑𝑖

1

𝜎𝑠𝑘𝑆𝑖
1

| . . . |𝑆𝑖𝜎𝑖𝑑𝑖 𝑗 𝜎𝑠𝑘𝑆𝑖 𝑗 |𝑆𝑒𝜎𝑖𝑑𝑒1

𝜎𝑠𝑘𝑆𝑒
1

| . . . |𝑆𝑒𝜎𝑖𝑑𝑒𝑘
𝜎𝑠𝑘𝑆𝑒𝑘

|𝑆𝑐𝜎𝑖𝑑𝑐
1

𝜎𝑠𝑘𝑆𝑐
1

| . . . | 𝑆𝑐𝜎𝑖𝑑𝑐𝑙 𝜎𝑠𝑘𝑆𝑐𝑙 |𝐶) where �̃� is the set of

all restricted names, which includes the set of the protocol’s pri-

vate channels; 𝑆𝑖𝜎𝑖𝑑𝑖𝑚 𝜎𝑠𝑘𝑆𝑖𝑚 are the processes run by the ingress

switches with the substitutions specifying the identity and the pri-

vate name of the𝑚𝑡ℎ switch; 𝑆𝑒𝜎𝑖𝑑𝑒𝑝 𝜎𝑠𝑘𝑆𝑒𝑝 are the processes run

by the egress switches with the substitutions specifying the iden-

tity and the private name of the 𝑝𝑡ℎ switch; 𝑆𝑐𝜎𝑖𝑑𝑐𝑛 𝜎𝑠𝑘𝑆𝑐𝑛 are the

processes run by core switches with the substitutions specifying

the identity and the private name of the 𝑛𝑡ℎ switch and 𝐶 is the

process executed by the controller.

Some SDN protocols do not involve cryptographic primitives at

all, so the switches do not involve private names. In that case, we

can simply write 𝑆𝜎𝑖𝑑 instead of 𝑆𝜎𝑖𝑑𝜎𝑠𝑘 i.e. the latter substitution
does not alter the semantics. Once again, it should be noted that

the preceding definitions are sufficiently broad to be instantiated

with any SDN protocol up to the processes’ specifications.

5 Modeling Security Properties
We model the payload integrity, Route integrity and accountability

for any SDN protocols using events and first-order logic formulas.

Events, whose parameters refer to the information contained in

the exchanged messages, indicate steps followed during the execu-

tion of the protocol. They are simply annotations that do not alter

processes’ behaviors yet are inserted at specific locations to allow

reasoning about the protocol’s execution. The idea is to raise events

at the right place in the processes and thanks to these events, it

is possible to model traced based security properties. We describe

how to place such events in a SDN protocol and give the formal

definition of our three security properties based on them. In the

next section, we apply our modelings to SDNsec.

5.1 Payload Integrity
This property ensures that data remain unaltered during transmis-

sion. Attacks on this property would thus imply any core-switches

of the route modifying the payload of the packet during transport.

We model payload integrity with a trace property. We define two

events where p is the payload of the packet. Note that in our work,

we assume that the payload is immutable and we consider it to be

the user data, and we aim to secure its integrity. We define two

events to be thrown in the protocol model:

• begin(𝑝): is the event inserted when the payload 𝑝 begins its

journey through the network. Typically, this event would be

triggered at the source node, where the data packet is first

received.

• end(𝑝): is the event added at the final node and is triggered

when the packet leaves this last node.

The payload integrity property ensures that the payload has

successfully completed its journey without being altered, ensuring

that its integrity is preserved.

Definition 5.1 (Payload Integrity). An SDN protocol ensures Pay-

load Integrity, if for every SDN process, each occurrence of the

event end(p) is preceded by an occurrence of the event begin(p).

event(end (𝑝)) ⇒ event(begin(𝑝))

5.2 Route integrity
This property ensures that packet will properly follow the route des-

ignated by the controller. Attacks on this property would thus imply

re-routing the packet to core-switches that were not part of the des-

ignated route
1
. Let us assume, without loss of generality, the follow-

ing route to be chosen by the controller: 𝑅 = (𝑆0, 𝑆1, . . . , 𝑆𝑛) such
that 𝑆0 is an ingress switch, 𝑆𝑛 is an egress switch and 𝑆 𝑗,1≤ 𝑗≤𝑛−1

are core switches. Let event(𝑏𝑒𝑔𝑖𝑛𝑆𝑘 ) be the event inserted into

the process of the switch 𝑆𝑘 at the location where it forwards the

packet. Likewise, let event(𝑒𝑛𝑑𝑆𝑘 ) be the event inserted into the

process of the switch 𝑆𝑘+1 when the latter receives and accepts the

incoming packet. We define four properties: (i) Local route integrity,

(ii) Transitional route integrity, (iii) Weak route integrity, and (iv)

Strong route integrity.

The first property ensures a local integrity of the route. It means

that one switch locally starts and finishes correctly its execution.

Definition 5.2 (Local Route Integrity). An SDN protocol ensures

Local Route Integrity with regard to the switch 𝑆𝑘 belonging to

the route 𝑅\{𝑆0}, if for every SDN process, each occurrence of the

event beginS𝑘 is preceded by an occurrence of the event 𝑒𝑛𝑑𝑆𝑘−1
.

event(𝑏𝑒𝑔𝑖𝑛𝑆𝑘 ) ⇒ event(𝑒𝑛𝑑𝑆𝑘−1
)

1
An attack example could for instance be a payload that should not transit through

switches of some country for national security reasons and that could be re-routed to

switches from this country as part of the attack.
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The second property ensures the integrity of transitions between

local routes. We call it transitional route integrity, since it models

the fact that the switches sent the packets according to the route.

Definition 5.3 (Transitional Route Integrity). An SDN protocol

ensures Transitional Route Integrity with regard to the switches 𝑆𝑘
and 𝑆𝑘+1 belonging to the route 𝑅, if for every SDN process, each

occurrence of the event 𝑒𝑛𝑑𝑆𝑘 is preceded by an occurrence of the

event 𝑏𝑒𝑔𝑖𝑛𝑆𝑘 .

event(endS𝑘 ) ⇒ event(𝑏𝑒𝑔𝑖𝑛𝑆𝑘 )

The third property ensures that whenever a route ends, all

switches within the route have at least participated in the protocol.

Definition 5.4 (Weak Route Integrity). An SDN protocol ensures

Weak Route Integrity with regard to the route 𝑅, if for every SDN

process, each occurrence of the event 𝑒𝑛𝑑𝑆𝑛 is preceded by the

occurrence of all events 𝑏𝑒𝑔𝑖𝑛𝑆𝑘 for all 𝑘 ∈ {0 . . . 𝑛}.

event(𝑒𝑛𝑑𝑆𝑛) ⇒
𝑛∧
𝑘=0

event(𝑏𝑒𝑔𝑖𝑛𝑆𝑘 )

The last property is the strongest one. It ensures that local route

integrity and transitional route integrity are satisfied.

Definition 5.5 (Strong Route Integrity). An SDN protocol ensures

Strong Route Integrity with regard to the route 𝑅, if for every SDN

process we have:

𝑛∧
𝑘=0

(event(𝑒𝑛𝑑𝑆𝑘 ) ⇒ event(𝑏𝑒𝑔𝑖𝑛𝑆𝑘 ))∧

𝑛−1∧
𝑘=0

(event(𝑏𝑒𝑔𝑖𝑛𝑆𝑘+1) ⇒ event(𝑒𝑛𝑑𝑆𝑘 ))

In the following theorem, we demonstrate that strong route

integrity implies weak route integrity. The corresponding proof is

given in Appendix A.

Theorem 5.6. Let 𝑅 be a route, then if a protocol ensures Strong
Route Integrity it implies that it ensures Weak Route Integrity.

Such result is very important. First, it allows us to only verify

Strong Route Integrity property for secure protocols. For insecure

protocols, if we find an attack against Weak Route Integrity, we

do not have to test the other property. Note that Strong Route

Integrity is a more complex property, then it might be more difficult

to verify by the tools. It is therefore interesting to provide a weaker

version for early attack detection. Second, one may find Strong

Route Integrity to be a very strong property, especially for protocols

that do not involve cryptographic mechanisms. The weak version

may appear to be sufficient in this case. Since we wanted to propose

general definitions without sticking to one particular SDNprotocol,

we proposed both definitions.

5.3 Accountability
Developing security protocols requires trusting some participants.

Trustworthiness can be bolstered by holding participants account-

able for their actions, as this drives them to steer clear malicious

actions. We formally define accountability for SDN protocols fol-

lowing mainly the exposition of Bruni et al [8]. We suppose that

the switches can misbehave and thereof can be indicted and that

the controller is the only trusted party participating in the protocol.

In order to establish accountability for misbehavior, we must first

define what misbehavior means.

Definition 5.7 (honest 𝑆𝑖 ). A switch 𝑆𝑖 is considered to be honest
if it is a legitimate participant in the protocol which will not deviate

from the defined protocol.

We therefore define misbehavior as any deviation from the pro-

tocol. If the switch does not depart from the protocol specifications,

then it is considered honest. It is noteworthy that the latter defini-

tion does not exclude a collusion between honest switches and the

attacker, as switches still have the ability to transmit confidential

information to the intruder. We believe that the latter scenario alone

is not pertinent to our definition of accountability, provided that it

does not result in a deviation from the protocol. Let T be a target or

a goal which should be verified within the protocol. Let𝑉T and𝐴T
be two processes with only two possible outcomes 0 or 1 and let

event(V𝑜𝑘 ) and event(V𝑘𝑜 ) be the events inserted into the process

𝑉T at the location where it outputs 1 and 0 respectively. Similarly,

we place the events event(A𝑜𝑘 ) and event(A𝑘𝑜 ) into the process

𝐴T . In order to account for a misbehaving switch in relation to the

target T , it is important that the protocol provides means to verify

whether the target has been reached or not. Otherwise, we cannot

hold a party accountable when we are unable to verify at least the

attainability of the goal.

Definition 5.8 (Verifiability). An SDN protocol is verifiable with

regard to T if for every SDN process we have:

(1) event(V𝑜𝑘 )⇒ T
(2) T ⇒ event(V𝑜𝑘 )

The first condition guarantees that the process𝑉T returns 1 only

if T holds when running the protocol. The second condition implies

that the process cannot return 0 if the switches do not deviate from

the protocol in a way that falsifies T .

Definition 5.9 (Accountability). An SDN protocol guarantees ac-

countability of the switch 𝑆𝑖 , with regard to T , if for every SDN

process we have:

(1) The SDN protocol is verifiable with regard to T
(2) (soundness) event(A𝑘𝑜 )⇒ 𝑆𝑖 is honest

(3) (completeness) 𝑆𝑖 is honest⇒ event(A𝑘𝑜 )

Soundness guarantees that the process 𝐴T returns 0 only if the

indicted switch is honest. Completeness states that the 𝐴T cannot

return 1 if the indicted switch is honest.

6 Application to SDNsec
For sake of simplicity, we present our model for the simplest topol-

ogy to find an attack, it means with only three switches. To be

general enough, we provide a Python script that given a length

𝑛 of a route generates the corresponding models. As explain in

Section 5, we focus on three relevant aspects of the SDNsec pro-

tocol (payload integrity, route integrity, and accountability). We

implement all properties on two versions of SDNsec: (i) SDNsec

modeled directly from [40] and (ii) a corrected version of SDNsec

where we propose fixing attacks found on the original version of
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Payload Integrity
Route Integrity Accountability

Local RI Trans. RI Weak RI Strong RI Soundness Completeness

SDNsec [40] UNSAFE SAFE UNSAFE UNSAFE UNSAFE SAFE UNSAFE

SDNsec★ SAFE SAFE SAFE SAFE SAFE SAFE SAFE

Table 2: Results of the analysis of the SDNsec protocol and the proposed corrected version SDNsec★with ProVerif.

the protocol. We model both channels for both data exchange be-

tween switches alongside control frames between switches and the

controller. As it was stated in [40] that communications between

switches and the controller are considered secure
2
, we model these

channels as private channels in ProVerif (referred as c_s0 and c_s2
in the models), oppositely to the public channel c used between

switches and accessible to the attacker. The attacker is unable to

access private channel yet has complete control on the public one

(can inject, intercept, block and send messages).

Table 2 summarizes results found by ProVerif regarding payload

integrity, route integrity and accountability properties for SDNsec.

In Section 6.2, we explain results of SDNsec regarding payload in-

tegrity. In Section 6.1, we present our ProVerif models. In Section 6.3,

we detail results for all flavors of route integrity. In Section 6.4, we

explain the results found for accountability. Finally, in Section 6.5,

we showcase our proposal correction for SDNsec and display results

for the properties. All ProVerif models can be found in artifacts [4].

6.1 Automated Verification with ProVerif
In the previous section, we gave formal definitions of SDN protocols

in the applied 𝑃𝑖-Calculus and security properties using first-order

logic formulas over events. Most of the existing symbolic tools

supports the specification of trace properties (reachability and cor-

respondence of events) via first-order logic such as ProVerif [6],

SAPIC
+
[11], Verifpal [30] and Tamarin [37]. Thereof, our security

properties can be easily encoded within several automated veri-

fiers. As we used ProVerif in this work, we provide an overview of

this tool and how we use it to model processes and our security

properties.

let ProcessS0(sk0: skey) =
in(c, n_s0: nat);
new p: bitstring;
let p_encrypted = senc(p, sk0) in
out(c_s0, (p_encrypted, n_s0));
in(c_s0, y: bitstring);
let(F: bitstring, t: bitstring, [. . .]) =
sdec(y, sk0) in [. . .]
event begins0(egr0);
out(c, [. . .]

Figure 3: Process of Ingress switch in ProVerif.

In symbolic models, messages are represented as terms which

can be either atomic (fresh values such as keys or random coins) or

2
Section II-B: “The communication channel between the controller and benign switches
is secure (e.g., TLS can be used, as in OpenFlow).”

constructed by applying function symbols. For instance the term

𝑀𝐴𝐶 (𝑠𝑘,𝑚) represents a message authentication code computed

with a secret key 𝑠𝑘 and a message𝑚. A simplified extract of the

process modeling the ingress switch role is shown in Figure 3.When

defining a process in ProVerif, we begin by specifying its private

names. The private name for the ingress switch corresponds to its

secret key 𝑠𝑘0. Then, the ingress switch receives a sequence num-

ber generated by the attacker. We made the latter choice to give

the attacker more power over the messages. Nonetheless, the only

condition that we apply to the sequence number is uniqueness. We

do this by means of restrictions provided by ProVerif. The switch

creates a new payload new p, encrypts it using its secret key and

sends the ciphertext p_encrypted along with the sequence num-

ber to the controller through the private channel c_s0. The event
event begins0(egr0) is positioned, as defined in Section 5.2,

in the beginning of the route (when the ingress switch sends the

packet to the following switch).

Additionally, we need to explain how the different roles are run

in parallel. The main process modeled in ProVerif in depicted is

Figure 4. We model the role of the controller alongside three roles

for switches: ProcessS0 (ingress switch), ProcessS1 (core switch),

and ProcessS2 (egress switch). We define a session of the protocol,

a set of these four processes. All sessions are instantiated with

a secret symmetric key per switch, shared with the controller of

the session. The symbol ! in front of the processes instantiates

unbounded number of sessions.

process
!(new sk0: skey;new sk1: skey;
new sk2: skey;
(! Controller(sk0,sk1,sk2)) | (! ProcessS0(sk0))
(! ProcessS1(sk1)) | (! ProcessS2(sk2)))

Figure 4: Main process for 3 switches in ProVerif.

Properties on traces can be expressed by means of correspon-

dence or reachability queries. Reachability queries over an event

means that there exists an execution or a trace of the protocol where

this event is reached. For example, to check the property of Local
Route Integrity with regard to the switch 𝑠1 the event we write the

query depicted in Figure 5 in the ProVerif file.

query egr0: bitstring; event(ends0) ⇒ event(begins0(egr0)

Figure 5: Local Route Integrity for Switch 𝑠1.

Either the tool confirms the security property by displaying true,
or it finds an attack trace that violates the property and outputs
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Controller Switch S0 Switch S2 Attacker

......... ......... ......... .........

𝑠𝑘0, 𝑠𝑘1, 𝑠𝑘2 𝑠𝑘0 𝑠𝑘2 �

new 𝑝, 𝑛

beginPayload(𝑝)

(senc(𝑝 , 𝑠𝑘0), 𝑛)

new 𝐹, 𝑡

𝑚←(𝐹, 𝑡, 𝑒𝑔𝑟1, 𝑀𝐴𝐶1,

𝑒𝑔𝑟2, 𝑀𝐴𝐶2)

senc(𝑚, 𝑠𝑘0)

(𝐹, 𝑡, 𝑛, 𝑃𝑉 𝐹0, 𝑒𝑔𝑟1, 𝑀𝐴𝐶1, 𝑒𝑔𝑟2, 𝑀𝐴𝐶2, 𝑝)

(𝐹, 𝑡, 𝑎1, 𝑎2, 𝑒𝑔𝑟1, 𝑀𝐴𝐶1, 𝑒𝑔𝑟2, 𝑀𝐴𝐶2, 𝑎3)

endPayload(𝑎3)

Figure 6: Attack against Payload Integrity.

false, or displays cannot be proved which means that the tool was

unable to conclude
3
. The full processes model in case of three

switches are given in Appendix B.

6.2 Verification of Payload Integrity
ProVerif finds an attack which is displayed in Figure 6. As in [40],

we do not model hosts and consider ingress and egress switches as

source and destination
4
. Thus the trace starts with 𝑆0 creating the

payload 𝑝 and sending it to the controller alongside the sequence

number 𝑛. The controller computes all FE information and sends

them to 𝑆0. The message that 𝑆0 would send to 𝑆1 is intercepted by

the attacker who later sends a message directly to 𝑆2, completely

bypassing 𝑆1. In this message, the attacker ignores the sequence

number which they replace by a value 𝑎1 chosen by the attacker

and the PVF1 which they replace by another value 𝑎2 chosen by

the attacker. More importantly, they also replace the payload 𝑝 by

another payload called 𝑎3. 𝑆2 triggers the event endPayload(a3), for

which no event beginPayload(a3) exists.

Admittedly, no PVF verification has been performed which can

seem odd. This is explained since [40] mention that PVF verification

is only performed re-actively and is not required for 𝑆2 to send

the payload to its destination. However, we can confirm that the

controller will detect a PVF mismatch (this can easily be modeled

if we move the event endPayload from 𝑆2 to 𝐶). To circumvent this

attack against payload integrity, a hash of the payload needs to be

added to Forwarding Entry as later explained in Section 6.5.

3
It is noteworthy to mention that, although we did not encounter those cases in this

work, ProVerif is actually sound but not complete [7], which means that the tool may

find false attacks. In this case, the attack trace should be manually inspected. ProVerif

also may not terminate

4
Section V-B: “However, an important difference is that we consider the ingress and

egress switch – not the hosts – as the source and destination, respectively.”

Controller Switch S0 Switch S2 Attacker

......... ......... ......... .........

𝑠𝑘0, 𝑠𝑘1, 𝑠𝑘2 𝑠𝑘0 𝑠𝑘2 �

new 𝑝, 𝑛

(senc(𝑝 , 𝑠𝑘0), 𝑛)

new 𝐹, 𝑡

𝑚←(𝐹, 𝑡, 𝑒𝑔𝑟1, 𝑀𝐴𝐶1,

𝑒𝑔𝑟2, 𝑀𝐴𝐶2)

senc(𝑚, 𝑠𝑘0)

begins0(egr0)

(𝐹, 𝑡, 𝑛, 𝑃𝑉 𝐹0, 𝑒𝑔𝑟1, 𝑀𝐴𝐶1, 𝑒𝑔𝑟2, 𝑀𝐴𝐶2, 𝑝)

(𝐹, 𝑡, 𝑎1, 𝑎2, 𝑒𝑔𝑟1, 𝑀𝐴𝐶1, 𝑒𝑔𝑟2, 𝑀𝐴𝐶2, 𝑎3)

ends1

Figure 7: Attack against Weak Route Integrity.

6.3 Verification of Route Integrity
ProVerif finds an attack on transitional route integrity which is

displayed in Figure 7. As strong route integrity requires transitional

route integrity, strong route integrity is invalid as well. We can

remark that weak route integrity is however guaranteed, illustrating

that this property is much more loose.

The trace starts with 𝑆0 creating the payload 𝑝 and sending it

to the controller alongside the sequence number 𝑛. The controller

computes all FE information and sends them to 𝑆0. Themessage that

𝑆0 would send to 𝑆1 is intercepted by the attacker who later sends

a message directly to 𝑆2, completely bypassing 𝑆1. In this message,

the attacker ignores the sequence number which they replace by a

value 𝑎1 chosen by the attacker and the PVF1 which they replace

by another value 𝑎2 chosen by the attacker. More importantly, they

also replace the payload 𝑝 by another payload called 𝑎3. 𝑆2 triggers

the event endS1(egr1, egr2), for which no event beginS1(egr1, egr2)

exists. Indeed, 𝑆1 have been completely skipped by the attacker. To

the best of our understanding, this kind of attack is referenced as

path shortcut in [40]
5
. Our model confirms that SDNsec does not

prevents path shortcut attacks. To circumvent this attack against

route integrity, a hash of the previous PVF needs to be added to

Forwarding Entry as later explained in Section 6.5.

6.4 Verification of Accountability
ProVerif finds an attack on the completeness property. According

to Definition 5.9, it means that if all switches are honest, the verifi-

cation of the final PVF should never fail. Otherwise, the controller

would be likely to accuse an honest participant. In SDNsec, it is

possible for the computation of the final PVF to fail even though all

5
Section II-A: Path shortcut: A switch redirects a packet and skips other switches on

the path; the packet is forwarded only by a subset of the intended switches.
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Controller Switch S0 Switch S2 Attacker

......... ......... ......... .........

𝑠𝑘0, 𝑠𝑘1, 𝑠𝑘2 𝑠𝑘0 𝑠𝑘2 �

new 𝑝, 𝑛

(senc(𝑝 , 𝑠𝑘0), 𝑛)

new 𝐹, 𝑡

𝑚←(𝐹, 𝑡, 𝑒𝑔𝑟1, 𝑀𝐴𝐶1,

𝑒𝑔𝑟2, 𝑀𝐴𝐶2)

senc(𝑚, 𝑠𝑘0)

begins0(egr0)

(𝐹, 𝑡, 𝑛, 𝑃𝑉 𝐹0, 𝑒𝑔𝑟1, 𝑀𝐴𝐶1, 𝑒𝑔𝑟2, 𝑀𝐴𝐶2, 𝑝)

(𝐹, 𝑡, 𝑎1, 𝑎2, 𝑒𝑔𝑟1, 𝑀𝐴𝐶1, 𝑒𝑔𝑟2, 𝑀𝐴𝐶2, 𝑎3)

ends1

begins2(egr2)

(𝐹,𝑀𝐴𝐶 (𝑠𝑘2, (𝑎2, 𝐹 , 𝑎1 + 1))

A𝑘𝑜

Figure 8: Attack against Completeness of Accountability.

participants are honest (due to attacks found on payload integrity

and route integrity).

The trace starts with 𝑆0 creating the payload 𝑝 and sending it

to the controller alongside the sequence number 𝑛. The controller

computes all FE information and sends them to 𝑆0. Themessage that

𝑆0 would send to 𝑆1 is intercepted by the attacker who later sends

a message directly to 𝑆2, completely bypassing 𝑆1. In this message,

the attacker ignores the sequence number which they replace by a

value 𝑎1 chosen by the attacker and the PVF1 which they replace

by another value 𝑎2 chosen by the attacker. They also replace the

payload 𝑝 by another payload called 𝑎3. As accountability aims at

verifying if the controller can re-actively discriminate which switch

is responsible of an invalid PVF, the trace continues with 𝑆2 sending

its erroneous PVF2 to the controller, where 𝑃𝑉 𝐹1 has been replaced

by 𝑎2, and SeqNo by 𝑎1, both breaking the chaining of PVF values.

The computation of the final PVF requires both the honest value

of the sequence number generated by the ingress switch, and the

correct chain of PVF values. ProVerif shows that an attacker is able

to alter both terms of the packets when intercepting them without

being detected by honest switches. Thus, the final PVF computed by

the egress switch would not correspond to the final PVF computed

by the controller. To circumvent this attack against route integrity,

a hash of the previous PVF and previous sequence number need to

be added to Forwarding Entry as later explained in Section 6.5.

Accountability soundness, on the other hand, checks if dishonest

switches (who’s keys have been leaked to the attacker) can indeed

forge invalid PVF, which explains why soundness always shows an

attack in Table 2.

6.5 Proposed Correction
As we showed in Table 2, the version of SDNsec we modeled

from [40] is vulnerable to attacks against payload integrity, transi-

tional route integrity, strong route integrity and accountability. In

this section, we propose simple corrective measures to circumvent

these attacks. They involve simple modifications to the protocol

from [40] in the computation of Forwarding Entries. The modified

computation of Forwarding Entry equation is as follows:

𝐵 = 𝐹𝑙𝑜𝑤𝐼𝐷 ∥ 𝐸𝑥𝑝𝑇𝑖𝑚𝑒
𝐹𝐸 (𝑆𝑖 ) = 𝑒𝑔𝑟 (𝑆𝑖 ) ∥ 𝑀𝐴𝐶 (𝑆𝑖 )
𝑀𝐴𝐶 (𝑆𝑖 ) = 𝑀𝐴𝐶𝐾𝑖

(𝑒𝑔𝑟 (𝑆𝑖 ) ∥ 𝐹𝐸 (𝑆𝑖−1) ∥
𝐵 ∥ H(p ∥ PVF(Si−1) ∥ SeqNoi−1))

As mentioned in attack descriptions, we proposed a correction

for each attack involving one or two terms to add to Forwarding En-
tries. The following modifications in the computation of FE merges

each of the proposed fixes:

• 𝐻 (𝑝) added for payload integrity;

• 𝐻 (𝑃𝑉 𝐹𝑖−1) added for transitional route integrity (and thus

strong route integrity);

• 𝐻 (𝑃𝑉 𝐹𝑖−1 ∥ 𝑆𝑒𝑞𝑁𝑜𝑖−1
) added for accountability complete-

ness.

We applied the latter modifications to the SDNsec protocol and

re-analyzed it again with ProVerif. The results of the analysis of the

modified version of the protocol, which we refer to as SDNsec★, are

depicted in Table 2. ProVerif confirms that all the tested properties

are verified.We also analyzed SDNsec★while varying the number of

switches within the protocol. The results of the analysis are depicted

in Figure 9. Once again, the security properties are verified, taking

into account up to 20 switches within the protocol architecture.

Figure 9: Execution time of ProVerif files depending on the
number of switches
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7 Implementation with RYU SDN Controller
To confirm the feasibility of our attacks and correction, we carried

out an implementation of SDNsec with and without our correc-

tion. This implementation was realized in Python relying on the

RYU [46] SDN controller [24] and the Mininet network emulator.

Tests are run on an Ubuntu 24.04 machine with Linux kernel 5.4.0-

189-generic, hosted on a system with an Intel(R) Core(TM) i5-6500

CPU @ 3.20GHz (featuring SSE4.2), and equipped with 15,861 MB

of physical memory. The specific versions of the software used in

our setup include RYU controller 4.43, Python 3.8.5, Mininet 2.3.0,

Wireshark 3.2.3, and ProVerif 2.05.

We created a network topology representing Figure 1 using

Mininet. The topology consists of two hosts, 𝐻1 and 𝐻2, and four

switches, 𝑆0, 𝑆1, 𝑆2, and 𝑆12, with 𝑆0, 𝑆1, and 𝑆2 being honest

switches and 𝑆12 being a malicious switch, representing the role of

the attacker. The controller uses secret keys to calculate and verify

Message Authentication Codes (MACs) for packets as required by

the protocol. We implemented the SDNsec solution as a custom

RYU application, which manages the packet forwarding and verifi-

cation using Hashed Message Authentication Code (HMAC). The

application was designed to handle packets with a specific custom

header.

Our goal was to replicate the attacks found in Figures 6, 7, and 8.

All three attacks involve the attacker intercepting the message sent

by 𝑆0 and sending it directly to 𝑆2, bypassing 𝑆1. Obviously, as

RYU is a SDN controller simulator, it was not engineered to include

attackers. We thus chose to replicate the attack by forcing the traffic

between 𝑆0 and 𝑆2 through a malicious switch called 𝑆12 (ignoring

𝑆1), while computing all values of SDNsec (FE, PVF) with the route

𝑆0 → 𝑆1 → 𝑆2. Thus, SDNsec will impose the route 𝑆0 → 𝑆1 → 𝑆2

while RYU will force a different route. The goal is to check if the

implementation of SDNsec will detect the path shortcut attack that

was found by ProVerif. Obviously, we also implemented the correct

route in RYU making sure that the protocol executes correctly.

In case of normal topology (without path shortcut) with SDNsec

from [40], RYU correctly implements the protocol, verifying all cryp-

tographic values. When switching to the topology short-cutting 𝑆1,

RYU is unable to detect the PVF modification as found by ProVerif,

confirming the attack. When implementing our proposed correc-

tion as in Section 6.5, RYU is now able to detect the attack. Finally,

if we switch back the topology to the correct one, while keeping

our correction, RYU is able to complete the protocol correctly, con-

firming our results. As these tests were done on a Python simulator

using optimized cryptographic libraries, impacts of cryptographic

operations appeared negligible
6
. All RYU implementation code are

available in artifacts [4].

8 Ethics and Responsible Disclosure
While the attacks found by ProVerif in Section 6 completely vio-

late the properties that were supposed to be guaranteed by [40], it

is important to note that their work is only a proposal resulting

from an academic work. To the best of our knowledge, there is cur-

rently no off-the-shelf product implementing the original protocol

from [40]. Thus, no real responsible disclosure procedure such as

creating a CVE seemed important after our findings. We however

6
More realistic experiments will be carried-on as part of future work.

notified the authors from [40] to warn them from about the result

of our analysis. The absence of a real product also explains why the

implementation we proposed Section 7 is done using a simulated

environment. We hope that whenever an industrial version of a

secure SDN protocol is proposed by vendors, they will take our

results into consideration.

9 Conclusion and Future Perspectives
We define a formal framework for the analysis of secure SDN pro-

tocols. We show how to model SDN protocols in the applied Π-
Calculus and define three relevant security properties namely pay-

load integrity, route integrity and accountability. Our primary goal

is to ensure the integrity of the payload within the Network while

also reinforcing route integrity. Therefore, we distinguish two types

of route integrity, namely weak and strong, as the latter may appear

to be exceedingly restrictive depending on the requirements of the

protocol.

Using ProVerif, we rigorously analyzed the security of SDNsec.

Our analysis shows that it satisfies none of the three security prop-

erties and it highlights the importance of the security aspects in

SDN’s data plane, especially concerning misrouting and unautho-

rized modifications of packet forwarding rules. In SDNsec, switches

send the path validation function (PVF) only upon the controller’s

request. We directed our research towards securing the protocol

even in scenarios where the controller does not explicitly request

PVF values. We proposed to enhance the cryptographic mecha-

nisms by incorporating a hash of the payload, the sequence number

and the previous switch’s PVF value. This approach ensures that

path enforcement and validation are preserved under all conditions,

including cases where no requests are initiated by the controller.

We also implement the SDNsec solution using RYU and Mininet

to replicate the attacks. Based on our enhancements, our tests suc-

cessfully detected attacks related to both payload integrity and

route integrity, even in the absence of PVF verification. We have

yet to explore the impact of our cryptographic enhancements on

network performance metrics, such as bandwidth, latency, or re-

source consumption, although we believe that they do not affect the

performances. Expanding our tests to more complex architectures

will allow us to evaluate the broader applicability of our solution

across various SDNsec deployments. These challenges remain cru-

cial for ensuring that our approach is resilient and effective in a

wider range of scenarios.

Another challenging continuation of our work is to try to adapt

to SDN security analysis the result given in [15], where the authors

reduce the number of topology to perform formal analysis in routing

protocol. Therefore, we will no longer need to vary the number of

switches in the protocol in order to check its security.
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A Proof of Theorem 5.6
In the following, we prove the Theorem 5.6 stating if a protocol

ensures Strong Route Integrity with regard to a route 𝑅 then it

ensuresWeak Route Integrity.

Proof. For ease of notation, we refer to the events event(𝑒𝑛𝑑𝑆𝑖 )

and event(𝑏𝑒𝑔𝑖𝑛𝑆 𝑗 ) by 𝑒𝑖 and 𝑏 𝑗 respectively. Moreover, in addition

to the logical disjunction and conjunction symbols, we use the

multiplicative and additive symbols for the same logical purposes

respectively; and let {0, 1} be our Boolean domain. We prove the

theorem by induction.

• For 𝑛 = 1, we suppose that our Strong Route Integrity prop-

erty is verified. By definition, we have (𝑒1 ⇒ 𝑏1)(𝑒0 ⇒
𝑏0)(𝑏1 ⇒ 𝑒0) which can be rewrite as follows (𝑒1 + 𝑏1) (𝑒0 +
𝑏0) ( ¯𝑏1 + 𝑒0).
By definition of the property of Weak Route Integrity, in the

case of 𝑛 = 1, (𝑒1 ⇒ 𝑏0𝑏1) which is equivalent to 𝑒1 + 𝑏0𝑏1.

We want to prove :

(𝑒1 + 𝑏1) (𝑒0 + 𝑏0) ( ¯𝑏1 + 𝑒0) ⇒ 𝑒1 + 𝑏0𝑏1

which is equivalent :

(𝑒1
¯𝑏1) + (𝑒0

¯𝑏0) + (𝑏1𝑒0) + 𝑒1 + 𝑏0𝑏1

We use the equality 𝑎+𝑎𝑏 = 𝑎+𝑏 to simplify the formula and

prove that it is a tautology. We apply it successively with 𝑒1,

¯𝑏1, 𝑒0 and
¯𝑏0.

¯𝑏1 + (𝑒0
¯𝑏0) + (𝑏1𝑒0) + 𝑒1 + 𝑏0𝑏1

⇔
¯𝑏1 + (𝑒0

¯𝑏0) + 𝑒0 + 𝑒1 + 𝑏0𝑏1

⇔

¯𝑏1 + ¯𝑏0 + 𝑒0 + 𝑒1 + 𝑏0𝑏1

⇔
¯𝑏1 + ¯𝑏0 + 𝑒0 + 𝑒1 + 𝑏1

Which is always true since we have
¯𝑏1 + 𝑏1. It concludes the

case 𝑛 = 1.

• We assume that the theorem holds for some arbitrary natural

number 𝑛, that is:(
𝑛∏
𝑘=0

(𝑒𝑘 ⇒ 𝑏𝑘 )
𝑛−1∏
𝑘=0

(𝑏𝑘+1 ⇒ 𝑒𝑘 )
)
⇒

(
𝑒𝑛 ⇒

𝑛∏
𝑘=0

𝑏𝑘

)
We want to prove it is true for 𝑛 + 1:(
𝑛+1∏
𝑘=0

(𝑒𝑘 ⇒ 𝑏𝑘 )
𝑛∏
𝑘=0

(𝑏𝑘+1 ⇒ 𝑒𝑘 )
)
⇒

(
𝑒𝑛+1 ⇒

𝑛+1∏
𝑘=0

𝑏𝑘

)
We notice that:

𝑛+1∏
𝑘=0

(𝑒𝑘 ⇒ 𝑏𝑘 )
𝑛∏
𝑘=0

(𝑏𝑘+1 ⇒ 𝑒𝑘 )

⇔(
𝑛∏
𝑘=0

(𝑒𝑘 ⇒ 𝑏𝑘 )
𝑛−1∏
𝑘=0

(𝑏𝑘+1 ⇒ 𝑒𝑘 )
)
(𝑒𝑛+1 + 𝑏𝑛+1) ( ¯𝑏𝑛+1 + 𝑒𝑛)

⇔
𝛼 (𝑒𝑛+1 + 𝑏𝑛+1) ( ¯𝑏𝑛+1 + 𝑒𝑛)

where

𝛼 =

𝑛∏
𝑘=0

(𝑒𝑘 ⇒ 𝑏𝑘 )
𝑛−1∏
𝑘=0

(𝑏𝑘+1 ⇒ 𝑒𝑘 )

We also denote

𝜃 =

𝑛∏
𝑘=0

𝑏𝑘

We recall the following logical equivalencies: 𝑎𝑏 ⇒ 𝑐 ⇔
(𝑎 ⇒ 𝑐) + (𝑏 ⇒ 𝑐). Hence, we have:

𝑒𝑛+1 ⇒
𝑛+1∏
𝑘=0

𝑏𝑘 ⇔ 𝑒𝑛+1 ⇒
(
𝑏𝑛+1

𝑛∏
𝑘=0

𝑏𝑘

)
⇔

(
𝑒𝑛+1 ⇒

𝑛∏
𝑘=0

𝑏𝑘

)
(𝑒𝑛+1 ⇒ 𝑏𝑛+1)

⇔ (𝑒𝑛+1 ⇒ 𝜃 ) (𝑒𝑛+1 ⇒ 𝑏𝑛+1)
⇔ (𝑒𝑛+1 + 𝜃 ) (𝑒𝑛+1 + 𝑏𝑛+1)

We recall the following logical equivalencies: 𝑎 ⇒ 𝑏𝑐 ⇔
(𝑎 ⇒ 𝑏) (𝑎 ⇒ 𝑐). Hence, we need to prove:

𝛼 (𝑒𝑛+1 + 𝑏𝑛+1) ( ¯𝑏𝑛+1 + 𝑒𝑛) ⇒ (𝑒𝑛+1 + 𝜃 ) (𝑒𝑛+1 + 𝑏𝑛+1)
⇔

[
(
𝛼 (𝑒𝑛+1 + 𝑏𝑛+1) ( ¯𝑏𝑛+1 + 𝑒𝑛) ⇒ (𝑒𝑛+1 + 𝜃 )

)(
𝛼 (𝑒𝑛+1 + 𝑏𝑛+1) ( ¯𝑏𝑛+1 + 𝑒𝑛) ⇒ (𝑒𝑛+1 + 𝑏𝑛+1)

)
]

⇔
[(𝛼 ⇒ (𝑒𝑛+1 + 𝜃 )) +

(
(𝑒𝑛+1 + 𝑏𝑛+1) ( ¯𝑏𝑛+1 + 𝑒𝑛) ⇒ (𝑒𝑛+1 + 𝜃 )

)
(𝛼 ⇒ (𝑒𝑛+1 + 𝑏𝑛+1))+

(
(𝑒𝑛+1 + 𝑏𝑛+1) ( ¯𝑏𝑛+1 + 𝑒𝑛) ⇒ (𝑒𝑛+1 + 𝑏𝑛+1)

)
]

To prove the first part we have:

(𝛼 ⇒ (𝑒𝑛+1 + 𝜃 )) +
(
(𝑒𝑛+1 + 𝑏𝑛+1) ( ¯𝑏𝑛+1 + 𝑒𝑛) ⇒ (𝑒𝑛+1 + 𝜃 )

)
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⇔
𝛼 + 𝑒𝑛+1 + 𝜃 + 𝑒𝑛+1 ¯𝑏𝑛+1 + 𝑏𝑛+1𝑒𝑛 + 𝑒𝑛+1 + 𝜃

This is true due to the induction hypothesis: 𝛼 ⇒ (𝑒𝑛 ⇒
𝜃 ) ⇔ 𝛼 + 𝑒𝑛 + 𝜃 , which is a tautology. We prove the second

part as follows:

(𝛼 ⇒ (𝑒𝑛+1 + 𝑏𝑛+1)) +
(
(𝑒𝑛+1 + 𝑏𝑛+1) ( ¯𝑏𝑛+1 + 𝑒𝑛) ⇒ (𝑒𝑛+1 + 𝑏𝑛+1)

)
⇔

𝛼 + 𝑒𝑛+1 + 𝑏𝑛+1 + 𝑒𝑛+1 ¯𝑏𝑛+1 + 𝑏𝑛+1𝑒𝑛 + 𝑒𝑛+1 + 𝑏𝑛+1
⇔

𝛼 + 𝑒𝑛+1 + 𝑏𝑛+1 + 𝑒𝑛+1 + 𝑏𝑛+1𝑒𝑛 + 𝑒𝑛+1 + 𝑏𝑛+1
It is a tautology since we have 𝑒𝑛+1 + 𝑒𝑛+1. This concludes
the proof.

□

B SDNsec Processes Model in ProVerif
The full processes of the controller, the ingress switch, the core

switch and the egress switch, as modeled in ProVerif, are depicted

in Figures 13, 10, 11 and 12 respectively. It should be noted that

the variables and names’ types have been omitted for the sake of

simplicity of presentation.

let ProcessS0(sk0) =
in(c, n_s0);
event seqUniqueness(st, n_s0);
new p;
let p_encrypted = senc(p, sk0) in
out(c_s0, (p_encrypted, n_s0));
in(c_s0, y);
let(F, t, xegr1, MAC1, xegr2, MAC2) =
sdec(y, sk0) in
let B = (F, t) in
let MAC0 = MAC(sk0, B) in
let C = (F, n_s0) in
let PVF0 = MAC(sk0, C) in
event begins0(egr0);
out(c, (F, t, n_s0, PVF0, xegr1, MAC1,
xegr2, MAC2, p)).

Figure 10: Process of Ingress switch 𝑆0 in ProVerif.

let ProcessS1(sk1) =
in(c, (F, t, n_s0, PVF0, xegr1, MAC1,
xegr2, MAC2, p));
let B = (F, t) in
if (MAC1 = MAC(sk1, (xegr1, B, B))) then
event ends0;
let n_s1 = n_s0 + 1 in
let PVF1 = MAC(sk1, (PVF0, F, n_s1)) in
event begins1(xegr1);
out(c, (F, t, n_s1, PVF1, xegr1, MAC1,
xegr2, MAC2, p)).

Figure 11: Process of Core switch 𝑆1 in ProVerif.

let ProcessS2(sk2) =
in(c, (F, t, n_s1, PVF1, xegr1, MAC1,
xegr2, MAC2, p));
let B = (F, t) in
let FE1 = (xegr1, MAC1) in
if (MAC2 = MAC(sk2, (xegr2, FE1, B))) then
event ends1;
let n_s2 = n_s1 + 1 in
let PVF2 = MAC(sk2, (PVF1, F, n_s2)) in
event begins2(xegr2);
out(c_s2, (F, PVF2)).

Figure 12: Process of Egress switch 𝑆2 in ProVerif.

let ProcessController(sk0, sk1, sk2) =
in(c, (xegr1, xegr2));
in(c_s0, (p_encrypted, n_s0));
let p = sdec(p_encrypted, sk0) in
new F; new t;
let B = (F, t) in
let FE0 = B in
let MAC1 = MAC(sk1, (xegr1, FE0, B)) in
let FE1 = (xegr1, MAC1) in
let MAC2 = MAC(sk2, (xegr2, FE1, B)) in
let FE2 = (xegr2, MAC2) in
let C = (F, n_s0) in
let PVF0 = MAC(sk0, C) in
let PVF1 = MAC(sk1, (PVF0, F, n_s0 + 1)) in
let PVF2 = MAC(sk2, (PVF1, F, n_s0 + 2)) in
let y = senc((F, t, xegr1, MAC1, xegr2,
MAC2), sk0) in
out(c_s0, y);
in(c_s2, (=F, xPV2));
if xPV2 = PVF2 then event OK else event KO.

Figure 13: Process of Controller in ProVerif.
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