
iUC-Secure Distributed File Transfer From
Standard Attribute-based Encryption

Pascal Lafourcade1[0000−0002−4459−511X], Gael Marcadet1[0000−0003−1194−1343],
and Léo Robert2[0000−0002−9638−3143]

1 Université Clermont-Auvergne, CNRS, Clermont-Auvergne-INP, LIMOS
Clermont-Ferrand, France

2 MIS, Université de Picardie Jules Verne, Amiens, France

Abstract. Attribute-Based Encryption (ABE) stands as a cryptographic
cornerstone, enabling access control to messages based on user attributes.
The security definition of standard ABE is shown to be impossible in
Universal Composability (UC) against an active adversary. To overcome
this issue, existing formal UC security definitions of ABE rely on addi-
tional properties for ABE, necessary to prove security against an active
adversary, excluding standard ABE by definition. In light of the com-
posability feature offered by UC and the absence of ideal functionality
tailored for standard ABE, we propose the two following contributions:
(1) We construct the first ideal functionality FABE for ABE which, un-
der reasonable hypothesis against static corruption, can be realized us-
ing an IND-CCA2-secure ABE scheme; and (2) our FABE leads us to
propose a protocol solving a simple yet highly practical, world-scaled
company-focused problem: efficient file transfer. The proposed construc-
tion provides data integrity, sender authentication, attribute-based file
access, featured with constant data size transferred between users. This
is achieved by relying on two efficient building blocks: ABE and signa-
ture, which are layered atop of the hash-based distributed storage sys-
tem IPFS. Our protocol, strengthened by a formal security definition and
analysis under the Universally Composable (UC) framework called iUC,
is proved to realize our problem-oriented authenticated attribute-based
file transfer ideal functionality. Finally, we implement our proposal with
a proof-of-concept written in Rust, and show it is practical and efficient.

Keywords: Universal Composability, Attribute-Based Encryption, Authenti-
cated Attribute-based File Transfer

1 Introduction

Attribute-based encryption (ABE) is a fine-grained access encryption scheme in
which a user securely shares a message to a group of users once, every user of this
group being able to recover the encrypted message while every other users out of
this group does not. Briefly, the formal definition of the aforementioned “group”
is realized by associating to each user an attribute x and by adding an access

policy y to the ciphertext, the decryption procedure failing if the attribute x does
not satisfy the access policy y. ABE has received lot of attention over the years
to construct interesting primitive [?,?]. From a security standpoint, similarly to
standard encryption schemes where indistinguishability holds only if the decryp-
tion key has not been corrupted, in ABE the indistinguishability for a ciphertext
ψ holds only if the adversary does not have access to an attribute that can
decrypt ψ. In game-based security, this is prevented by adding a winning con-
dition preventing the adversary to decrypt the challenge ciphertext. Sadly, this
mitigation cannot be transposed directly to the Universally Composable (UC)
paradigm. Indeed in UC, traditional ideal functionalities for encryption aim to
replace all plaintexts whose indistinguishability can be ensured by leakages. This
is not suitable against active attribute corruption in which the adversary asks for
the key-material associated to an attribute of its choice at any time. This issue
has already been noticed by [?] in a closely related field of Role-Based Access
Control (RBAC), where a user grants an access to some resources based on at-
tributes. Security against active attribute corruption has already been achieved,
for example by Camenisch et al. [?] using ABE equipped of an interactive decryp-
tion procedure between the user owning a ciphertext and a trusted third-party,
owning decryption key for users. On one hand security against active adversary
is achieved, but on the other hand, protocols using standard ABE have to inte-
grate a more complex ABE primitive to fit in UC. This replacement is not always
desirable, in particular for protocols whose efficiency is critical and may prefer
standard ABE, even at the cost of a restricted security setting.

Contribution. We consider standard ABE to propose the first ideal functionality
FABE secure in the static attribute corruption setting. The protocol execution
is divided into two distinct phases. The first phase, corresponding to a setup
phase, consists for the adversary to instantiate any parties of its choice, with
the possibility to corrupt them. During the second phase, the adversary is still
allowed to instantiate parties but corruption of parties asking for decryption keys
is no longer accepted. Then, assuming this constraint and an IND-CCA2-secure
ABE scheme 3, we prove that our real protocol PABE securely realize FABE. To
increase usability, we have written FABE and PABE using the iUC framework,
having the particularity to rely on the same formalism to express ideal, real and
hybrid protocols. Based on the IITM model [?], this framework has been designed
to be user-friendly, a welcomed feature to limit the complexity of reading and
writing UC protocols.

To motivate the usability of our ideal functionality FABE, already strength-
ened by the easy-to-use iUC framework, we put it in practice to solve the file
transfer problem in a large-scaled company. In particular, we construct a pro-
tocol allowing a user to share a document, let say, to all users working in a
department. Attribute-based encryption is interesting in this setting, but con-
fidentiality is not the only desired property. To increase confidence in our file
transfer system, we add sender authentication and also integrity guarantee of
3 An IND-CCA2-secure scheme can be efficiently derived from any IND-CPA-secure

scheme via the Fujisaki-Okamoto transform [?].

2

IPFS NetworkStorage Network

Low-rate Medium

Sender Receiver(x)

(3) (l, σl) (3) (l, σl)

(1) Upload (y, ψy)

(2) Link l

(4) Download l

(5) Data (y, ψy)

(f, y) f

Fig. 1: Representation of our system where a sender shares a file f to a receiver.

the shared files. In addition to all these security properties, we dedicate our sys-
tem to be particularly efficient in the case of large transferred files. Our study
leads to the real protocol PAAFT a file transfer system ensuring the following
three properties: (i) integrity of the transferred files, (ii) attribute-based file ac-
cess, and (iii) explicit authentication of the sender. Our construction has the
particularity to be constructed atop of a distributed storage network, a system
composed of many servers whose general behavior is similar to a graph. A neat
feature, compared to the single-server setting, is that it faces communication
delay and workload issues. Inter-Planetary File System (IPFS) is an hash-based
distributed storage system in which a server maintains a list of link-file pair (l, f)
where l is the link of the file f , computed with a cryptographic hash function
h as l ← h(f). Later on, given the link, the server easily recovers and returns
the file. We give an overview of our protocol in Fig. ??, acting between a sender
and a receiver. The sender obtains as an input a (potentially large) file f as well
as some access policy y, and sends the file to every receiver having an attribute
x satisfying y. As depicted in Fig. ??, during step (1), the sender computes an
encryption of f denoted ψy using attribute-based encryption where y is the ac-
cess policy, and sends the couple (y, ψy) on a storage server of its choice. At step
(2), the storage server responds with a link l computed as the hash of (y, ψy).
At step (3), the sender computes σl the signature of l and sends the tuple (l, σl)
through a limited communication medium, restricted to transmit data having
length independent of the message. When the receiver obtains the link l and
the associated signature σl, it obtains a proof of integrity and authenticates the
sender simultaneously. At step (4) and (5), the receiver downloads the couple
(y, ψy) using the link l, decrypts the result and checks authenticity of l using
σl. This protocol is proved to securely realize our Authenticated Attribute-based
File Transfer ideal functionality FAAFT, but also to be highly-practical, confirmed
by our proof-of-concept fully-written in Rust and available at [?], sending up to
450 megabytes of data in 474 milliseconds.

Related Work. As explained above, the state-of-the-art for ABE in UC already
proposes ideal functionality, but always equipped of an additional property or
having a different design to guarantee security against active adversary. Abe and
Ambrona [?] introduced an ideal functionality for ABE where the key generation
is replaced by a blind key generation procedure including a non-interactive zero-
knowledge proof. To obtain active security, Camenisch et al. [?] proposes to

3

rely on a trusted third party owning the decryption key of users. To decrypt a
ciphertext, the ABE protocol is equipped of an interactive decryption procedure
with the third party, which is not able to identify which ciphertext is being
decrypted. These two works need an ABE scheme having either a blind key
generation or interactive decryption procedure, excluding every standard efficient
attribute-based encryption schemes such that [?]. To the best of our knowledge,
there is no ideal functionality tailored for standard ABE.

We stress that our hybrid protocol PAAFT, putting into application our ideal
functionality FABE, constitutes a novel improvement in distributed file-transfer
literature. Distributed file-transfer system has been introduced many years ago
by Garay et al. [?], proposing a system based on a verifiable secret sharing,
ensuring both confidentiality by distributing shares among the storage servers,
as done in the more recent system called SAFE [?] with critical security and
performance improvements. Due to the nature of secret sharing, confidentiality
is only ensured with several storage servers and need to reconstruct the file.
In contrast, by the confidentiality ensured by ABE, our system is still secure
even with a (possibly corrupted) single storage server. Role-Based Access Con-
trol (RBAC) systems, a closely related topic, allows (or restricts) users to access
some resources based on owned attribute. When a user accesses some content,
it has first to be authenticated by an access-granting server. This is the case
for the SESAME protocol [?], a RBAC based itself on Kerberos. The work of
Freudenthal et al. [?], proposes to check the access permission of users with mul-
tiple trust authorities (e.g., a public key infrastructure). The role-based access
for distributed storage system is presented in [?]. They proposed a fix for the
Object Store Devices specification [?] where unrestricted delegation is possible,
in which confidentiality cannot be ensured. The proposed solution, elegantly
modifies the original protocol by adding secure channels and signature, to en-
force role-based access to the files, without modifying the specification. All of
these papers differ from our contribution by the introduction of authorities in
charge of granting an access to some content. Our work requires trusted author-
ities to handle public keys and to provide decryption keys, but are involved only
during the initialisation, no authorization is required hereinafter. Introduced by
Rizwan Ashgar et al. [?], ESPOON is a protocol working as RBAC but in out-
sourced environment with untrusted entities. Integrity is not ensured, whereas
our work ensures the integrity and confidentiality of data in addition to sender
authentication. The work of [?] proposes a solution between RBAC and a stor-
age system. They formally defined a new security definition of RBAC, in the
spirit of encryption indistinguishability. The adversary is asked to guess an en-
crypted message, and is assumed to have a full-control on a file system where
the encrypted message is stored. It can also corrupt any user of its choice. To
achieve the proposed definition, a new protocol is introduced relying on attribute-
based encryption, as done hereinafter. Our work adds more features: we ensure
data integrity and data authentication (thanks to hash-based distributed stor-
age and signatures, respectively) in addition to data confidentiality brought by
the attribute-based encryption. Universal Composability (UC) has already been

4

applied on the RBAC, initiated by Halevi et al. [?] proposing a UC model which
requires at every communication a secure channel between the two parties, even
if the entity is corrupted (but in this case, the secret key might be leaked), a
standard assumption in UC. In our work, we have chosen to not consider any
particular property on communication channels for two reasons. First, secrecy is
not always possible for example with anonymous protocols, or even desirable for
example when transferred data can be read in clear by the adversary. Second,
authenticity is traditionally achieved using digital signature, that can also be
used to sign messages in other protocols. Introducing an ideal functionality for
digital signature is hence more appropriate. Even if it does not constitute an
issue, their UC model is built on the original UC model of Canetti [?] in which
session identifier prevents communication between sessions. In comparison, our
protocol is proven under the iUC framework, where every entity is allowed to
communicate with the others without restriction, a useful property for example
with signature whose signing key are used in practice across multiple protocols.

Outline. In Section ??, we briefly introduce all the necessary notions and ter-
minology to understand our modelisation. In Section ??, we present our ideal
functionality FABE and real protocol PABE along the proof of realization. In Sec-
tion ??, we present the application of FABE on the authenticated attribute-based
file transfer with our ideal functionality FAAFT along our hybrid protocol PAAFT
and our proof-of-concept.

2 On iUC Framework

We provide an overview of the iUC framework. We refer interested readers look-
ing for more details at the original paper [?]. A party pid involved in a protocol
is traditionally equipped with session identifier sid, and acts in the protocol fol-
lowing a code specification called a role, and denoted role. The combination of
the party identifier, the session identifier and the role constitutes the triplet
(pid, sid, role) and is called an entity. The existing role is specific to the designed
protocol; for example a signature protocol consists of a role signer to sign mes-
sages and a role verifier to verify signed messages. The notion of entity is at the
heart of the iUC framework, sharing similarities with object-oriented program-
ming. In iUC, a machine denoted Mrole implementing a role role corresponds to
a class, both equipped with internal state used to store data. In a real protocol,
a machine manages a single entity i.e., represents a single party running in a sin-
gle protocol execution. Yet, notice that a machine can be naturally extended to
manage arbitrary number of entities, having different roles as well, the internal
state being now used to share data across entities. For example, a signature ideal
functionality benefits from this feature by adding authenticated messages in the
internal state. In iUC, a machine, just like a class, can be instantiated several
times, an instantiation being called an instance. Two important observations are
to be made: First, the notion of entities and machines is sufficient to handle
both real and ideal protocols. Second, a machine is not required to only handle

5

entities sharing the same sid but any entities, a particularly useful property to
handle cross-protocols party such as certificate authority.

The iUC framework provides algorithms to describe behavior of instances
e.g., the number of accepted entities, the corruption model, the instance and
entity initialization, and more. When an entity (pid, sid, role) is contacted for the
first time, the identity is submitted to every instances implementing the role role,
until one instance accepts the entity, decided by the CheckID algorithm. If the
instance does not have any accepted entity yet, it executes the Initialization algo-
rithm to initialize its internal state. Once initialized, an entity executes the Main
block containing the code to be executed by honest entities. Each role is associ-
ated with either a public or a private visibility. A public role is accessible to the
environment, whereas a private role is limited to entities inside the protocol. An
entity accepts requests coming from the environment via the input-output inter-
face I/O, but also requests coming from the adversary via the network interface
NET, possibly modelling interactions of an ideal functionality with the simulator.
When needed, an entity may also accepts requests from more specific entities.
The current running entity (pidcur, sidcur, rolecur) is denoted entitycur. An higher-
protocol calling entity (pidcall, sidcall, rolecall) is denoted entitycall. An instance has
access to the set of managed entities that has been corrupted, denoted by Cor-
ruptionSet. An entity has to be considered if a subroutine has been corrupted,
the corruption of an entity being verified by the corr algorithm returning true if
the entity provided as an input has been corrupted, false otherwise. By alg(p)

we denote the execution of an algorithm alg whose the execution time is bounded
by the polynomial p.

3 Standard Attribute-based Encryption Realization

Attribute-based Encryption, ABE for short, allows to broadcast a message to all
users, whose only users having the read access with respect to an access policy
associated to the message are able to read the message. We say that a user has a
read access when it is associated to some attribute, say x, respecting the policy of
the message, say y. In the paper, this statement is represented by x ∈ y. Briefly,
an ABE scheme is defined by the tuple (Setup,Enc,KeyGen,Dec). The Setup
algorithm takes as an input the unary representation of the security parameter
λ and it outputs a master key pair (msk ,mpk). The encryption algorithm Enc
expects as an input the master public key mpk , the access policy y and a message
m, and it outputs the ciphertext ψy. To decrypt a message, one may previously
asks to the authority owning the master key pair a decryption key denoted skx
associated to some attribute x. This decryption key generation is handled by
the KeyGen algorithm taking as input the master secret key msk as well as
the attribute x and outputs the decryption key skx. This decryption key skx
along a ciphertext ψx are provided to the decryption algorithm Dec, returning
either the underlying plaintext m if and only if x ∈ y, or ⊥ otherwise. An ABE
scheme is said correct if for every master key pair (msk ,mpk) ← Setup(1λ),
every ciphertext ψy ← Enc(mpk , y,m) for any message m and access policy y,

6

every decryption key skx ← KeyGen(msk , x) for any attribute x with x ∈ y, we
have Pr [Dec(skx, ψy) = m] = 1−ϵ for some negligible probability ϵ. In this work,
we require an IND-CCA2-secure ABE which informally states that it must be
infeasible to tell if a ciphertext ψy encrypts either the message m0 or m1 as long
as no corrupted user has a secret key skx allowing to decrypt ψy. The security
experiment is presented in Fig. ??.

ExpIND-CCA2
A (λ)

X ← ∅

(msk ,mpk)← Setup(1λ)

O ← {OKeyGen(msk ,X ,⊥; ·),ODec(msk ,⊥; ·, ·)}

(y∗,m0,m1), state← AO
1 (mpk)

b←$ {0, 1}
ψy∗ ← Enc(mpk , y∗,mb)

O′ ← {OKeyGen(msk ,X , y∗; ·),ODec(msk , ψy∗ ; ·, ·)}

b′ ← AO′
2 (ψy∗ , state)

return b = b′ ∧ (∄x ∈ X : x ∈ y∗)

Oracle OKeyGen(msk ,X , y∗;x)

if x ∈ y∗ : return ⊥
X ← X ∪ {x}
skx ← KeyGen(msk , x)

return skx
Oracle ODec(msk , ψy∗ ;ψy, x)

if ψy∗ = ψy : return ⊥
skx ← KeyGen(msk , x)

m← Dec(skx, ψy)

return m

Fig. 2: Experiment of the IND-CCA2 security for a ABE scheme.

Description of FABE and PABE. The ideal functionality FABE, presented in Fig. ??,
proposes an instance managing several encryptors and decryptors as well as a
single setup entity designated by the setup role. This setup entity, as its name
suggests, deals with the setup algorithm and hence owns the master key pair,
which has to remain private. Observe that using hierarchical session identifier
property of iUC, an entity in FABE and PABE is supposed to have a session
identifier sid the form (pid′, sid′) with pid′ the party identifier of the setup entity.

Recall that when encrypting a message, the set of corrupted attributes is
required to be static i.e., the environment is not allowed to dynamically obtain
decryption key, otherwise is able to trivial distinguish by looking for ciphertext
encrypting a leakage, so being impossible to prove secure as shown in [?]. Many
scenarios are possible to obtain static corruption of attributes. We have chosen
to divide the time in two distinct phases separated by a time T ∈ N. During
the first phase, when t ≤ T , the environment is allowed to instantiate entities,
corrupt them, but also to instantiate decryptors with attributes (thus to obtain
decryption keys by corrupting decryptors as well). During the second phase,
when t > T , the environment is no more allowed to obtain a decryption key of
its choice. This modelisation is not unique, one may change hypothesis but is
still required to prevent dynamic corruption of decryption keys and attributes.

The encryptor handles Encrypt requests used to encrypt a message. The
security of the ABE ideal functionality states that for a given a master public

7

Ideal functionality FABE = (setup, encryptor, decryptor):
Participating roles: setup, encryptor, decryptor
Corruption model: static corruption
Protocol parameters:

– A polynomial p ∈ Z[x] used to bound the runtime execution of provided algorithms.
– A deterministic length-preserving leakage function L used to compute leakages.
– A time T ∈ N delimiting phase in which decryption keys are provided, from the phase where

encryption and decryption are operated. We denote by t ∈ N the current time.

Msetup,encryptor,decryptor:
Implemented role(s): setup, encryptor, decryptor
Internal state:

– msgList ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ {Set of encrypted messages
– keys ⊂ ({0, 1}∗)3 7→ {0, 1}∗ × {0, 1}∗
– (mpk , Enc,Dec) ∈ ({0, 1}∗ ∪ ⊥)3 = (⊥,⊥,⊥)
– pidsetup ∈ {0, 1}∗ ∪ {⊥} = ⊥
– corrAttr ⊆ {0, 1}∗ = ∅

CheckID(pid, sid, role): Check that sid = (pid′, sid′), then accept every entity with the same
SID, otherwise reject.
Corruption behavior:
– AllowCorruption(pid, sid, role): Returns false if role = setup or role = decryptor and
T < t, otherwise returns true.

Initialization:
send responsively InitABE to NET
wait for (Init, (mpk’,Enc,Dec))
(mpk , Enc,Dec)← mpk’,Enc,Dec
parse sidcur as (pid, sid)
pidsetup← pid

Main:
recv (InitAttr, x) from I/O to (_,_, decryptor) s.t. keys[entitycall] ̸= ⊥ :

send responsively (InitReceiver, x) to NET
wait for (Init, skx)
for (m, y, ψy) ∈ msgList:
m′ ← Dec(p)(skx, ψy)
if (x ∈ y ∧m′ ̸= L(λ,m)) ∨ (x /∈ y ∧m′ ̸= ⊥):

send (Registered, x, 0) to NET {Decryption correctness failure
keys[entitycall]← (x, skx)
send (Registered, x, 1) to NET

recv (CorrAttr, x) from NET s.t. t ≤ T :
add x to corrAttr

recv PubKey? from _ to (pidsetup,_, setup) :
reply (PubKey,mpk)

recv (Encrypt, y,m,mpk’) from I/O to (_,_, encryptor) s.t. T < t :
if mpk ̸= mpk’ ∨ ∃x ∈ corrAttr s.t. x ∈ y:
ψy ← Enc(p)(mpk’, y,m)
reply (Ciphertext, ψy)

m′ ← L(λ,m)

ψy ← Enc(p)(mpk, y,m′)
for (_, (x, skx)) ∈ keys:

if (x ∈ y ∧ Dec(p)(skx, ψy) ̸= m′) ∨ (x /∈ y ∧ Dec(p)(skx, ψy) ̸= ⊥):
reply (Ciphertext, ⊥) {Encrytion correctness failure

add (m, y, ψy) to msgList
reply (Ciphertext, ψy)

recv (Decrypt, ψy) from I/O to (_,_, decryptor) s.t. T < t ∧ keys[entitycur] ̸= ⊥ :
(x, skx)← keys[entitycur]

if ∄(_,_, ψy) ∈ msgList: reply (Plaintext,Dec(p)(skx, ψy))
if ∃m,m′ s.t. (m,_, ψy), (m

′,_, ψy) ∈ msgList ∧m ̸= m′: reply (Plaintext,⊥)
get(m, y, ψy) from msgList
if x /∈ y: reply (Plaintext,⊥) {Incompatible policy-access
reply (Plaintext,m)

Fig. 3: Description of our ideal functionality FABE.

8

Protocol PABE = (setup, encryptor, decryptor):
Participating roles: setup, encryptor, decryptor
Corruption model: static corruption
Protocol parameters:

– An IND-CCA2 attribute-based encryption scheme Π = (Setup,KeyGen, Enc,Dec)
– A time T ∈ N from which corruption and decryption keys are not allowed. We denote by t ∈ N

the current time.
Msetup:

Implemented role(s): setup
Internal state:

– mpk ∈ {0, 1}∗ ∪ {⊥} = ⊥
– msk ∈ {0, 1}∗ ∪ {⊥} = ⊥
– pidsetup ∈ {0, 1}∗ ∪ {⊥} = ⊥
– keys : ({0, 1}∗)3 → {0, 1}∗

CheckID(pid, sid, role): Check that sid = (pid′, sid′). Accept a single entity.
Corruption behavior:
– AllowCorruption(pid, sid, role): return false

Initialization:
(msk ,mpk)← Setup(1λ)
parse sidcur as (pid, sid)
pidsetup← pid

Main:
recv PubKey? from _ to (pidsetup,_, setup) :

reply (PubKey,mpk)

recv (Register, x) from (_,_, decryptor) to (pidsetup,_, setup) :
if keys[entitycall] ̸= ⊥: reply (Registered,⊥)
skx ← KeyGen(msk , x)
keys[entitycall]← skx
reply (Registered, skx)

Mencryptor:
Implemented role(s): encryptor
CheckID(pid, sid, role): Check that sid = (pid′, sid′). Accept a single entity.
Corruption behavior:
– AllowAdvMessage(pid, sid, role, pidrecv, sidrecv, rolerecv, m): Check that (pid = pidrecv).

Otherwise, returns rolerecv ̸= setup or m does not start with Register.
Main:

recv (Encrypt, y,m,mpk) from I/O s.t. T < t :
ψy ← Enc(mpk, y,m)
reply (Ciphertext, ψy)

Mdecryptor:
Implemented role(s): decryptor
Internal state: (x, skx) ∈ {0, 1}

∗ × {0, 1}∗ = (⊥,⊥) {Decryption key

CheckID(pid, sid, role): Check that sid = (pid′, sid′). Accept a single entity.
Corruption behavior:
– AllowAdvMessage(pid, sid, role, pidrecv, sidrecv, rolerecv, m): If rolerecv = setup and m

starts with Register and T < t, outputs false. Otherwise, outputs pid = pidrecv.
Main:

recv (InitAttr, x) from I/O s.t. skx = ⊥ :
parse sidcur as (pid, sid)
send (Register, x) to (pid, sidcur, setup)
wait for (Registered, sk′x)
if sk′x ̸= ⊥: skx ← sk′x

recv (Decrypt, ψy) from I/O s.t. T < t ∧ skx ̸= ⊥ :
m← Dec(skx, ψy)
reply (Plaintext,m)

Fig. 4: Description of the protocol PABE.
9

key mpk , a message m and an access policy y, if mpk is the valid master public
key and if there is no corrupted attribute x such that x ∈ y, then it must be
infeasible to distinguish the real messagem encrypted in the real protocol and the
encryption of the leakage L(λ,m) where L is the length-preserving deterministic
leakage function. Note that this leakage function is given as a protocol parameter,
and can be instantiated by an higher-protocol. A winning adversary against the
indistinguishability property of the ABE scheme can be used to construct an
distinguisher against the PABE and FABE. In case where the ciphertext encrypts a
leakage, the ciphertext and the associated message are stored in the internal state
of the instance, later used for the decryption. A ciphertext decryption request
handled by entities having the decryptor role expects as an input a ciphertext
ψy. The procedure is only executed when the decryptor entity has been registered
to have a decryption key skx. In case where the received ciphertext is stored in
the internal state, along the associated plaintext then the plaintext is directly
returned as a response. If the ciphertext is not stored in the internal state,
therefore the ciphertext has been computed outside of the ideal functionality
and hence no security can be proven. So we decrypt ψy using the provided
decryption algorithm Dec and returns the output as the plaintext response. Our
real attribute-based encryption protocol PABE, presented in Fig. ??, follows the
specification of FABE, hence we omit the full description.

Lemma 1. Assuming the existence of a perfectly-correct and IND-CCA2-secure
attribute-based encryption Π = (Setup,Enc,KeyGen,Dec), then PABE ≤ FABE.

Proof. Suppose a perfectly-correct IND-CCA2-secure attribute-based encryp-
tion Π. We start by giving the description of our simulator S, used with our
ideal functionality FABE in order to show that PABE ≤ FABE. The simulator
S starts the simulation by generating a new master key pair (msk ,mpk) ←
Π.Setup(1λ), and it sends the initialization request (mpk , Π.Enc, Π.Dec) to FABE.
When a request of the form (InitReceiver, x) is sent from FABE to S, an hon-
est decryptor is initialized and hence the simulator generates the decryption
key skx ← Π.KeyGen(msk , x) and responds with skx. A notification of the form
(Registered, x, b) is then received from the ideal functionality. If the bit b equals
1, then S registers than this decryptor has claimed the attribute x, otherwise it
ignores the notification. Recall that we place ourself under the static corruption
in which the adversary is allowed to corrupt only an entity directly after its
initialization and only at this point of the entity lifetime. In details, the static
corruption is initatiated by the entity, asking to the environment E its initial cor-
ruption status. We now specify the behavior of our simulator acting differently
depending on the current time t ∈ N with respect to the time T ∈ N:
– Case t ≤ T : In case where the adversary corrupts (directly after the initial-

ization) a decryptor and asks in the decryptor’s name to obtain a decryption
key to the setup entity using a request of the form (Register, x) in the sim-
ulated real protocol, then the simulator executes honestly the decryption key
generation code, but also notifies the ideal functionality of the corruption of
x with the CorrAttr request.

10

– Case T < t: By construction of our real protocol, every Register requests are
blocked and hence no more decryption key is provided to the environment.
Since we assume static corruption, every corruption request sent by the en-

vironment to initialized entities is blocked by the simulator, preventing dynamic
corruption (under which no security can be proven). To be more clear, we sup-
pose without loss of security that E always use the valid master public encryption
key to an encryptor, since it does not provide any advantage for E to break the
security of Π.
Hybrid 0. This hybrid corresponds to the execution of the ideal protocol S|FABE

with the environment E .
Hybrid 1. In this hybrid, we replace S|FABE with S ′|FFwd where S ′ simulating
S|FABE and where FFwd is a forwarding IITM, transferring every request from S ′
to E and E to S ′. Requests coming from the network interface of S ′ are directly
transferred to S. Since we do not have perform any modification, we have perfect
indistinguishability: Pr

[
(E|S|FABE)(1

λ)→ 1
]
= Pr

[
(E|S ′|FFwd)(1

λ)→ 1
]
. For

more clarity, we index all the simulators by the hybrid’s index, hence S ′ is
referred as S ′1.
Hybrid 2. Observe that by the perfect correctness of the attribute-based encryp-
tion, the correctness issues occurring during both the register procedure (ensur-
ing valid generation of decryption keys) and during encryption cannot occurs.
Hence in this hybrid, we modify S ′1 to construct S ′2 in which we remove these
correctness validation procedures in this hybrid without impacting the view of
E . Hence, Pr

[
(E|S ′1|FFwd)(1

λ)→ 1
]
= Pr

[
(E|S ′2|FFwd)(1

λ)→ 1
]
.

Hybrid i for i ∈ [2, n + 2]. In this hybrid, we focus on the i-th encryption
request sent to the simulator S ′i. In this hybrid, we replace the encryption of
the leakage L(λ,mi) by the encryption of the message mi. Suppose that E is
able to distinguish with a non-negligible probability between (E|S ′i|FFwd)(1

λ)
and (E|S ′i−1|FFwd)(1

λ). We construct an adversary A = (A1,A2) against the
security of Π, simulating E and whose the role is create a perfect simulation
of S ′i|FFwd without having access to the master secret key msk owned by the
challenger of the IND-CCA2 game. In details, A1 is running before obtaining the
challenge ciphertext, and A2 continues the run of the simulation of E after that
the challenge ciphertext was obtained. The adversary A1 obtains as the input
the encryption key mpk , and has access to the key generation oracle OKeyGen
and the decryption oracle ODec. The adversary A1 works as follows:
– When receiving a PubKey? request, it responds (PubKey,mpk).
– When receiving a InitAttr request, it simulates a Register request with

the same provided parameters, described below.
– When E sends a key generation request of the form (Register, x) from a

decryptor entity: If there is no record (entity,_,_) yet, then it calls the
OKeyGen oracle to generate a secret decryption key skx associated to the
provided attribute x, it registers (entity, skx, x) and returns skx. Otherwise,
it returns an error.

– When E sends a request of the form (Encrypt,mpk , yj ,mj) for some j < i,
thenA1 computes ψj ← Enc(mpk , yj ,mj) and responds with (Ciphertext, ψj).

11

When j = i, then A1 computes the leakage m̄j ← L(λ,mj) where L
is a length-preserving leakage function, and encodes its all internal state
in the state variable, and sends to the challenger the challenge response
((yj ,mj , m̄j), state).

– When E sends a decryption request of the form (Dec, ψj) from entity for
j < i, it checks that the entity has already asked for decryption key skx
by checking if there is a record (entity, skx, x). If there is no match, aborts
with (Plaintext,⊥). Otherwise, computes mj ← Π.Dec(skx, ψj) and re-
turns (Plaintext,mj).
We now describe our second adversary A2 taking as an input the challenge

ciphertext ψi and the state state constructed by A1 used to continue the simu-
lation of E . The adversary A2 works as follows:
– The adversary A2 begins its simulation by sending the ciphertext ψi to
E , that is supposed to encrypt either mi or m̄i. Observe that when mi is
encrypted, then A is simulating (E|S ′i) or (E|S ′i−1) otherwise.

– The InitAttr and Register requests are the same as defined for A1.
– When E sends a request of the form (Encrypt,mpk , yj ,mj) for some j > i,

then it computes ψj ← Enc(mpk , yj , L(λ,mj)) and records (ψj , y,m) and
finally responds with (Ciphertext, ψj).

– When E sends a decryption request of the form (Dec, ψj) from entity for j > i:
If there is no record (entity, skx, x) or no record (ψj , y,mj) then it responds
with a failure. The case where there is several records for the same ciphertext
is not considered since prevented by the attribute-based encryption scheme
Π. If x ∈ y, then it responds with (Plaintext,m), otherwise it responds
with (Plaintext,⊥).

– When E stops the simulation, A2 outputs 1 if E outputs 1. Otherwise, A2

outputs 0.
It is clear that our adversary A is polynomial-time. Since E is universally

bounded, hence A constitutes a valid adversary for our IND-CCA2 experiment.
Hence, we have:

AdvIND-CCA2
A,Π =

∣∣∣∣12 · Pr
[
b′ = 0|b = 0

]
+

1

2
· Pr

[
b′ = 1|b = 1

]
− 1

2

∣∣∣∣
=

∣∣∣∣12 · (Pr
[
b′ = 0|b = 0

]
− Pr

[
b′ = 1|b = 0

]
)

∣∣∣∣
=

1

2
·
∣∣Pr

[
(E|S ′

i|FFwd)(λ)→ 1
]
− Pr

[
(E|S ′

i−1|FFwd)(λ)→ 0
]∣∣

Therefore, we conclude on the indistinguishability between E|S ′2|FFwd and
E|S ′n+2|FFwd by:∣∣Pr

[
(E|S ′

2|FFwd)(λ)→ 1
]
− Pr

[
(E|S ′

n+2|FFwd)(λ)→ 0
]∣∣

≤ n ·
n+2∑
i=3

∣∣Pr
[
(E|S ′

i|FFwd)(λ)→ 1
]
− Pr

[
(E|S ′

i−1|FFwd)(λ)→ 0
]∣∣

≤ 2n · AdvIND-CCA2
A,Π

Hybrid n+3. Observe that at this point, every ciphertext is encrypting the real
message. Hence, instead of performing a plaintext recovery from the internal

12

state of our simulator, our modified simulator S ′n+3 ignores the ciphertext regis-
ter and directly performs the decryption. As a consequence, we do not perform
the attribute validation check x ∈ y, that we remove from the (simulated) ideal
functionality FABE. By correctness of the attribute-based encryption, we have
Pr

[
(E|S ′n+2|FFwd)(1

λ)→ 1
]
= Pr

[
(E|S ′n+3|FFwd)(1

λ)→ 1
]
.

Hybrid n+ 4. This hybrid works exactly as the previous hybrid except that we
do not share the master public key in the simulated FABE. Instead, the sim-
ulated FABE asks the simulator S ′n+4 to obtain the master public key and is
returned back to the environment. Since the master public key initially stored in
the simulated FABE is already the master public key generated by the simulator,
then the view of E is not changed. Similarly, the encryption and the decryption
procedures done in the simulated ideal functionality FABE are delegated to the
simulators, forwarding for instance the request (Encrypt, y,m,mpk) to the same
encryptor in the simulated PABE. We follow the same approach for decryption
requests. The response produced by the encryptor or the decryptor in the simu-
lated protocol PABE is returned back to the simulated ideal functionality FABE,
forwarding the response to the environment E . Finally, since the simulated FABE

does note use its internal state anymore, we remove it. Observe that all these
modifications does not affect the view of E since the simulated ideal functional-
ity FABE was not performing any check or internal state access. Hence, we have
Pr

[
(E|S ′n+3|FFwd)(1

λ)→ 1
]
= Pr

[
(E|S ′n+4|FFwd)(1

λ)→ 1
]
.

At this point, our simulator S ′n+4 constitutes the most interesting part of
the protocol, encrypting, decrypting and generating keys for entities, without
performing any attribute validation (as done in our original FABE i.e., x ∈ y),
and does not consider any internal state between the simulated entities. In other
words, S ′n+4 is our real protocol PABE. Even more, the simulated ideal function-
ality FABE is now limited to forward the machine. As result, our simulator S ′n+4

is now connected to the environment via the intermediate of two forwards ma-
chines. By removing these two forward machines FFwd from S ′|FFwd|FFwd and
connect every wires from the environment via the I/O interface directly to S ′n+4,
all these modifications being structural, we are ensured to have a perfect indis-
tinguishability. Since all parties are simulated by FABE and each party follows
the instruction of the real protocol PABE without having access to any shared
register between entities, we have (E|S ′n+4) = (E|PABE). By our hybrid argument,
we have shown that (Enc|S|FABE) ≡ (Enc|PABE), thus PABE ≤ FABE. Since the
protocol is environmentally bounded and complete, then the Lemma ?? holds.

4 Authenticated Attribute-based File Transfer

4.1 Description of our Ideal Functionality FAAFT

Our authenticated attribute-based file transfer ideal functionality FAAFT de-
picted in Fig. ??, has been designed to allow an higher-protocol to easily rely on
authenticated attribute-based file transfer. Each entity managed by the instance
of FAAFT is associated to one of two following roles: A role sender representing

13

Ideal functionality FAAFT = (sender, receiver):
Participating roles: sender, receiver
Corruption model: static corruption
Protocol parameters:

– A time T ∈ N delimiting phase in which file sending is not accessible. We denote by t ∈ N the
current time.

Msender,receiver:
CheckID(pid, sid, role): Accept all entities with the same SID.
Corruption behavior:
– AllowCorruption(pid, sid, role): Returns role ̸= decryptor or t < T .

Internal state:
– attr ⊆ ({0, 1}∗)3 × {0, 1}∗ × {0, 1} = ∅
– sentFiles ⊆ ({0, 1}∗)3 × {0, 1}∗ × {0, 1}∗ × {0, 1}∗ = ∅
– receivedFiles ⊆ ({0, 1}∗)3 × {0, 1}∗ = ∅

Main:
recv (InitAttr, x) from I/O to (_,_, receiver) s.t. ∄(entitycur, ·, ·) ∈ attr :

add (entitycur, x, 0) to attr
send (Registered, x) to NET

recv (CorrAttr, receiver, x) from NET s.t. t ≤ T :
get (receiver, x, b) from attr
b← 1

recv (Send, f, y) from I/O to (_,_, sender) s.t. T < t :
r ←$ {0, 1}λ
add (entitycur, y, r, f) to sentFiles
if ∃ (·, x, 1) s.t. x ∈ y:

send (SendCorrupted, y, r, f) to NET
else:

send (SendHonest, y, r, |f |) to NET

recv (Receive, y, r, sender) from NET to (_,_, receiver) :
if ∄ (sender, ·, r, ·) ∈ sentFiles:

send responsively (WaitFile, y, r, sender) to NET
wait for (ProvideFile, b, f)
if b = 1:

add (entitycur, f) to receivedFiles
else:

get (sender, y, r, f) from sentFiles
if attr[entitycur] ∈ y:

add (entitycur, f)

recv Collect from I/O to (_,_, receiver) :
reply F = {f : (entitycur, f) ∈ receivedFiles}

Fig. 5: Description of our ideal functionality FAAFT.

an entity sending a file and a role receiver receiving a file. The ideal function-
ality maintains three distinct internal states attr, sentFiles and receivedFiles used
respectively to remember inputted and corrupted attributes, to authenticate files
sent by honest senders and finally to store valid received files, eventually shared
with the environment via the Collect request.

A sender handles only Send requests coming from the I/O interface, expecting
as a parameter the input data file f as well as the access policy y. A short tag r is
uniformly sampled from {0, 1}λ and stored along the file f and the access policy
y into the sentFiles internal states, shared between all entities (sharing the same
session identifier). This set consists of all authenticated files. To send the file,
the ideal functionality shares the file to the simulator S using one of two manner

14

storagePIPFS FABE setup encryptor decryptor Fsig-CA signer verifier

randomOracleFRO retrievalregistrationFCA

sender receiverPAAFT

Fig. 6: Graphical representation of our protocol PAAFT. The random oracle ideal
functionality FRO comes from [?], whereas the ideal functionalities for digital
signature Fsig-CA and certificate authority FCA comes from [?].

depending on the corruption of attributes: If the environment has an attribute
x ∈ y then confidentiality of the file f cannot be ensured, hence shared with S.
On the other hand, the environment does not have an attribute x ∈ y, hence the
file is not shared with the simulator S. It models confidentiality in the sense that
it remains safely in the ideal functionality, following the standard encryption in
UC such that [?] producing ciphertext encrypting a leakage instead of the real
plaintext. In contrast with the Send request handling requests from the higher-
protocol, the file reception modelled by the Receive request is received from
the NET interface i.e., from the simulator. This is motivated by the real-life mail
system in which the server receives files from the network, awaiting the user
to connect in order to collect messages. It is up to the simulator to correctly
simulates the protocol and notifies the ideal functionality if a receiver receives
a file. Observe that the code for Receive ensures, in case of honest sender,
authentication and file access depending on the attribute x owned by the current
receiver by checking if x ∈ y. If the sender is corrupted, then authentication and
file access is delegated to the simulator.

Observe that the Send and CorrAttr functions are accessible only if the
current time t ∈ N is strictly greater than a constant time T ∈ N defined
as a parameter of the protocol, a crucial restriction to include the ABE ideal
functionality in our hybrid protocol. This restriction leads us to seperate the
time in two distinct phases. During the first phase, we allow the environment
to instantiate any entities but also to statically corrupt any entity of its choice,
including receivers and hence to obtain attributes. During the second phase, we
prevent the environment to corrupt a receiver, and allow the environment to
send a file.

4.2 Our Hybrid Protocol PAAFT

Depicted in Fig. ??, our hybrid protocol PAAFT is proved to realize our ideal
functionality FAAFT. It relies on several subroutines to model respectively a cer-
tificate authority, the random oracle, digital signatures, but also IPFS being part
of our contribution. We first present all these subroutines before to introduce our
hybrid protocol PAAFT.

15

Ideal functionality FCA = (registration, retrieval):
Participating roles: registration, retrieval
Corruption model: incorruptible

Mregistration,retrieval:
Implemented role(s): {registration, retrieval}
Internal state:

– keys : ({0, 1}∗)2 → {0, 1}∗ ∪ {⊥}
CheckID(pid, sid, role): Accept all entities.
Main:

recv (RegisterKey, key) from I/O to (_,_, registration) :
if keys[pidcall, sidcall] ̸= ⊥:

reply (RegisteredKey, false)
else:

keys[pidcall, sidcall]← key
reply (RegisteredKey, true)

recv (RetrieveKey, (pid, sid)) from _ to (_,_, retrieval) :
reply (RetrievedKey, keys[pid, sid])

Ideal functionality FRO = (randomOracle):
Participating roles: randomOracle
Corruption model: incorruptible

MrandomOracle:
Implemented role(s): randomOracle
Internal state:

– H ⊆ {0, 1}∗ × {0, 1}λ = ∅
CheckID(pid, sid, role): Accept all entities.
Main:

recv (Hash,m) from _ :
if ∃(m,h) ∈ H:

reply (Hashed, h)
else:
h←$ {0, 1}λ
add (m,h) to H
reply (Hashed, h)

Fig. 7: Ideal functionalities FCA [?] and FRO [?].

Description of FCA. The Certificate Authority (CA) allows to register public
keys and certifying that a given public key corresponds to some user. The mod-
elisation of FCA presented in Fig. ?? is taken from [?], consisting of two roles
registration and retrieval , permitting respectively to register key and to
retrieve a public key pk associated to the pair (pid, sid). Since the ideal function-
ality is self-explained, we omit its description, and only notice that the instance
of FCA cannot be corrupted by the adversary and manages all entities, meaning
that there is a single instance.

Description of FRO. The ideal functionality FRO introduced in [?] and pre-
sented in Fig. ?? exposes a single role randomOracle. This straightforward ideal
functionality handles Hash requests given an arbitrary-sized bitstring m, asso-

16

Protocol PIPFS = (storage):
Participating roles: storage
Corruption model: dynamic corruption without erasure

Mstorage:
Subroutines: FRO : randomOracle
Implemented role(s): storage
Internal state:

– files : {0, 1}∗ → {0, 1}∗ = ∅ {Stored files

CheckID(pid, sid, role): Accept a single entity.
Main:

recv (Upload, f) from _ :
send (Hash, f) to (pidcur, sidcur,FRO : randomOracle)
wait for (Hashed, l)
files[l]← f
reply (Uploaded, l)

recv Links from _ :
reply {l : ∀l 7→ f ∈ files}

recv (Download, l) from _ :
reply (Downloaded, files[l])

Fig. 8: Protocol PIPFS for a storage server in the IPFS network.

ciates a λ-sized random bitstring h. In particular, if m was never queried before,
then FRO generates a random bitstring h, stores the couple (m,h) and returns h.
Otherwise (m has already been queried), and thus FRO returns the h associated
to m. Similarly to FCA, we assume that the ideal functionality FRO manages all
entities, meaning that there is a single instance of FRO in the protocol.

Description of PIPFS. An IPFS network consists of connected servers, main-
taining an internal state associating to a file f a link l where l is the hash of
f computed using the cryptographic hash function. IPFS plays a central role
in the efficiency of our construction by allowing a potentially large data to be
transferred over a distributed storage network. We have modelled a single stor-
age server in iUC as a real protocol denoted PIPFS and depicted in Fig. ??. A
storage server having the role storage, relies on the random oracle FRO used to
hash files. It is equipped of the three following functions: Upload used to store
files, Links returning all saved links, and Download which given a link l returns
the file f associated with l. A storage server is not intended to provide more
than the efficiency in our construction. Hence it can be dynamically corrupted
without erasure i.e., corruption occurs at any time, leaving the full control of
the corrupted server to the adversary, all its internal state being leaked.

Description of Fsig-CA. The ideal functionality for digital signature, introduced
in [?] and recalled in Fig. ??, is composed of the two roles signer and verifier,
allowing respectively to create a signature of a given message and to verify a sig-
nature. During the instance initialization, the party identifier pid′ of the signer is
obtained from the session identifier having the form sid = (pid′, sid′). Before pro-
viding any signature, the signer expects from the higher protocol an initialization

17

Ideal functionality Fsig-CA = (signer, verifier):
Participating roles: signer, verifier
Corruption model: static corruption
Protocol parameters:

– A polynomial p ∈ Z[x] used to bound the runtime execution of provided algorithms.

Msigner,verifier:
Implemented role(s): signer, verifier
Subroutines: FCA : registration
Internal state:

– (Sign,Verif, pk, sk) ∈ ({0, 1}∗ ∪ {⊥})4 = (⊥,⊥,⊥,⊥)
– pidowner ∈ {0, 1}∗ ∪ {⊥} = ⊥
– msgList ⊆ {0, 1}∗ = ∅
– KeysGenerated ∈ {ready,⊥} = ⊥

CheckID(pid, sid, role): Check that sid has a (pid′, sid′) format. If the check fails, return false,
otherwise accept all entities with the same SID.
Corruption behavior:
– LeakedData(pid, sid, role): If called while (pid, sid, role) determines its initial corruption

status, use the default behavior of LeakedData. That is, output the initially received mes-
sage and the sender of that message. Otherwise, if role = signer and pid = pidowner, return
KeysGenerated. In all other cases, return ⊥.

– AllowAdvMessage(pid, sid, role, pidrecv, sidrecv, rolerecv, m): Check that (pid = pidrecv).
If rolerecv = FCA : registration, also check that role = signer and sid = (pid, sid′). If all checks
succeed, output true, otherwise output false.

Initialization:
send responsively InitMe to NET
wait for (Init, (Sign,Verif, pk, sk))
(Sign,Verif, pk, sk)← (Sign,Verif, pk, sk)
parse sidcur as (pid, sid)
pidowner← pid

Main:
recv InitSign from I/O to (pidowner,_, signer) :

send (RegisterKey, pk) to (pidcur, ϵ,FCA : registration)
wait for (RegisterKey,_)
KeysGenerated← true
reply (InitSign, 1)

recv (Sign,m) from I/O to (pidowner,_, signer) s.t. KeysGenerated = true :
σm ← Sign(p)(m, sk)

b← Verif(p)(m,σm, pk)
if σm = ⊥ ∨ b ̸= 1:

reply (Signature,⊥)
else:

add m to msgList
reply (Signature, σm)

recv (Verify,m, σm, pk) from I/O to (_,_, verifier) :
b← Verif(p)(m,σm, pk)
if pk = pk ∧ b = 1 ∧m /∈ msgList ∧ (pidowner, sidcur, signer) /∈ CorruptionSet:

reply (VerResult, false) {Prevents the signature forgeries
reply (VerResult, b)

Fig. 9: Description of the ideal functionality Fsig-CA [?].

18

Protocol PAAFT = (sender, receiver):
Participating roles: sender, receiver
Subroutines: FABE,Fsig-CA,FCA : retrieval,FRO,PIPFS

Corruption model: static corruption
Protocol parameters:

– The party identifier pidsetup, identifying the entity of the ABE scheme handling the master keys.
– A time T ∈ N delimiting phase in which decryption keys are provided, from the phase where

encryption and decryption are operated. We denote by t ∈ N the current time.

Msender:
Implemented role(s): sender
CheckID(pid, sid, role): Accept a single entity.
Internal state:

– mpk ∈ {0, 1}∗ ∪ {⊥} = ⊥
Corruption behavior:
– DetermineCorrStatus(pid, sid, role): return corr(pid, (pid, ϵ), signer) or

corr(pid, (pidsetup, sid), encryptor).
– AllowAdvMessage(pid, sid, role, pidrecv, sidrecv, rolerecv, m): Check that (pid = pidrecv).

Initialization:
send PubKey? to (pidsetup, (pidsetup, sidcur),FABE : setup)
wait for mpk′
mpk ← mpk′

send InitSign to (pidcur, (pidcur, ϵ)),Fsig-CA : signer)
wait for _

Main:
recv (Send, y, f) from I/O s.t. T < t :

send responsively Storage? to NET
wait for (Storage, storage)
send (Encrypt, y, f,mpk) to (pidcur, sidcur,FABE : encryptor)
wait for (Ciphertext, ψy)
send (Upload, (y, ψy)) to storage
wait for _
send (Hash, (y, ψy)) to (pidcur, sidcur,FRO : randomOracle)
wait for (Hashed, l)
send (Sign, l) to (pidcur, (pidcur, ϵ),Fsig-CA : signer)
wait for (Signature, σl)
send (Sent, l, σl) to NET

Fig. 10: Description of our protocol PAAFT (Part 1)

request allowing the signer to register the verification key pk to the certificate
authority, modelled via the FCA ideal functionality. After this initialization step,
the signer is allowed to sign any message. Note that before returning the signa-
ture, the signer stores the signed message m in a set of authenticated messages
managed by the instance, used later for the signature verification. To verify a
signature, an entity having the verifier role expects as an input a message m, a
signature σm and a public verification key pk. The security of a digital signature
is modelled by the ideal functionality by always rejecting every valid signature
σm coming from an uncorrupted signer whose the message m does not belong to
the set of authenticated messages, and whose the provided verification key pk is
the valid one (i.e., the public verification key provided by the adversary in the
ideal functionality).

Description of our Hybrid Protocol PAAFT. We are now ready to intro-
duce PAAFT our hybrid file transfer protocol based on a hash-based distributed

19

Mreceiver:
Implemented role(s): receiver
Internal state:

– initiated ∈ {0, 1} = 0
– files ⊆ {0, 1}∗ = ∅

CheckID(pid, sid, role): Check that sid = (pid′, sid′). Accept a single entity.
Corruption behavior:
– AllowCorruption(pid, sid, role): Returns t < T .
– DetermineCorrStatus(pid, sid, role): return corr(pid, (pidsetup, sid), decryptor).
– AllowAdvMessage(pid, sid, role, pidrecv, sidrecv, rolerecv, m): Check that (pid = pidrecv).

Main:
recv (InitAttr, x) from I/O s.t. initiated = 0 :

initiated← 1
send (InitAttr, x) to (pidcur, sidcur, PABE: decryptor)

recv (Receive, sender, storage, l, σl) from NET s.t. T < t ∧ initiated = 1 :
parse storage as (_,_,PIPFS : storage), sender as (pid,_, sender)
send (Download, l) to storage
wait for (Downloaded, (y, ψy))
send (RetreiveKey, (pid, ϵ)) to (pidcur, sidcur,FCA : retrieval)
wait for (RetreivedKey, pk)
send (Verify, l, σl, pk) to (pidcur, (pid, ϵ),Fsig-CA : verifier)
wait for (VerResult, b)
send (Hash, (y, ψy)) to (pidcur, sidcur, randomOracle)
wait for (Hashed, l′)
send (Decrypt, ψy) to (pidcur, (pidsetup, sidcur),FABE : decryptor)
wait for (Plaintext, f)
if l = l′ ∧ b = 1 ∧ f ̸= ⊥: add f to files

recv Collect from I/O :
reply files

Fig. 11: Description of our protocol PAAFT (Part 2)

storage system in Fig. ?? and Fig. ??. Since our protocol is self-explained, we
only highlight the overall behavior. During the reception of a file f along an
access policy y, an honest sender encrypts f using the ideal functionality FABE

to obtain the ciphertext ψy. This ciphertext is hashed to obtain the link l and
is sent to the storage (chosen by environment E). After having obtained the
signature σl for l, the sender shares the link l along the signature σl with the
environment E . When receiving a link l, a signature σl and two identities respec-
tively for the storage and the sender, an honest receiver checks the validity of
the signature with respect to the signer and the link and decrypts the ciphertext
ψy, previously obtained from the designated storage server.

Theorem 1. Assuming ideal functionalities for certificate authority FCA, digital
signature Fsig-CA, random oracle FRO and attribute-based encryption FABE and
the IPFS protocol PIPFS, then (sender, receiver|FRO,FABE,Fsig-CA,FCA,PIPFS)
realizes FAAFT.

Proof. We start this proof by giving a description of our simulator S, used with
the ideal functionality FAAFT to show that PAAFT ≤ S|FAAFT. In a nutshell, S
runs a simulation of the real protocol and handles request coming from both

20

the environment and the ideal functionality. During the simulation, without loss
of security and functionality, we require the leakage function L(λ,m) used by
the ideal functionality FABE to return a zero-string 0|m|. We now provide the
description of S:

– When receiving a notification request of the form (Registered, x) from the
ideal functionality (simulating a receiver), attesting the access to some at-
tribute x. In such case, inputs the same receiver in the simulated real protocol
with (InitAttr, x).

– When receiving a corruption request from the environment to corrupt the
entity entity defined by the triplet (pid, sid, role). If the current time t <
T , then it accepts the corruption request. Otherwise, ignore the corruption
request. Each time a corruption request leads to the corruption either of a
sender or a receiver, the simulator notifies the ideal functionality as well,
leading to a synchronization of senders and receivers corruption between
the simulated real protocol and the ideal functionality. In case where the
entity in charge of handling the master secret keys receives a decryption key,
assuming t < T , then the decryption key skx is computed and sent back to the
corrupted decryptor. Observe that by construction, a corrupted decryptor
equals a corrupted receiver. The simulator S notifies the ideal functionality
that the environment is allowed to decrypt any ciphertext associated with a
policy access y whose x ∈ y by sending the request (CorrAttr, x) to FAAFT.

– When receiving a request of the form (SendHonest, y, r, |f |) or the request of
the form (SendCorrupted, y, r, f) from the initial functionality, the simulator
inputs the simulated sender of PAAFT with the access policy y and the real
file f in the case of SendCorrupted, or the zero-string 0|f | of the case of
SendHonest. In addition, in case of SendHonest, the simulator records the
pair (r, ψy) where ψy is the ciphertext obtained via the simulated encryptor
from the ideal functionality FABE. This record is used later to provide the
random r to the ideal functionality FAAFT.

– When receiving a request of the form (Receiver, sender, storage, l, σl) from
the environment E via the network interface, then it inputs the simulated
real receiver, running all sanity checks including decryption, signature ver-
ification and link validation. Let ψy be the ciphertext obtained during the
execution of the simulated receiver in PAAFT. If all checks success, then if
the simulator recovers the pair (r, ψy) and sends (Receive, y, r, sender) to
the ideal functionality FAAFT, and no response is expected later. Otherwise,
there is no records (r, ψy) and hence it sends (Receive, y,⊥, sender) to the
ideal functionality. By construction, the ideal functionality FAAFT responds
with a responsive request (WaitFile, y, r, sender) where r equals ⊥. At this
point, the ideal functionality expects a file f to register. Since there is no
records by the simulator but the decryptor file f being authenticated, the
simulator responds to this responsive request with (ProvideFile, 1, f).

It is clear that our simulator S is polynomial-time. We are now ready to
initiate our sequence of hybrids, where our first hybrid consists of the (S|FAAFT)
ideal protocol, and our last hybrid is our hybrid protocol PAAFT:

21

Hybrid 0. This hybrid is the execution of the ideal protocol (S|FAAFT) with the
environment E , connected respectively to the NET interface of S and to the I/O
interface of FAAFT, with S being connected to the NET interface of FAAFT.
Hybrid 1. This hybrid works as the previous hybrid, except that we now execute
the protocol (S ′|FFwd) where S ′ runs the simulated ideal protocol (S|FAAFT)
and where FFwd simply forwards every request from the environment E to S ′
and conversely. Since this modification is only structural without any modifica-
tion on the ideal protocol behavior, then we have a perfect indistinguishability
between these two hybrids. In the following, for a better clarity, we index each
simulator S ′ with the current hybrid index, hence: Pr

[
(E|S ′1|FFwd)(1

λ)→ 1
]
=

Pr
[
(E|S|FAAFT)(1

λ)→ 1
]
.

Hybrid 2. This hybrid works as the previous hybrid, except that we introduce
a new simulator S ′2 consisting of S ′1 where we delegate the all attribution veri-
fication both during the Send and Receive requests to the simulator S. First,
let focus on the Send part of the ideal functionality FAAFT, currently simulated
by our simulator S ′2. We rewrite the code of Send to remove the random r as
well as the corrupted attribute condition, all of these lines being replaced only
by a request of the form (Send, y, f). The code still stores files being sent by
an honest sender, but omits the random r i.e., it records a tuple of the form
(sender, y, f). The file reception request in the ideal functionality FAAFT, han-
dling requests of the form (Receive, y, r, sender), now handles requests of the
form (Receive, y, f, sender). The condition verifying of there is no tuple of the
form (sender, ·, r, ·) is still performed but with the tuple of the form (sender, ·, f).
The random r is replaced by ⊥ in the code which is executed when the condition
is checked. The executed code when the condition fails, including the attribute
verification (x ∈ y), is replaced by the insertion of the file f to the received file
register. The simulator, on its side, does not register the pair (r, ψy) anymore.

Observe that all these modifications are hidden to the environment, and
we claim that the view of the environment remains unchanged. This can be
easily deduced since the at this point, the ideal functionality does not per-
form the attribute verification by itself but rather delegate this task to the
ideal functionality FABE, which is secure and correct by design. However, com-
pared to the previous hybrid, the received file is now always f instead of the
zero-string. In case where the environment does not have a valid decryption
key to decrypt ψy, it encrypts the leakage L(λ, f) in this hybrid, instead of
L(λ, 0|f |) in the previous one. Thanks to our specification of L, always out-
putting a zero-string, both of these leakages are the same. Therefore, by con-
struction of the ideal functionality FABE and by the leakage function L, the en-
vironment cannot distinguish, otherwise breaking the security of FABE. Hence,
Pr

[
(E|S ′2|FFwd)(1

λ)→ 1
]
= Pr

[
(E|S ′1|FFwd)(1

λ)→ 1
]
.

Hybrid 3. At this point, the (simulated) ideal functionality FAAFT still maintain
a set of sent files, essentially used to provide authentication of the files for honest
senders. An honest receiver, on its side, verifies that a received file f belongs to
the set of sent files (with respect to the provided sender) and responds to the
simulator via the network interface if the file is not found. Observe that in this

22

case, the simulator already activates the (honest) receiver with a request Receive
if and only if the provided signature σl authenticates the link l, which corresponds
to the hash of the ABE ciphertext ψy. Hence, by construction, authentication of
the file with respect to the provided sender is already ensured by the signature
ideal functionality Fsig-CA. Hence, the condition in the ideal functionality FAAFT

is no more necessary and all the code handling Receive requests is now limited
to add the received file f (added in the previous hybrid) to the set of received
files. This constitutes our new simulator S ′3. Since the authentication in the ideal
functionality Fsig-CA is correct and secure by definition, this modification does
not impact the view of the environment E and hence Pr

[
(E|S ′3|FFwd)(1

λ)→ 1
]
=

Pr
[
(E|S ′2|FFwd)(1

λ)→ 1
]
.

Hybrid 4. This hybrid works as the previous hybrid, except that we remove the
attribute state attr that are not used anymore in this hybrid. Additionally, we
replace the internal state receivedFiles by a local internal state specific to each
receiver. This last modification clearly does not affect the view of the the environ-
ment E . Hence, we have Pr

[
(E|S ′4|FFwd)(1

λ)→ 1
]
= Pr

[
(E|S ′3|FFwd)(1

λ)→ 1
]
.

Observe that in our last hybrid, the ideal functionality FAAFT simulated in our
last simulator S ′4 never rely on internal state and essentially constitutes a forward
machine between the simulated hybrid protocol and the I/O interface where the
environment is connected. As a result, we claim that Pr

[
(E|S ′4|FFwd)(1

λ)→ 1
]
=

Pr
[
(E|PAAFT)(1

λ)→ 1
]
. Hence, we have PAAFT ≤ FAAFT.

4.3 Implementation of PAAFT

Our open-source proof-of-concept written in Rust confirms the practicality of
our protocol [?]. We have chosen the Schnorr signature over the curve25519
curve as our EUF-CMA digital signature. Since our cryptographic hash func-
tion handles potentially large files, we have chosen to construct a parallelized
Merkle-tree-based hash function using the standard SHA-256 cryptographic hash
function as the underlying building block. To construct our IND-CCA2-secure
ABE, we have applied the Fujisaki-Okamoto transform [?] on the Agrawal-Chase
IND-CPA Ciphertext-Policy ABE scheme [?].We have used AES-256-CTR as the
secret-key encryption within the transform. Benchmarks have been performed
on an Ubuntu, embedding a 64 bits Intel Core i5-6500 processor cadenced at
3.20GHz including four cores, and embedding 16Gb of memory. In Fig. ?? is
depicted the execution time of the sending and receiving procedures depending
on the input file size. We directly observe that both procedures are mlinear. For
a 450 megabytes file the sending procedure requires approximately 216 millisec-
onds, whereas the file receiving procedure expects 258 milliseconds. The differ-
ence between the sending and reception is explained by the Fujisaki-Okamoto
transform, executing during the reception the encryption algorithm, used to re-
ject malformed ciphertext. In Fig. ??, we compare the amount of data sent by a
sender to a receiver through the low-rate medium between the naive correspond-
ing to the situation where the encrypted file is directly sent to the receiver (for
example with OpenPGP [?]), and the approach motivated in the PAAFT protocol.

23

0 200 400
0

100

200

File size (MB)

E
xe

cu
ti

on
ti

m
e

(m
s) Sending

Receiving

0 200 400

0

2

4
·108

File size (MB)

T
ra

ns
m

it
te

d
da

ta
(B

)Naive
PAAFT

Fig. 12: Evaluation of the sending and receiving execution time (left) and the
exchanged data size between users (right).

Compared to the naive approach, our solution provides a constant amount of
transferred data of 96 bytes corresponding to the link (i.e., the hash of the en-
crypted file) and the signature σl. This constant communication size is explained
by the encrypted file being sent over the distributed storage network instead of
being directly transferred, still with the guarantee to have confidentiality and
integrity of the file but also authentication of the sender.

Acknowledgments. We thank the anonymous referees for their useful sug-
gestions and remarks. This work was partially supported by the DataLake-For-
Nuclear (D4N) project funded by the BPI institute.

24

