
A Terrorist-fraud Resistant and Extractor-free Anonymous
Distance-bounding Protocol∗

Gildas Avoine
INSA/IRISA Rennes

gildas.avoine@irisa.fr

Xavier Bultel
LIMOS, U. Clermont Auvergne

xavier.bultel@uca.fr

Sébastien Gambs
UQAM, Montréal

gambs.sebastien@uqam.ca

David Gérault
LIMOS, U. Clermont Auvergne

david.gerault@uca.fr

Pascal Lafourcade
LIMOS, U. Clermont Auvergne
pascal.lafourcade@uca.fr

Cristina Onete
INSA/IRISA Rennes

cristina.onete@gmail.com

Jean-Marc Robert
ETS, Montréal

jean-marc.robert@etsmtl.ca

ABSTRACT
Distance-bounding protocols have been introduced to thwart
relay attacks against contactless authentication protocols.
In this context, verifiers have to authenticate the creden-
tials of untrusted provers. Unfortunately, these protocols
are themselves subject to complex threats such as terrorist-
fraud attacks, in which a malicious prover helps an accom-
plice to authenticate. Provably guaranteeing the resistance
of distance-bounding protocols to these attacks is complex.
The classical solutions assume that rational provers want to
protect their long-term authentication credentials, even with
respect to their accomplices. Thus, terrorist-fraud resistant
protocols generally rely on artificial extraction mechanisms,
ensuring that an accomplice can retrieve the credential of
his partnering prover, if he is able to authenticate.

We propose a novel approach to obtain provable terrorist-
fraud resistant protocols that does not rely on an accom-
plice being able to extract any long-term key. Instead, we
simply assume that he can replay the information received
from the prover. Thus, rational provers should refuse to
cooperate with third parties if they can impersonate them
freely afterwards. We introduce a generic construction for
provably secure distance-bounding protocols, and give three
instances of this construction: (1) an efficient symmetric-key
protocol, (2) a public-key protocol protecting the identities
of provers against external eavesdroppers, and finally (3) a
fully anonymous protocol protecting the identities of provers
even against malicious verifiers that try to profile them.

∗This research was supported by the FEDER program of
2014-2020, the region council of Auvergne, the Digital Trust
Chair of the University of Auvergne, NSERC Discovery
Grants and the Cost Action IC1403 in the EU Framework
Programme Horizon 2020.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AsiaCCS ’17, April 4–6, 2017, Abu Dhabi, United Arab Emirates.
c© 2017 ACM. ISBN 978-1-4503-4944-4/17/04. . . $15.00.

DOI: http://dx.doi.org/10.1145/3052973.3053000

1. INTRODUCTION
In recent years, contactless communications have become

ubiquitous. They are used in access control cards, electronic
passports, payment systems, and numerous other applica-
tions, which often require some form of authentication. In
authentication protocols, the device to authenticate is typ-
ically an RFID tag, a contactless card or more and more
frequently an NFC-enabled smartphone, acting as a prover.
Before accessing some resources, this device has to authen-
ticate to a reader, which plays the role of a verifier.

A crucial concern for contactless communications are re-
lay attacks, in which an adversary forwards the communica-
tions between a prover and a verifier to authenticate [15, 4].
These attacks cannot be prevented by cryptographic tools
and mechanisms ensuring the physical proximity between
a verifier and a prover must be used. Distance-bounding
(DB) protocols [10] have been proposed to allow the verifier
to estimate an upper bound on his distance to the prover
by measuring the time-of-flight of short challenge-response
messages (or rounds) exchanged during time-critical phases.
At the end of such a protocol, the verifier should be able to
determine if the prover is legitimate and in his vicinity.

A typical scenario for contactless authentication devices
is a public transportation system in which users authenti-
cate to access buses or subway stations through their NFC-
enabled smartphones. The transportation company will de-
ploy controls to prevent misuses of its system but a legit-
imate user might be tempted to help a friend to use his
credentials illegally for a single trip, which is known as a
terrorist fraud (TF). Nevertheless, this user might not ac-
cept that his friend uses them afterwards as the original user
may get caught and be accountable. Note that this attack
targets the transportation company. Another threat against
DB protocols, known as a mafia fraud (MF), is a fraudster
using the presence of a legitimate user to authenticate. This
attack targets the transportation company as well as the end
user as he may have to pay for this extra fare. Both types of
attacks are typical relay attacks against contactless authen-
tication protocols. Another crucial aspect for such a system
is the protection of user privacy. Indeed, most users would
not accept that their whereabouts can be tracked down by
other users or by the transportation company due the wealth
of personal information that can be inferred from such data.

Another simple scenario could be the access to a restricted
building. In this case, third parties may want to enter (MF
attacks), or legitimate workers may want to help friends to
access the building (TF attacks). However, the verifier is
not directly a threat against the privacy of the workers.

In this paper, we propose a new approach for developing
provably secure DB protocols resisting to all classical threats
against such protocols. Its novelty relies on the fact that a
prover can control the responses to the time-critical chal-
lenges and still prove his proximity. This is particularly ap-
propriate for coping with terrorist-fraud attacks, since these
responses can be reused by malicious parties, only if they
have been helped by the prover beforehand. Moreover, this
approach is more flexible than traditional countermeasures
to TF attacks, which rely on extraction mechanisms (e.g.,
zero-knowledge proofs, secret-sharing schemes or fuzzy ex-
tractors). In particular, these mechanisms are more complex
than the ones used in this paper and the DB protocols based
on them require more elaborated proofs. Furthermore, these
protocols rely on long-term secret keys, which expose the
privacy and the anonymity of provers.

Note that the TF-resistance property is a concept that
is difficult to formalize and numerous attempts have been
made [16, 7, 17, 26]. Far from claiming that our approach
is the only viable alternative to achieving TF-resistance, it
expands the fundamental understanding of the problem and
how to counter it in practice. Eventually, the best approach
will emerge from all these attempts. Our main contributions
can be summarized as follows.

Novel approach. Our main contribution is to propose
a new approach for provable TF resistance in which the
prover selects unilaterally the binary responses used during
the time-critical challenge-response phases. If a malicious
prover gives this information to his accomplice, the accom-
plice can then adapt and replay successfully the information
received during a new session. Since a rational prover is
not willing to allow an accomplice to impersonate him at
will, he will not attempt any TF attack in the first place.
As a consequence, we obtain an intuitive TF resistance proof
without relying on any artificial extraction mechanism. Sur-
prisingly, this idea has not been considered in the literature
before. As shown in this paper, it can be used to design
protocols achieving the simulation-based TF resistance no-
tion [16], which is a stronger notion than the ones used for
most existing TF-resistant protocols.

Fortunately, even if the prover is responsible for selecting
the response vectors, this impacts only slightly the other se-
curity properties of our protocols. Intuitively, relaxing the
freshness of the information and allowing the replay of some
authenticated data may introduce a way for an attacker to
impersonate a legitimate prover. In our context, such an
attack is typically referred to as a MF attack. Fortunately,
this attack would be successful only if the attacker could be
able to guess half of his missing responses to the verifier’s
challenges. This explains why the MF-resistance of our so-
lution is not as strong as the best available solutions.

Generic construction. Our second contribution is the pro-
tocol TREAD (for Terrorist-fraud Resistant and Extractor-
free Anonymous Distance-bounding), which is a generic con-
struction implementing the proposed approach. It can be in-
stantiated in many ways including a more efficient symmetric-
key protocol, a public-key protocol protecting the privacy of

provers in the presence of external eavesdroppers, and a pro-
tocol based on group signatures protecting the anonymity
of provers even against malicious verifiers trying to pro-
file provers. The latter one can be used for instance in the
public transportation scenario, whilst the first two are more
adapted to the scenario of the restricted-access building.

Extension of DFKO. The final contribution is to extend
the DFKO framework [16] to deal with distance-hijacking
(DH) attacks [14], in which a malicious prover tries to fool a
verifier, by taking advantage of nearby honest provers. This
provides a framework to deal with all the potential attacks
against DB protocols and the security of TREAD is proven
in this extended framework.

Table 1 presents a comparative analysis of our results and
well-known solutions existing in the literature. These results
are grouped into three categories: best unproved protocols,
best formally-proven protocols and best privacy-preserving
formally-proven protocols.

Table 1: Summary of existing solutions. TF de-
notes the terrorist-fraud resistance. The probabil-
ities of successful mafia-fraud (MF) and distance-
fraud (DF) attacks depend on the number n of time-
critical rounds. P and A respectively denote privacy
with respect to an eavesdropper and anonymity with
respect to a malicious verifier, while R indicates if a
user can be revoked easily.

Protocol TF MF DF P A R

Not formally proven

Swiss Knife [21] 3
(

1
2

)n (
3
4

)n
3 7 3

Provably secure

SKI [6] 3
(

3
4

)n (
2
3

)n
7 7 3

FO [17] 3
(

3
4

)n (
3
4

)n
7 7 3

Provably-secure and privacy-preserving

privDB [25] 7
(

1
2

)n (
3
4

)n
3 7 3

GOR [19] 7
(

1
2

)n (
3
4

)n
3 3 3

PDB [1] 3
(

1
2

)n (
3
4

)n
3 3 7

SPADE [12] 3
(

1
20.37

)n (
3
4

)n
3 3 3

TREAD

Secret key 3
(

3
4

)n (
3
4

)n
7 7 3

Public key 3
(

3
4

)n (
3
4

)n
3 7 3

Group Signature 3
(

3
4

)n (
3
4

)n
3 3 3

TREAD compared favourably to the best published solu-
tions. The instance based on the group-signature scheme
is fully anonymous and provides TF-resistance, in contrast
to the solution presented in [19], while simply having to
slightly relax the MF-resistance probability (from

(
1
2

)n
to(

3
4

)n
, which imposes to double the number of time-critical

rounds to achieve the same security level). In fact, it has
the best security properties of any fully anonymous protocol
not relying on any artificial and inefficient extraction mech-
anism. It almost matches the TF, MF and distance-fraud
(DF) resistance of the best proven solutions [6, 17] while
providing full anonymity. Finally, the instance based on
the public-key scheme achieves slightly less MF-resistance
than the Swiss-Knife protocol attains with a symmetric key.
However, the latter has not been formally proven. In fact, a
minor attack has been presented against it [5].

Related Work. Since the introduction of DB protocols in
1993 by Brands and Chaum [10], new threats have emerged
against contactless communications. They can be classified
depending on whether the adversary is an external entity or
a legitimate but malicious prover. The former case includes
attacks in which the adversary illegitimately authenticates,
possibly using a far-away honest prover (Mafia Fraud), or
in which the adversary plays against a simplified version
of the protocol without any distance estimation (Imperson-
ation Fraud). The latter case includes attacks featuring a
legitimate but malicious prover who wants to fool the verifier
on the distance between them (Distance Fraud), sometimes
using the presence of an honest prover close to the verifier
(Distance Hijacking). It also tackles a malicious prover help-
ing an accomplice to authenticate (Terrorist Fraud), which
is the most difficult attack to counter.

The classical countermeasures against TF rely on the as-
sumption that a malicious prover does not trust his accom-
plice enough to simply give him directly his authentication
credentials (i.e., any potential long-term secret key). TF
resistance is generally implemented by making the authenti-
cation of the accomplice very difficult if the prover does not
leak away a significant fraction of his long-term key. While
intuitively achieving this objective is not difficult, proving
that a protocol is TF-resistant is problematic. So far, all
the proofs proposed in the literature have relied on artificial
mechanisms, such as trapdoors, secret leakage, secret sharing
schemes and extractors. These mechanisms allow an accom-
plice to extract the long-term secret key of his companion
prover if he can authenticate with a non-negligible probabil-
ity. Thus, once the accomplice has retrieved this key, he can
impersonate at will the targeted prover. Hence, these arti-
ficial mechanisms are mainly used to deter rational provers
from helping potential accomplices. For instance, Fischlin
and Onete [17] proposed a special mode (i.e., a trapdoor)
allowing the adversary to authenticate if he knows a tar-
geted string close in terms of Hamming distance to the long-
term secret key of the prover. Very recently, Bultel and co-
authors [12] used the same approach to introduce SPADE, a
fully anonymous TF-resistant protocol. In SPADE, there is
a trade-off to set in the analysis of the MF and TF resistance
probabilities. This trade-off balances the information given
to the accomplice by the prover and the information inferred
from the trapdoor, which leads to unusual resistance proba-
bilities for these properties. An important drawback of this
approach is that it does not easily support scattered verifiers.
In such a case, the verifiers may have to share a common de-
cryption key to respond to the trapdoor queries. Otherwise,
the accomplice would be able to impersonate his partnering
prover only with the given verifier, which is a threat that
the prover may accept. Finally, another drawback of this
solution is that a malicious verifier is able to replay the re-
ceived information and impersonate a given prover, which
constitutes a major threat against the latter.

In their SKI protocols [7], Boureanu, Mitrokotsa and Vau-
denay used a leakage scheme allowing an adversary to re-
trieve the long-term secret key used several times by a prover.
This technique is reused in the DBopt protocols [9]. Avoine,
Lauradoux, and Martin [3] used a classical secret-sharing
scheme to resist to terrorist frauds, which consists in sharing
the prover’s long-term secret using a (n, k)-threshold cryp-
tographic scheme. Upon reception of a challenge, a prover
should send a share back to the verifier. The key point

is that an accomplice must know all the shares to be able
to successfully respond to any challenge, but then he could
retrieve the prover’s long-term secret. In this case, the chal-
lenges sent during the time-critical phase can no longer be
binary messages. Furthermore, the scheme neither considers
distance fraud, nor addresses the issue of privacy. Finally,
Vaudenay [26] relies on extractor schemes to recover a string
close to the long-term secret key from the view of all nearby
participants after a TF attempt. All these solutions depend
on computationally-expensive primitives. Overall, TREAD
has a simpler analysis than any of these protocols with the
same security properties. In addition, as these solutions rely
explicitly on long-term secret keys, they present serious chal-
lenges for developing strong privacy properties.

While a lot of effort has gone in proposing secure DB
protocols, the research community has only recently inves-
tigated privacy issues linked to distance bounding. Consid-
ering the amount of information that can be inferred from
the location history of an individual [18], protecting pri-
vacy becomes a critical issue for the wide acceptance of such
technology. To address this concern, two aspects have to be
considered: (1) the protection of the privacy of the provers
with respect to eavesdroppers and (2) the protection of the
anonymity of the provers with respect to curious verifiers.

Anonymous DB protocol against external adversaries have
been introduced recently [20]. Gambs, Onete and Robert [19]
extended this notion to deal with honest-but-curious and
malicious verifiers, which try to profile legitimate provers
by linking their authentication sessions. They proposed an
extension of the HPO protocol [20] in which the provers are
managed as a group. Though they addressed the classical
MF, DF and IF, they did not consider TF. Recently, Vau-
denay [25] proposed a generic solution to add privacy to
DB protocols with respect to external eavesdroppers, which
relies on an authenticated key-exchange build on top of a
one-time secure DB protocol. Unfortunately, it does not
provide neither TF -esistance nor anonymity against honest-
but-curious or malicious verifiers.

Finally, Ahmadi and Safavi-Naini [1] gave a TF-resistant
protocol PDB, which protects the anonymity of the prover
by fixing weaknesses of the DBPK-log protocol [13]. The
prover shows with a classical zero-knowledge proof that he
possesses the secret key used during the protocol and its
signature issued by a trusted authority. Unfortunately, this
solution does not allow to revoke the credential of a prover
without adding too much complexity and damaging the ro-
bustness of the scheme. Furthermore, since the authentica-
tion is anonymous, there is no way to distinguish whether a
session uses a given stolen secret key or not. Compared to
this protocol, TREAD guarantees the anonymity of its users
through a group signature scheme. This enables an efficient
management of users (i.e., adding and revoking users) and a
clear separation of duties (e.g., adding, revoking and lifting
the anonymity can be done by separate authorities).

Overall, more than forty DB protocols have appeared since
1993. Unfortunately, based on a recent survey [11] only few
of them have not been broken yet.

Outline. In the next section, we describe our generic con-
struction providing TF-resistance and three of its possible
instantiations. Afterwards, in Section 3, we introduce the
security models and prove the main security properties of
our solutions before concluding in Section 4.

2. THE TREAD INSTANTIATIONS
In this section, we present TREAD, a generic construction,

which encompasses all the desirable properties of a secure
DB protocol. To counter terrorist-fraud attack, the usual
strategy is to ensure that if a malicious prover gives his ac-
complice both responses for a given challenge, he can recover
one bit of the prover’s long-term secret key x as shown in
Figure 1. If the accomplice is able to authenticate with a
non-negligible probability, he probably knows a large frac-
tion of x and can use it to retrieve the full secret through the
available extraction mechanism. Thus, any rational prover
should not accept to go that far. Even though intuitively
clear in general, the security of such approach is hard to
prove formally. Our approach aims at avoiding this pitfall.

2.1 The generic construction TREAD
TREAD requires as building blocks an IND-CCA2-secure

encryption scheme E (either a symmetric-key or public-key
scheme) and an EUF-CMA-secure signature scheme S. The
given instantiations gradually move from a computationally-
efficient symmetric protocol to a prover-anonymous one, in
which a secure group-signature scheme is required.

As shown in Figure 2, our scheme relies on strong design
choices. Our first design choice is to enable a prover to
choose the values of the response strings α and β, which
he then sends signed and encrypted in his initial message e
to the verifier. The encryption hides these values from an
eavesdropper, but they can be used by the prover (or a TF
accomplice) to replay the protocol. In addition, a malicious
verifier could also do the same and replay the information
against another verifier. The verifier simply responds to the
initial message with a random binary string m to prevent
trivial DF attacks in which a malicious prover selects α = β.
During the time-critical phases, the response to challenge ci
is computed as αi if ci = 0 and βi ⊕mi otherwise.

Most existing DB protocols do not enable the prover to
generate the response strings α and β, due to the fact that
provers are potentially malicious and may attempt to cheat
by selecting convenient values. Hence, these strings are usu-
ally computed as the output of a pseudo-random function
(PRF) on nonces selected independently both by the verifier
and the prover. Unfortunately, this is not sufficient to pre-
vent provers from influencing the values α||β [5, 11]. Indeed
as mentioned earlier, there is a potential attack against the
Swiss-Knife protocol [21] based on the use of a weak PRF [5].

Our first design choice is motivated by a simple observa-
tion. If a malicious prover can control the PRF in some
cases, we can further assume that he chooses the response
strings. If a protocol can thwart such provers, it should a
fortiori resist to provers only manipulating the PRF.

A novel approach. Our second design choice is a funda-
mental shift compared to previous approaches existing in the
distance-bounding literature. Our strategy is not to force
the prover to leak his secret to his accomplice. Rather, we
design the protocol such that, if the prover helps his ac-
complice to authenticate, the latter can simply replay suc-
cessfully this information in future sessions. Thus, rational
provers will refuse to cooperate in the first place. The dif-
ficulty is to ensure that only TF accomplices benefit from
this strategy, and not regular Man-in-the-Middle (MiM) ad-
versaries.

In our construction, anyone knowing proper responses cor-
responding to a given initial message e can adapt them to
any new string m generated by the verifier. This seems to go
against the intuition that authentication protocols need to
ensure freshness (usually through a verifier-generated nonce)
to prevent replay attacks. Indeed, a MiM adversary can ob-
serve a session and learn about half the bits of the strings α
and β corresponding to an authenticated commitment e. He
may then replay e and the responses known to him. How-
ever, this adversary must still guess on average n

2
values.

The counter-intuitive second design choice has important
implications with regards to TF-resistance. Consider the
scenario in which an accomplice is helped by a malicious
prover to authenticate. If the accomplice replays the initial
message e in a latter session, he would be able to adapt
the information given by the prover, which allows him to re-
authenticate without the help of the prover with at least the
same probability as in the first attempt. Moreover, if this
probability is non-negligible, he is even able to amplify it in
such a way that, after a polynomial number of interactions
with the verifier (without the prover), he gains the ability to
impersonate the prover with a probability very close to 1.

Based on our design choices, we propose our generic con-
struction TREAD. It can be instantiated with a public iden-
tity (idpub(P)) in the classical non-anonymous case (in which
the private identity idprv(P) is useless and can be set to null)
or with a private identity (idprv(P)) in the private and the
anonymous settings (in which the public identity must be
set to null). More details are given in the next section.
These identities are used (among other things) to retrieve
the corresponding decryption/verification keys.

Definition 1 (TREAD). The construction is composed
of five algorithms and parametrized by an IND-CCA2-secure
encryption scheme E, an EUF-CMA-secure signature scheme
S, as well as a definition for idprv(·) and idpub(·) and a
distance bound dmax such that messages cover this distance
within a time tmax

2
.

DB.gen(1λ) is the algorithm run by an honest party, setting
up the encryption scheme E and the signature scheme
S for a security parameter λ. It returns the number of
the time-critical rounds n, which is a function of λ.

DB.prover(ek, sk) is the algorithm executed by the prover in
Figure 2. The prover draws a random value α||β from
the uniform distribution on {0, 1}2n. Then, he com-
putes a signature σp on it with S.sigsk(α||β||idprv(P)).
Afterwards, he gets e = E.encek(α||β||idprv(P)||σp) and
sends e||idpub(P). Finally, during the n time-critical
rounds, he receives a challenge bit ci and responds with
ri = (αi ∧ ¬ci) ∨ ((βi ⊕mi) ∧ ci).

DB.verifier(ID, dk, vk,UL,RL) is the algorithm executed by the
verifier interacting with a prover identified as ID. De-
pending on the context, this identifier can be directly
the identity of a prover (idpub(P)) or the name of a
group (idprv(P)) for anonymous authentication. More-
over depending on the context, the verifier has access
to the lists of legitimate provers UL and revoked ones
RL. He then expects to receive an initial message e
and deciphers it as (α||β||idprv(P)||σp) = E.decdk(e).
If σp is invalid (i.e., S.vervk(σp, α||β||idprv(P)) = 0),
the verifier aborts. Otherwise, he returns a random
n-bit string m.

Verifier V Prover P
shared secret key: x

NV
$← {0, 1}n NP←−−−−−−−−−−−−−−−− NP

$← {0, 1}n

NV−−−−−−−−−−−−−−−−→
α = PRFx(NP,NV)

for i = 0 to n
Pick ci ∈ {0, 1}

Start clock
ci−−−−−−−−−−−−−−−−→

ri =

{
αi if ci = 0

αi ⊕ xi if ci = 1
Stop clock

ri←−−−−−−−−−−−−−−−−

Figure 1: The classical countermeasure against terrorist fraud: if the prover gives both possible responses,
such as for instance αi and αi⊕xi to his accomplice for a given ci, he leaks one bit of his long-term authentication
secret x. Note that PRF is a pseudorandom function keyed with x.

Verifier V Prover P
dk: decryption key ek: encryption key
vk: verification key sk: signature key

idpub(P): public identity of P
idprv(P): private identity of P

Initialisation

α||β $← {0, 1}2·n, σp = S.sigsk(α||β||idprv(P))

(α||β||idprv(P)||σp) = E.decdk(e)
e||idpub(P)←−−−−−−−−−−−−−−−− e = E.encek(α||β||idprv(P)||σp)

if S.vervk(σp, α||β||idprv(P)) = 0 then abort

m
$← {0, 1}n m−−−−−−−−−−−−−−−−→

Distance Bounding
for i = 0 to n

Pick ci ∈ {0, 1}
Start clock

ci−−−−−−−−−−−−−−−−→
ri =

{
αi if ci = 0

βi ⊕mi if ci = 1
Stop clock

ri←−−−−−−−−−−−−−−−−
store ∆ti

Verification
If #{i : ri and ∆ti correct} = n then

OutV := 1; else OutV := 0
OutV−−−−−−−−−−−−−−−−→

Figure 2: Our generic and provably secure DB construction TREAD built from an IND-CCA2-secure encryption
scheme E and an EUF-CMA-secure signature scheme S. The symbol || denotes the concatenation operation.

Afterwards, during the n time-critical rounds, he gen-
erates random bits ci with a uniform distribution, starts
his clock, sends ci, gets back ri, stops his clock and
stores the corresponding elapsed time ∆ti. Finally, he
verifies that (1) ∆ti ≤ tmax and (2) ri = (αi ∧ ¬ci) ∨
((βi⊕mi)∧ci), for all i ≤ n. If this holds, he sends an
accepting bit OutV = 1, otherwise he sends OutV = 0.

DB.join(ID,UL) is the algorithm to register a new prover
with identifier ID in the list UL. It returns the keys
(ek, dk) for E and (sk, vk) for S. Depending on the
primitives E and S, dk and vk may be public or private,
and can sometimes be equal respectively to ek and sk.

DB.revoke(ID,UL,RL) is the algorithm to revoke a prover
with identifier ID and move him to the revoke list RL.

These last two algorithms depend on the instance of the
protocol and are described in the following section. TREAD
adopts the sign-then-encrypt paradigm instead of the more

usual encrypt-then-sign. If the latter were used, an eaves-
dropper would be able to infer the identity of any prover, by
verifying the signature on the message e with all the public
keys listed in UL. The security is nonetheless preserved, at
the cost of using an IND-CCA2 secure encryption scheme.

2.2 Instantiations
Three instances of our construction are presented here.

Efficient symmetric-key scheme. Computational effi-
ciency is critical for the design of DB protocols as they are
usually run in resource-limited devices.

Our most efficient construction is based on an IND-CCA2
symmetric-key encryption scheme SKE and an EUF-CMA
message authentication code scheme MAC. The public iden-
tity idpub(P) is the identity of the prover and the private
identity idprv(P) is set to null. Since SKE and MAC are
symmetric, we have ek = dk and sk = vk. Thus, the prover
and the verifier have the same symmetric key k = (ek, sk).

In this construction, the verifiers have access to a private
list UL containing all the secret keys of legitimate provers.
An authority should add any prover in the private list UL
or in the revokation public list RL. It is also responsible to
distribute securely these lists to the legitimate verifiers.

Prover privacy and public-key encryption. In appli-
cations such as contactless payment schemes, shared secret
keys should not be used. Thus, with the emergence of NFC-
enabled smartphones, public-key DB protocols are crucial.

TREAD can be instantiated with an IND-CCA2 public-key
encryption PKE and an EUF-CMA digital signature scheme
S-SIG, in which the public identity idpub(P) is set to null,
and the private one idprv(P) is the identity of P (or his
verification key). The keys ek and dk are the public and the
private keys of the verifier, and sk and vk are the (private)
signature and the (public) verification keys of the prover.

With such a protocol, two sessions by the same user are
unlinkable for an external eavesdropper as the only informa-
tion sent about the prover’s identity is encrypted with the
verifier’s public key. However, verifiers have the power to
link sessions. In this construction, the verifiers have access
to a public list UL containing the public keys of legitimate
provers. An authority is in charge of adding provers in the
public list UL or in the revokation public list RL.

Prover anonymity and group signature. Finally, TREAD
can provide full prover-anonymity with respect to a mali-
cious verifier. As profiling users is now a common threat, it
is crucial to develop privacy-preserving DB protocols.

Both the prover anonymity and the revocability properties
can be achieved by instantiating TREAD with an IND-CCA2
public-key encryption scheme PKE and a revocable group
signature scheme G-SIG. In this case, the public identity
idpub(P) is set to null and the private identity idprv(P) is
set to the identity of the group IDG. Many groups may
coexist but prover-anonymity with respect to the verifier is
only guaranteed up to a prover’s group. The keys ek and
dk are the public and private keys of the verifier, sk is the
prover’s signing key and vk is the group verification key.

Group signature schemes allow a user to anonymously sign
on behalf of his group. Hence, the verifier can check if the
prover belongs to the claimed group, but cannot identify him
precisely nor link his sessions. In this scenario, the join and
revoke algorithms take their full meaning. Let (gpk,msk) be
the group/master key pair of the scheme G-SIG. Then,

DB.joinmsk(ID, gpk,UL) returns a prover signing key skID for
PID. It also outputs a value regID and adds PID to UL.

DB.revokemsk(ID, gpk,RL,UL) computes the logs revID for PID,
using regID and msk, and moves PID from UL to RL.

3. MODELS AND SECURITY PROOFS
In this section, we describe the models for defining DB

protocols and to characterize the classical threats against
these protocols. Then, we prove the main security properties
of the instantiations of our TREAD construction.

3.1 Formal Security Models
To the best of our knowledge three security models exist

for distance bounding: the original one by Avoine and co-
authors [2], a second one by Dürholz, Fischlin, Kasper and
Onete [16] (DFKO) and a third one by Boureanu, Mitrokotsa

and Vaudenay [7]. In this paper, we use the DFKO model
and its strong TF-resistance notion (SimTF). The DFKO
model is also extended to address DH attacks [14]. Finally,
we use the privacy and anonymity models derived from the
work of Gambs, Onete and Robert [19], which are compati-
ble with the proposed extension of the DFKO model.

Distance-bounding protocols. DB protocols are interac-
tive protocols running between two participants. The objec-
tive of the prover P is to convince the verifier V that he is
legitimate and located at a distance at most dmax from him.

The participants interact during rounds, defined as se-
quences of messages. For some of these rounds, the verifier
uses a clock to measure the time elapsed between the emis-
sion of a challenge ci and the reception of the response ri.
These back-and-forth rounds are referred to as time-critical
rounds. In most protocols, the DB phase of a protocol is
composed of either n independent time-critical rounds or
only one combined time-critical round. Non-critical phases
are simply called slow phases. After measuring the elapsed
time at the end of each time-critical round, the verifier com-
pares this value to a threshold tmax associated with the max-
imal allowed distance dmax. If one of these tests fails, the
prover will not be considered in the vicinity of the verifier.

The verifier is assumed to behave honestly during the au-
thentication of a prover. However, if it is possible, he may
try to lift the anonymity of a prover or to link sessions to a
given prover. Additionally, provers can potentially behave
maliciously and attempt to fool the verifier, either by them-
selves or by using (voluntary or unwilling) accomplices.

Adversary model. In the DFKO model, an adversary can
interact with provers and verifiers in three kinds of sessions.
Each session is associated with a unique identifier sid.

• Prover-verifier sessions to observe an honest execution
of the protocol between a prover and a verifier.

• Prover-adversary sessions to interact with a honest
prover as a verifier.

• Adversary-verifier sessions to interact with a legiti-
mate verifier as a prover.

The adversaries are defined in terms of their computa-
tional resources (i.e., time) t, the number of prover-verifier
sessions qobs they may observe, the number qv of adversary-
verifier sessions and the number qp of prover-adversary ses-
sions they initiate, and their winning advantage for the cor-
responding security games.

To capture the notion of relays, the DFKO framework uses
an abstract clock keeping track of the sequence of the adver-
sary’s actions. It is given as a function marker : N×N→ N,
such that marker(·, ·) is strictly increasing. It can be used
to define tainted time-critical rounds. This notion is used
to rule out some illegitimate actions of attackers, due for in-
stance to the verifier’s ability to detect pure relays through
his accurate clock. More precisely, an adversary cannot win
a game in a tainted session. In the following definitions,
Πsid[i, . . . , j] denotes a sequence of messages (mi, . . . ,mj)
exchanged during the session sid of the protocol.

Following the terminology introduced by Vaudenay [24]
and later re-used to define prover-anonymity [20], if an ad-
versary is assumed to know the final result of an authenti-
cation session (i.e., accept or reject), he is said to be wide
while otherwise he is narrow. Orthogonally, if the adversary

may never corrupt provers, he is considered to be weak while
if a corruption query is only followed by other such queries,
the adversary is forward. Finally, if there is no restriction
on the corruption queries, the adversary is said to be strong.
In this paper, we consider the strongest adversary model
possible, namely wide-strong adversaries.

Security analysis. We give the proofs of the main prop-
erties of our constructions: (1) TF resistance, (2) MF re-
sistance, (3) DH resistance (implying DF resistance), (4)
prover privacy and finally (5) prover anonymity. In our con-
text, the last property is the strongest one as it protects the
privacy of the provers against the verifiers themselves. The
proofs of the TF resistance and prover anonymity properties
are among the main contributions of this paper.

The slow-phase impersonation threat is discarded in our
analysis [16]. This property refers exclusively to how much
impersonation resistance the slow phases of the protocol
adds to the impersonation protections provided in the time-
critical phases of the MF countermeasures. The notion of
slow-phase impersonation security was introduced especially
for resource-limited provers, which cannot handle a high
number of time-critical rounds. However, such a restriction
is no longer a problem for contactless devices, which have
become faster and more efficient in their interactions. As a
consequence, we choose to rely only time-critical phases to
achieve impersonation resistance, rather than adding that
property in slow phases of our DB protocols.

Game structure. The threat models are represented as
security games involving an adversary A and a challenger
simulating the environment for him. All these game-based
proofs start with the challenger building the simulation envi-
ronment using DB.gen(1λ). For clarity, this step is omitted
in their descriptions. The adversary interacts with the sim-
ulated environment through oracles that he is allowed to
run concurrently. These include a prover oracle (for prover-
adversary sessions), a verifier oracle (for adversary-verifier
sessions) as well as a session oracle to simulate an honest
exchange between the prover and the verifier.

Thus, the challenger may have to simulate these oracles:

Verifier(·) runs the protocol DB.verifier(ID, dk, vk,UL,RL).

Prover(·) runs the protocol DB.prover(ek, sk).

Session(·) returns the transcript of a new honest run of the
protocol DB.auth(R,n).

Joinc(·) simulates the arrival of a corrupted prover Ui by
running DB.join(i,UL) and returning the secret keys
of this prover.

Corrupt(·) simulates the corruption of a prover Ui by return-
ing his secret keys.

3.2 Terrorist-Fraud Resistance
Dürholz, Fischlin, Kasper and Onete defined the notion of

simulation-based TF-resistance SimTF [16]. In this model,
a far-away malicious prover P wants to use an accomplice
A close to the verifier to authenticate. If the prover P is
rational, A should not receive during the attack enough in-
formation allowing him to impersonate P later on in any
MF or IF attacks. This is formalized as a two-phase game.
During the first phase, A tries to authenticate with the help
of P , in which pA denotes his success probability. During

the second phase, a simulator SimTF(e, IK) takes the inter-
nal view IK of A and a valid initial commitment e of P , and
tries to authenticate without any further interaction with
another legitimate prover (let pTF denotes his success prob-
ability). The TF attack conducted by the malicious pair
(P,A) is said to be successful, if the help of P during the
attack does make any difference with respect to its success
probability (i.e., if pA > pTF).

In this attack model, the malicious prover is not allowed
to communicate with his accomplice at all during the time-
critical phases. Thus, any communication between them
during any time-critical round taints the session, which can
be formalized by the following definition:

Definition 2 (Tainted Session (TF) [17]). A time-
critical round Πsid[k, k + 1] = (mk,mk+1), for some k ≥ 1
and mk sent by the verifier, of an adversary-verifier session
sid is tainted if there is an adversary-prover session sid′ such
that, for any i,

marker(sid, k) < marker(sid′, i) < marker(sid, k + 1).

This definition is very strong since a single interaction be-
tween the accomplice and the prover, while the accomplice
is running a time-critical round in an adversary-verifier ses-
sion sid, is enough to taint all the time-critical rounds of sid.
As the malicious prover is not allowed to have any feedback
from his accomplice during the time-critical rounds of the
protocol, this makes the prover’s strategy non-adaptive to
the challenges sent by the verifier. This also simplifies the
construction of a simulator that can match the adversary’s
winning probability.

The strength of the adversary is quantified in terms of
the probability with which he can win this game. In the
SimTF game, a TF attack is considered successful as long
as the generic simulator is not able to duplicate the adver-
sary’s success with the same probability. This captures a
wide range of attacks, which are considered as being trivial
by weaker models, such as GameTF resistance [17]. Note
that some alternative TF definitions also attempt to detect
which prover has helped the attacker to be able to punish
his attempt. However, these approaches are not necessarily
stronger, in the sense of the easiness with which the adver-
sary wins.

The TF-resistance notion SimTF can be defined as follows:

Definition 3 (SimTF Resistance [17]). For a DB au-
thentication scheme DB, a (t, qv, qp, qobs)-terrorist-fraud ad-
versary pair (P , A) and a simulator SimTF(·) running in
time tS, the malicious prover P and his accomplice A win
against DB if A authenticates in at least one of qv adversary-
verifier sessions, which has not been tainted, with probability
pA, and if SimTF(·) authenticates in one of qv sessions with
the view of A with probability pTF, then pA ≤ pTF.

As stated in Table 1, TF resistance is a binary property.
Indeed, the accomplice/simulator is either able to imperson-
ate independently the prover with at least the same proba-
bility in later sessions having the initial information received
from the prover or not.

First, we prove that the generic TREAD construction is
SimTF-resistant without relying on any extraction mecha-
nism. This simply means that if the prover provides some
information to his accomplice to succeed in the first phase
of the TF attack, his accomplice can succeed similarly later
without any further help of the prover.

Theorem 1. If the challenges ci are drawn uniformly at
random by the verifier, TREAD is SimTF-resistant.

Proof. The theorem simply states that, for any prover P
helping an adversary A to authenticate in a session sid, there
exists a simulator SimTF(·) that can succeed independently
at least as well as A by using him as a black-box.

Let pA be the initial success probability of A with the help
of P in a session sid. Let sid′ denote a new session played
a posteriori by the simulator SimTF(·) with the verifier V .
Assume that m is the initial message sent by V in sid and
m′ is the corresponding message sent by V in sid′.

To build SimTF(·), the idea is to place A in the same
situation as in sid. The first step is to rewind A to his initial
state, after it received information from P and sent e in sid.
Then, SimTF(·) sends m to A, even though V has sent a
different m′ to SimTF(·). If P sent any additional message
to A in sid before the beginning of the time-critical phases,
SimTF(·) relays it to A. Hence, from A’s point of view, this
is the same as in sid.

Next, the simulator SimTF(·) simply forwards the chal-
lenges ci from V to A. If ci = 0, SimTF(·) sends the response
ri of A to V . Otherwise, if ci = 1, SimTF(·) needs to adapt
the response to m′ and then sends r′i = ri ⊕mi ⊕m′i.

Using this strategy, it is clear that SimTF(·) can respond
to any challenge with a probability at least equal to that the
success probability of A. Hence, SimTF(·) can authenticate
in session sid′ with a probability pTF, such that pTF ≥ pA.

This result relies on a näıve simulator, which can only win
with the same probability as the accomplice A. While this is
sufficient to prove the TF-resistance result, a stronger result
can be obtained. In fact, a more elaborate simulator can
amplify any non-negligible advantage of A until it becomes
overwhelming after a polynomial number of sessions with the
verifier oracle, without requiring any further session with the
prover himself. Therefore, no rational prover should attempt
any TF attack with an accomplice, since any non-negligible
success probability in the first phase of the attack can lead
to a successful impersonation attack by the accomplice with
an overwhelming probability.

Theorem 2. For any adversary A authenticating with
the help of a prover with a non-negligible probability, there is
a simulator amplify using the internal view of A and oracle
access to a verifier, such that after a polynomial number of
steps, Pr[amplify authenticates] = 1, almost surely.

The objective of the proof is to show that the simulator
can retrieve the response vectors associated with the mes-
sage e, allowing successful impersonations afterwards.

Proof. Let A be the accomplice of a malicious prover
P trying to conduct a TF attack. According to the SimTF
model, A has access to the prover only before the beginning
of the time-critical phase. Hence, he starts this phase with
an initial knowledge IK given by P , and should succeed to
authenticate with a probability pA. This information IK can
be described as one of these two possibilities:

• The prover sends beforehand two n-bit vectors to his
accomplice: c0 and c1. These vectors represent re-
spectively the (not necessarily correct) responses to
the 0-challenges and the 1-challenges.

• The prover sends the description of a randomized al-
gorithm A to generate these vectors.

In the first case, the prover controls precisely the amount
of information given to his accomplice. Let assume for sim-
plicity that the internal view IK of the prover P is only
related to the strings α and β. Hence, the vector c1 would
have to be adapted according to the stringm provided by the
verifier for each new authentication. Let now consider the
different ways that P can use to build the vectors c0 and c1.
One possibility is to provide the perfect information about
the two bits c0

i = αi and c1
i = βi. Another possibility is to

only give partial information about one bit, say c0
i = αi, and

complement the information with one bogus bit c1
i = βi, or

⊥ that A would have to guess. In the non-perfect case, the
accomplice would succeed to respond to the given verifier’s
challenge only with probability qsuc = 1

2
· 1 + 1

2
· 0 = 1

2
or

qsuc = 1
2
· 1 + 1

2
· 1

2
= 3

4
, respectively, if the verifier uses

perfect independent random query bits. Therefore, if the
information is perfectly correct in only n − r time-critical
rounds, the probability that A succeeds to authenticate is
given by pA = 1n−r · qrsuc.

In the second case, let us assume that the random pro-
cess A generates strings with distributions closed to the dis-
tributions used to generate the strings α and β. Thus, A
can guess αi and βi respectively with probabilities pα,i and
pβ,i. For simplicity but without loss of generality, these
probabilities are supposed to be independent. In this case,
the probability that A succeeds to authenticate is given
by pA =

∏
i

(
1
2
· pα,i + 1

2
· pβ,i

)
. Obviously, if the original

strings have been generated by a perfectly random process,
this probability would be equal to 2−n and A would then be
totally useless. Note that the first case corresponds simply
to n− r time-critical rounds for which pα,i = pβ,i = 1 and r
rounds for which 1

2
·1 + 1

2
·pβ,i 6= 1, since pβ,i is either equal

to 0 or 1
2
.

Consider now the simulator SimTF(e, IK) that tries to im-
personate P to the verifier with no further interaction with
P . As seen in Theorem 1, TREAD is SimTF-resistant. There-
fore, the simulator can authenticate with the probability
pTF, which is at least as great as the probability that A
can succeed with the help of P . The next step is to show
that if the success probability pTF is non-negligible (i.e.,
∃c,∀nc, ∃n > nc, pTF ≥ 1

nc), it can be amplified arbitrarily
close to one. Let us define a simulator amplify(e, IK) using
SimTF(e, IK) internally. This simulator can try k · n · nc in-
dependent authentication experiments with the verifier, for
any constant k > 1. In such a case, amplify(e, IK) should win
at least n experiments with an overwhelming probability, as
stated in the following lemma:

Lemma 1. For a valid view (e, IK) of an accomplice A,
the probability that the simulator amplify(e, IK) wins less than

n of the k · n · nc experiments is less than e−
kn
2 (k−1

k)
2

, for
any k > 1.

The lemma is derived from the Chernoff bound. If n is
large enough, the average number of wins µ is (k·n·nc)· 1

nc =

k·n. On the other hand, if 1−δ = 1
k

(i.e., δ = k−1
k

), (1−δ)·µ
is simply n. The lemma follows directly and, as a corollary,
if k ≥ 4, the probability is smaller than 1

e1.125n
< 1

2n .
Assume now that amplify(e, IK) has won n independent

experiments. This should happen at least with probability
1− 2−n. Their independence follows from the independence
of the challenges chosen by the legitimate verifier. At the end
of each successful experiment, the simulator amplify would

obtain the explicit values of either αi or βi, for all 1 ≤ i ≤ n,
associated to the commitment value e. At the end of these
successful simulations, consider that some bits αi or βi have
not been recovered. A bit, say αi, has not been recovered
only if the verifier has always asked for the opposite bit
βi in the successful experiments – let Ei be such an event.
This happens only with probability Pr[Ei] = 2−n, since the
verifier’s challenges are truly random and are independent.

The following result follows directly from the union bound
for finite sets of events:

Lemma 2. Assume that the simulator amplify(e, IK) has
won n experiments. Thus, it should have recovered all the n
bits of αi and βi with an overwhelming probability. In fact,
the probability that some bits are still unknown is simply
Pr[∪iEi] ≤

∑
i Pr[Ei] = n

2n .

Using these two last lemmas, we obtain the next result:

Lemma 3. Assume that the simulator amplify(e, IK) has
done 4 · n · nc authentication experiments. After these ex-
periments, it should have recovered α and β and be able to
impersonate P without his help with an overwhelming prob-
ability. Thus,

AdvMF
amplify,TREAD(n) ≥

(
1− 1

2n

)
·
(

1− n

2n

)
> 1− n+ 1

2n
.

This concludes the proof of the theorem.

3.3 Mafia Fraud
During a MF, an active MiM adversary, interacting with

a single prover and a single verifier during many sessions,
tries to authenticate. However, he is not able to relay infor-
mation between the verifier and the prover during the time-
critical phases. To discard this option, the tainted time-
critical phases are redefined as follows.

Definition 4 (Tainted Session (MF) [16]). A time-
critical round Πsid[k, k + 1] = (mk,mk+1), for some k ≥ 1
and mk sent by the verifier, of an adversary-verifier session
sid is tainted by the phase Πsid′ [k, k + 1] = (m′k,m

′
k+1) of a

prover-adversary session sid′ if

(mk,mk+1) = (m′k,m
′
k+1),

marker(sid, k) < marker(sid′, k),

and marker(sid, k + 1) > marker(sid′, k + 1).

Once this definition is given, the game-based definition of
MF resistance notion can be stated as follows.

Definition 5 (MF Resistance). For a DB authenti-
cation scheme DB, a (t, qv, qp, qobs)-MF adversary A wins
against DB if the verifier accepts A in one of the qv adversary-
verifier sessions sid, which does not have any critical phase
tainted by a prover-adversary session sid∗. Thus, the MF-
resistance is defined as the probability AdvMF

DB(A) that A
wins this game.

We now prove that TREAD is MF-resistant.

Theorem 3. If the challenges are drawn randomly from
a uniform distribution by the verifier, E is an IND-CCA2-
secure encryption scheme and S is EUF-CMA-secure, then
TREAD is MF-resistant and

AdvMF
TREAD(λ) ≤

q2
p

22n
+AdvEUF-CMA

S (λ)+AdvIND-CCA2
E (λ)+

(
3

4

)n

The prover and verifier oracles are simulated as defined in
Section 2, except that after generating e, the prover adds an
entry to a witness list WL containing (e, α||β).

The proof of the above theorem is more complex than for
previous ones. It can be reduced to the security analysis
of a simpler version of the protocol, using the game-hopping
technique formalized by Shoup in [23]. In essence, the initial
security game Γ0 is reduced to a final game in which the ad-
versary has no information (other than by guessing) about
the values α and β before the DB phase. This is done by
reducing his means of attacks at each game (e.g. by forbid-
ding the reuse of nonces from prover oracles), while showing
that the resulting loss is negligible. More formally, if Pr[Γi]
represents the winning probability of the adversary A in the
game Γi, the transition between Γi and Γi+1 is such that
|Pr[Γi]−Pr[Γi+1]| ≤ ελ, in which ελ is a negligible function
of λ.

Proof. We start from the initial game Γ0 as given in
Definition 5 and build the following sequence of games.

Γ1: In this game, no value α||β is outputted more than once
by the prover oracle.

In the ith session, the probability to have a collision
with any of the previous i − 1 α||β values is bounded
by i

22·n . If A runs qp prover sessions, the probability

of a collision for a given session is bounded by
qp

22·n .
From the union bound, the probability that a collision
occurs at least once is bounded by

∑qp
i=0

qp
22·n , which

is in turn bounded by q2
p/2

2n. Thus, using Shoup’s
difference lemma, |Pr[Γ0]−Pr[Γ1]| ≤ q2

p/2
2n, which is

negligible.

Γ2: This game aborts if σp was not generated by the prover
oracle, and S.vervk(σp, α||β) 6= 0.

In this game, we rule out the possibility that A pro-
duces a valid signature without the key, which is triv-
ially forbidden by the EUF-CMA resistance of S. The
reduction simply consists in starting EUF-CMA experi-
ments (one for each prover) with a challenger and using
queries to the corresponding signing oracle to generate
the signatures of a prover. Then, if A sends a valid
signature on behalf of one of the provers, we can re-
turn it to the challenger and win the EUF-CMA exper-
iment. From the Shoup’s difference lemma, we have
|Pr[Γ1] − Pr[Γ2]| ≤ AdvEUF-CMA

S (1λ), which is negligi-
ble by hypothesis.

Γ3: In this game, e is replaced by the encryption of a random
string (of equal length).

This transition is based on indistinguishability, aiming
at removing any leakage of α||β from e by making α||β
only appear during the DB phase. We prove that the
probability ε = Pr[Γ3]− Pr[Γ2] is negligible by build-
ing a distinguisher B such that its advantage against
the IND-CCA2 experiment is polynomial in ε. Hence,
if ε is non-negligible, we reach a contradiction. By as-
sumption, the advantage of any adversary against the
IND-CCA2 experiment on E is negligible.

To build B, we replace E.encek(α||β||idprv(P)||σp) by a
string given by the IND-CCA2 challenger. Using the
adversary A, the distinguisher B can be built as fol-
lows.

Prover simulation: B generates two challenge mes-
sages: m0 = (δ||idprv(P)||S.sigsk(δ||idprv(P))) and
m1 = (α||β|| S.sigsk(α||β||idprv(P))), in which α||β
and δ are random binary strings of length 2n.
Then, he sends them to the challenger to obtain
cb, the encryption of mb (depending on a random
bit b picked by the challenger before the experi-
ment). He also adds (cb, α||β) to the list WL. Af-
terwards, he sends cb as the initial message and
uses α||β during the challenge-response phase.

Verifier simulation: When the verifier oracle gets
the initial message e, he reads the tuple (e, α||β)
in WL and uses the corresponding α||β to verify
the responses. If no such tuple exists, he is al-
lowed to use the decryption oracle on e (as it is
not a challenge cb). As Γ2 enforces that only in-
valid or prover-generated signatures are contained
in e, either A loses for sending an invalid signa-
ture or e is a new encryption for values contained
in one of the challenges. In the latter case, B
readily obtains the bit b by verifying whether the
decryption of e corresponds to m0 or m1.

Return value: B returns OutV.

If b = 1, B simulates Γ2 (e is the encryption of α||β). In
this case, B wins if OutV = 1. By definition, Pr[OutV =
1] in Γ2 = Pr[Γ2]. Otherwise, if b = 0, then B sim-
ulates Γ3 (e is the encryption of δ). In this case, B
returns 0 if A loses (i.e., with probability 1−Pr[Γ3]).

The winning probability of B is then Pr[Γ2]+1−Pr[Γ3]
2

=
1+(Pr[Γ2]−Pr[Γ3])

2
, giving an advantage of ε = Pr[Γ2]−

Pr[Γ3]. It follows that any significant difference in the
probabilities of the two games can be transformed into
an IND-CCA2 advantage. Thus, from the difference
lemma, we have |Pr[Γ2] − Pr[Γ3]| ≤ AdvIND-CCA2

E (λ),
which is negligible by hypothesis.

We are left to prove that Pr[Γ3] is negligible. First remark
that in Γ3, A has absolutely no way to predict the value ri
for any round i (as neither αi nor βi appears before round
i). Hence, A can either try to guess ci or ri. His success
probability in the second case is 1

2
. In the first case, he suc-

ceeds if he guesses the challenge properly (as he can obtain
the response from the prover), but also if he makes a wrong
guess for the challenge but guesses correctly the other re-
sponse. The corresponding probability is 1

2
·1+ 1

2
· 1

2
= 3

4
for

each round. As there are n such rounds, Pr[Γ3] ≤
(

3
4

)n
.

3.4 Distance Hijacking
One of our contribution extends the distance-fraud (DF)

model in the DFKO framework to take into account distance-
hijacking (DH) attacks [14]. In DF attacks, the adversary
is a malicious prover who aims at authenticating from a
distance greater than dmax. In DH attacks, the adversary at-
tempts to do the same, but he uses the unintentional help of
a legitimate prover located close to the verifier. The remote
adversary may initiate the DB protocol and let a nearby
prover complete the DB phase.

Although the DH attacks are generally real threats against
most the DB protocols, they do not represent a realistic
threat against DB protocols preserving anonymity. Indeed,
such attacks make only sense if the verifier may differentiate

between two provers. For instance, if a remote member of a
legitimate group X initiates the DB protocol and a nearby
prover of the same group involuntarily completes the DB
phase, the verifier would simply conclude that a member
of X has just been authenticated. He would end up with
the same conclusion if the nearby prover has completed the
scheme without any intervention from the remote party.

To capture DH in the DFKO framework, consider an ad-
versary (here a malicious prover) able to use the help of an
honest prover in the verifier’s proximity. In the DB phase,
he commits to a response in advance (before the challenge
of that round) and sends this commitment. These commit-
ments do not refer to cryptographic commitments (with the
hiding and binding properties), but rather to the prover’s
choice with regards to a response, which he must transmit
to the verifier. In any phase, he commits to a special message
Prompt, triggering the response by a nearby honest prover.

If the adversary either (1) fails to commit or prompt for
one specific phase, or (2) sends a different value than com-
mitted after receiving the time-critical responses, he taints
the phase and the session. More formally, when the ad-
versary opens a verifier-adversary session sid, he also opens
two associated dummy sessions sidCommit for committed re-
sponses and sidPrompt for the responses prompted from the
prover. Technically, such an adversary is more powerful than
in a typical DH attack [8], since the adversary can intercept
time-critical responses that are sent by the honest prover,
and replace them with his own committed responses. The
formal definition of tainted phases is as follows.

Definition 6 (Tainted Session (DH)). A time-crit-
ical round Πsid[k, k + 1] = (mk,mk+1), for some k ≥ 1 and
mk sent by the verifier, of an adversary-verifier session sid
is tainted if one of the following conditions holds.

• The maximal j with ΠsidCommit [j] = (sid, k + 1,m′k+1) for
m′k+1 6= Prompt and marker(sid, k) > marker(sidCommit, j)
satisfies m′k+1 6= mk+1 (or no such j exists).

• The maximal j with ΠsidCommit [j] = (sid, k + 1,m′k+1) for

m′k+1 = Prompt satisfies mk+1 6= mPrompt
k+1 , in which mPrompt

k+1

denotes the message mk+1 in sidPrompt.

This definition rules out some potential actions of the ad-
versary. Afterwards, the game-based definition of DH resis-
tance notion can be stated as follows.

Definition 7 (DH Resistance). For a DB authenti-
cation scheme DB with DB threshold tmax, a (t, qp, qv, qobs)-
DH adversary A (with idA) wins against DB if the verifier
accepts idA in one of qv adversary-verifier sessions without
any critical round being tainted. Thus, the DH resistance is
defined as the probability AdvDH

DB(A) that A wins this game.

The following theorem covers both DH and DF resistance.
The idea is that a DF can be seen as a special case of DH in
which the adversary does not use nearby provers. The proof
consists in showing that the responses corresponding to an
initial message e∗ sent by the adversary have a negligible
probability to match those of any nearby honest prover.

Theorem 4. If the challenges are drawn from a uniform
distribution, TREAD is DH resistant and

AdvDHTREAD(λ) ≤
(

3

4

)n
.

The proof of this theorem is provided in Appendix B.1.

3.5 Privacy
We now establish that the public-key instance of our pro-

tocol preserves the privacy of the provers against external
eavesdroppers. In particular, an adversary who intercepts
information transmitted during the protocol cannot infer
the identity of the prover from the information he has seen.
Otherwise, he would be able to break the security of the
encryption scheme.

The private construction is an instance of TREAD using
E = PKE and S = S-SIG, for a public key encryption PKE
and a digital signature scheme S-SIG. In such protocols,
idpub(P) is set to null. Since all the information allowing to
identify the prover is encrypted, only the verifier can learn
his identity. This property [19] has been formalized as fol-
lows:

Definition 8 (Privacy Protection). Let DB be a
DB scheme. The privacy experiment ExpPriv

A,DB(λ) for an ad-
versary A on DB is defined as follows. A interacts with a
challenger who runs the algorithm DB.gen(1λ) to generate
the set-up and sends all the public set-up parameters to A.
During the experiment, the adversary A has access to the
following oracles:

DB.Joinc(·): On input i, it returns a public/secret key pair
(pki, ski) of the new prover Pi using DB.join(λ).

DB.Prover(·): On input i, it simulates a session by the prover
Pi using ski.

DB.Verifier simulates a session by the verifier V using skv.

Afterwards, A sends the pair of provers (i0, i1) to the chal-

lenger who picks b
$← {0, 1}. Hereafter, A has now access to

the following challenge oracle:

DB.Proverb simulates a session by the prover Pib using skib .

Finally, A returns b′. If b = b′, the challenger returns 1,
which means that the guess of A is correct, while otherwise
he outputs 0.

We define A’s advantage on this experiment as

AdvPriv
A,DB(λ) =

∣∣∣∣Pr[ExpPriv
A,DB(λ) = 1]− 1

2

∣∣∣∣
and the advantage on the privacy experiment as

AdvPriv
DB (λ) = max

A∈Poly(λ)
{AdvPriv

A,DB(λ)}.

DB is privacy preserving if AdvPriv
DB (λ) is negligible.

Theorem 5. If PKE is an IND-CCA2 secure public key
encryption scheme and if for any prover P values idpub(P)
is set to null, then TREADPub is privacy-preserving and

AdvPriv
TREADPub(λ) ≤ AdvIND-CCA2

PKE (λ).

The proof of this theorem is given in Appendix B.2.

3.6 Prover Anonymity
Finally, we show that the anonymous version of our pro-

tocol preserves the anonymity of the provers even against
malicious verifiers. These verifiers may try to profile legit-
imate provers by linking their authentication sessions, thus
threatening their privacy. For instance, this threat is partic-
ularly relevant for the public transportation system scenario
described in the introduction.

The only information on a prover identity that a verifier
can get during the protocol is the signatures produced by
the prover. Therefore, if a secure group signature scheme
is used, the protocol would not leak any information on the
identity of the provers. Otherwise, a verifier would be able
to break the security of the group signature scheme.

The anonymous construction is defined as an instance of
TREAD using E = PKE and S = G-SIG, for a public key en-
cryption PKE and a group signature scheme G-SIG. In such
protocols, idprv(P) should only identify the corresponding
group identity. Thus, the verifier should not obtain any in-
formation on a prover identity. To formalize this property,
we generalize the model of [19] drawing on the anonymity
model of revocable group signature [22].

Definition 9 (Prover Anonymity). Let DB be a DB
scheme. The anonymity experiment ExpAnon

A,DB(λ) for an ad-
versary A on DB is defined as follows. A interacts with a
challenger who runs the algorithm DB.gen(1λ) to generate
the set-up and sends all the public set-up parameters to A.
During the experiment, A has access to the following oracles:

DB.Joinh(·): On input i, it creates a new legitimate prover
Pi using DB.joinMK(i,UL).

DB.Joinc(·): On input i, it creates a corrupted prover Pi us-
ing DB.joinMK(i,UL), returns the secret key pski, and
adds Pi to CU.

DB.Revoke(·): On input i, it runs DB.revokeMK(i,RL,UL) to
revoke the prover Pi.

DB.Corrupt(·): On input i, it simulates the corruption of Pi
by returning his secret key pski and adds Pi to CU.

DB.Prover(·): On input i, it simulates a session by the hon-
est prover Pi using pski.

DB.Verifier simulates a session by the verifier V using skv.

First, A sends the pair of provers (i0, i1) to the chal-
lenger. If i0 or i1 is in CU, the challenger aborts the ex-

periment. Otherwise, he picks b
$← {0, 1}. A then accesses

DB.Revoke(·) and DB.Corrupt(·) on i0 and i1 (the oracles re-
turn ⊥ if A uses these inputs). Hereafter, A has now access
to the following challenge oracle:

DB.Proverb simulates a session by the prover Pib using pskib .

Finally, A returns b′. If b = b′, the challenger returns 1,
which means that the guess of A is correct, while otherwise
he outputs 0.

We define A’s advantage on this experiment as

AdvAnon
A,DB(λ) =

∣∣∣∣Pr[ExpAnon
A,DB(λ) = 1]− 1

2

∣∣∣∣
and the advantage on the PA experiment as

AdvAnon
DB (λ) = max

A∈Poly(λ)
{AdvAnon

A,DB(λ)}.

DB is prover anonymous if AdvAnon
DB (λ) is negligible.

Theorem 6. If G-SIG is an anonymous revocable group
signature scheme [22] and if for any prover P values idpub(P)
and idprv(P) are either set to null or the group identity, then
TREADANO is prover-anonymous and

AdvAnon
TREADANO (λ) ≤ AdvAnon

G-SIG(λ).

The proof of this theorem is provided in Appendix B.3.

4. CONCLUSION
In this paper, we have introduced a novel approach for

provable TF resistance. More precisely, instead of relying
on extraction mechanisms to make sure that a TF accom-
plice can impersonate the malicious prover helping him, we
build a generic yet simple construction relying on replay. In
this construction, an adversary helped by a malicious prover
is given the ability to directly adapt the authentication in-
formation he learnt to succeed a new authentication session
with the same probability. However, this comes at the cost
of a slightly lower MF and MF resistance.

We have also reinforced the already strong notion of SimTF
and prove that if an adversary successfully authenticates
with the help of a malicious prover with a non-negligible suc-
cess probability, he can amplify his winning probability to
impersonate this prover in further sessions to an overwhelm-
ing probability. We have also presented three instances of
our protocol. The first one is a symmetric-key lightweight
DB protocol with no privacy. The second one is a public-key
protocol private against external eavesdroppers. Finally, the
last one provides full prover anonymity with respect to ma-
licious verifiers. Our design is generic and may be used to
extend existing DB protocols.

5. REFERENCES
[1] A. Ahmadi and R. Safavi-Naini. Privacy-preserving

distance-bounding proof-of-knowledge. In Proc. of
Information Security and Cryptology, pages 74–88.
Springer-Verlag, 2014.

[2] G. Avoine, M. A. Bingol, S. Karda, C. Lauradoux,
and B. Martin. A formal framework for analyzing
RFID distance bounding protocols. Journal of
Computer Security - Special Issue on RFID System
Security, 2010, pages 289–317, 2010.

[3] G. Avoine, C. Lauradoux, and B. Martin. How
secret-sharing can defeat terrorist fraud. In Proc. of
WiSec, pages 145–156. ACM, 2011.

[4] S. Bengio, G. Brassard, Y. G. Desmedt, C. Goutier,
and J.-J. Quisquater. Secure implementation of
identification systems. Journal of Cryptology,
4(3):175–183, 1991.

[5] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. On the
pseudorandom function assumption in (secure)
distance-bounding protocols: PRF-ness alone does not
stop the frauds! In Proc. of LATINCRYPT, pages
100–120. Springer-Verlag, 2012.

[6] I. Boureanu, A. Mitrokotsa, and S. Vaudenay.
Practical & provably secure distance-bounding.
Cryptology ePrint Archive, Report 2013/465, 2013.
http://eprint.iacr.org/2013/465.

[7] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Secure
and lightweight distance-bounding. In Proc. of
LightSec, pages 97–113. Springer-Verlag, 2013.

[8] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Towards
secure distance bounding. In Proc. of FSE, pages
55–67. Springer-Verlag, 2014.

[9] I. Boureanu and S. Vaudenay. Optimal proximity
proofs. In Proc. of Inscrypt, pages 170–190.
Springer-Verlag, 2014.

[10] S. Brands and D. Chaum. Distance-bounding
protocols. In Proc. of EUROCRYPT, pages 344–359.
Springer-Verlag, 1993.

[11] A. Brelurut, D. Gérault, and P. Lafourcade. Survey of
distance bounding protocols and threats. In Proc. of
the Foundations and Practice of Security, volume
9482, pages 29–49. Springer-Verlag, 2015.

[12] X. Bultel, S. Gambs, D. Gérault, P. Lafourcade,
C. Onete, and J.-M. Robert. A prover-anonymous and
terrorist-fraud resistant distance-bounding protocol. In
Proc. of WISec, pages 121–133. ACM, 2016.

[13] L. Bussard and W. Bagga. Distance-bounding proof of
knowledge to avoid real-time attacks. In Proc. of
Security and Privacy in the Age of Ubiquitous
Computing, pages 222–238. Springer-Verlag, 2005.

[14] C. Cremers, K. B. Rasmussen, B. Schmidt, and
S. Čapkun. Distance hijacking attacks on distance
bounding protocols. In Proc. of IEEE Security and
Privacy, pages 113–127. IEEE Computer Society
Press, 2012.

[15] Y. Desmedt, C. Goutier, and S. Bengio. Special uses
and abuses of the Fiat-Shamir passport protocol. In
Proc. of CRYPTO, LNCS, pages 21–39.
Springer-Verlag, 1988.

[16] U. Dürholz, M. Fischlin, M. Kasper, and C. Onete. A
formal approach to distance-bounding RFID
protocols. In Proc. of Information Security (ISC),
pages 47–62. Springer-Verlag, 2011.

[17] M. Fischlin and C. Onete. Terrorism in distance
bounding: Modeling terrorist fraud resistance. In
Proc. of Applied Cryptography and Network Security,
pages 414–431. Springer-Verlag, 2013.

[18] S. Gambs, M. Killijian, and M. N. del Prado Cortez.
Show me how you move and I will tell you who you
are. Trans. Data Privacy, 4(2):103–126, 2011.

[19] S. Gambs, C. Onete, and J.-M. Robert. Prover
anonymous and deniable distance-bounding
authentication. In Proc. of AsiaCCS, pages 501–506.
ACM Press, 2014.

[20] J. Hermans, R. Peeters, and C. Onete. Efficient,
secure, private distance bounding without key
updates. In Proc. of WiSec, pages 207–218. ACM
Press, 2013.

[21] C. H. Kim, G. Avoine, F. Koeune, F. Standaert, and
O. Pereira. The Swiss-knife RFID distance bounding
protocol. In Proc. of Information Security and
Cryptology, pages 98–115. Springer-Verlag, 2008.

[22] T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki.
Revocable group signature schemes with constant
costs for signing and verifying. In Proc. of Public Key
Cryptography (PKC), pages 463–480. Springer-Verlag,
2009.

[23] V. Shoup. Sequences of games: a tool for taming
complexity in security proofs, 2004. URL:
http://eprint.iacr.org/2004/332.

[24] S. Vaudenay. On privacy models for RFID. In Proc. of
ASIACRYPT, pages 68–87. Springer-Verlag, 2007.

[25] S. Vaudenay. Private and secure public-key distance
bounding: Application to NFC payment. In Proc. of
Financial Cryptography and Data Security, pages
207–216. Springer-Verlag, 2015.

[26] S. Vaudenay. Sound proof of proximity of knowledge.
In Proc. of ProvSec, pages 105–126. Springer-Verlag,
2015.

APPENDIX
A. DEFINITIONS

In this section, we present the classical definitions used
implicitly in our formal proofs.

Definition 10. A symmetric key encryption scheme SKE
is a triplet of algorithms (SKE.gen,SKE.enc, SKE.dec) s. t.:

SKE.gen(1λ): returns a secret key sk from a global security
parameter λ.

SKE.encsk(m): returns a ciphertext c from the message m
and the key sk.

SKE.decsk(c): returns a plaintext m from the ciphertext c
and the key sk.

A symmetric key encryption scheme is said correct if and
only if SKE.decsk(SKE.encsk(m)) = m for any message m
and any secret key sk generated by SKE.gen.

Definition 11. A public-key encryption scheme PKE is
a triplet of algorithms (PKE.gen,PKE.enc,PKE.dec) s. t.:

PKE.gen(1λ): returns a public/private key pair (pk, sk) from
a global security parameter λ.

PKE.encpk(m): returns a ciphertext c from the message m
and the public key pk.

PKE.decsk(c): returns a plaintext m from the ciphertext c
and the private key sk.

A public-key encryption scheme is said correct if and only
if the equality PKE.decsk(PKE.encpk(m)) = m holds for any
message m and any key pair (pk, sk) generated by PKE.gen.

Definition 12. Let SKE : (SKE.gen, SKE.enc, SKE.dec)
be a symmetric key encryption scheme. SKE is said to be
indistinguishable against adaptive chosen ciphertext attack
(IND-CCA2) when for any adversary A = (A0,A1), the ad-
vantage probability AdvIND-CCA2

A,SKE (1λ) is negligible:∣∣∣∣∣Pr

[
k← SKE.gen(1λ), b

$← {0, 1}
b′ ← ASKE.enck(LRb),SKE.deck

0 (λ)
: b = b′

]
− 1

2

∣∣∣∣∣
in which the oracles SKE.enck(LRb), SKE.deck are defined as:

SKE.enck(LRb(m0,m1)): returns SKE.enck(mb) on the mes-
sage pair (m0,m1), for a random bit b.

SKE.deck(c): if c has been generated by SKE.enck(LRb) re-
turns ⊥, while otherwise it returns SKE.deck(c).

Definition 13. Let PKE : (PKE.gen,PKE.enc,PKE.dec)
be a public-key encryption scheme. PKE is said to be indis-
tinguishable against adaptive chosen ciphertext attack when
for any adversary A = (A0,A1), the advantage probability
AdvIND-CCA2

A,PKE (1λ) is negligible:∣∣∣∣∣Pr

[
(pk, sk)← PKE.gen(1λ), b

$← {0, 1}
b′ ← APKE.encpk(LRb),PKE.decsk(pk, λ)

: b = b′
]
− 1

2

∣∣∣∣∣
in which the oracles PKE.encpk(LRb),PKE.decsk are defined
as:

PKE.encpk(LRb(m0,m1): returns PKE.encpk(mb) on the mes-
sage pair (m0,m1), for a random bit b.

PKE.decsk(c): if c has been generated by PKE.encpk(LRb) re-
turns ⊥, while otherwise it returns PKE.decsk(c).

Definition 14. A message authentication code scheme
MAC is a triplet of algorithms (MAC.gen,MAC.sig,MAC.ver)
s. t.:

MAC.gen(1λ): returns a secret key sk from a global security
parameter λ.

MAC.sigsk(m): returns a tag s from the message m and the
key sk.

MAC.versk(s,m): returns a verification bit v from the tag s
and the key sk.

A message authentication scheme is said correct if and only
if the equality MAC.versk(m,MAC.sigsk(m)) = 1 holds for any
message m and any key sk generated by MAC.gen.

Definition 15. A digital signature scheme SIG is a triplet
of algorithms (SIG.gen,SIG.sig, SIG.ver) s. t.:

SIG.gen(1λ): returns a key pair (sk, vk) from a global security
parameter λ.

SIG.sigsk(m): returns a signature s from the message m and
the signing key sk.

SIG.vervk(s,m): returns a verification bit v from the signa-
ture s and the verification key vk.

A digital signature scheme is said correct if and only if the
equality SIG.verpk(m,SIG.sigsk(m)) = 1 holds for any mes-
sage m and any key pair (sk, vk) generated by SIG.gen.

Definition 16. Let MAC : (MAC.gen,MAC.sig,MAC.ver)
be a message authentication code. MAC is said to be unforge-
able against chosen message attack (EUF-CMA) when for
any adversary A, the advantage probability AdvEUF-CMA

A,MAC (1λ)
is negligible:

Pr

[
k← MAC.gen(1λ)

(s,m)← AMAC.signk,MAC.verk(λ)
: MAC.verk(s,m) = 1

]
in which the oracles MAC.signk,MAC.verk are defined as:

MAC.signk(m): returns (m,MAC.sigk(m)) on input m.

MAC.verk(s,m): if s has been generated by MAC.signk(m)
returns ⊥, while otherwise it returns MAC.verk(m, s).

Definition 17. Let SIG : (SIG.gen,SIG.sig, SIG.ver) be a
digital signature scheme. SIG is said to be unforgeable against
chosen message attack when for any adversary A, the advan-
tage probability AdvEUF-CMA

A,SIG (1λ) is negligible:

Pr

[
k← SIG.gen(1λ)

(s,m)← ASIG.signsk,SIG.vervk(vk, λ)
: SIG.vervk(s,m) = 1

]
in which the oracles SIG.signsk, SIG.vervk are defined as:

SIG.signsk(m): returns (m,SIG.sigsk(m)) on message m.

SIG.vervk(s,m): if s has been generated by SIG.signsk(m) re-
turns ⊥, while otherwise it returns SIG.vervk(s,m).

In this case, the verification oracle is optional since the ad-
versary knows the verification key and can simulate it.

Definition 18. A revocable group signature scheme G-SIG
is defined by six algorithms:

G.gen(1λ): according to a security parameter k, returns a
global group/master key pair (gpk,msk) and two empty
lists: the user list UL and the revoked user list RL.

G.joinmsk(i, gpk,UL): is a protocol between a user Ui (using
gpk) and a group manager GM (using msk and gpk).
Ui interacts with GM to obtain a group signing key
sski. Finally, GM outputs a value regi and adds Ui to
UL.

G.revmsk(i,UL,RL, gpk): computes revocation logs revi for Ui,
using regi, gpk and msk, and moves Ui from UL to RL.

G.sigsski
(m): returns a group signature σ for the message m.

G.vergpk(σ,m,RL): returns 1 if σ is valid for the message m
and the signing key sski of a non-revoked user, while
otherwise it returns 0.

G.opemsk(σ,m,UL, gpk): outputs the identity of the user Ui
who generated the signature σ.

Definition 19. Let G-SIG be a group signature scheme.
The anonymity experiment ExpAnon

A,G-SIG(λ) for the adversary
A on G-SIG is defined as follows. A interacts with a chal-
lenger who creates (UL,RL,msk, gpk) using G.gen(1λ), gives
gpk to A, and sets the lists CU and Σ. During this phase A
has access to G-oracles:

G.Joinh(·): on i, creates Pi with G.joinmsk(i, gpk,UL).

G.Joinc(·): on i, creates Pi with G.joinmsk(i, gpk,UL) with A
and adds him to CU.

G.Revoke(·): on i, revokes Pi with G.revmsk(i,RL,UL, gpk),
updates RL and returns it.

G.Corrupt(·): on i, returns the secret information of an ex-
isting Pi. If Pi ∈ UL, it sends sski to A and adds Pi to
CU.

G.Sign(·, ·): on i, returns a signature σp on behalf of Pi,
using G.sigsski

(m) and adds the pair (m,σp) to Σ.

G.Open(·, ·): on i, opens a signature σ on m and returns Pi
to A, using the algorithm G.opemsk(σ,m,UL, gpk). This
oracle rejects all signatures produced by G.Signb(·, ·).

A outputs (i0, i1) to the challenger. If i0 and i1 ∈ CU, the

challenger stops. Otherwise, he picks b
$← {0, 1} and sends it

to A. A cannot henceforth use G.Corrupt(·) and G.Revoke(·)
on i0 or i1. Moreover, A has access to the G-oracle:

G.Signb(·, ·): On m, returns G.sigsskib
(m).

Finally, A returns b′. If b = b′, the challenger returns 1,
which means that the guess of A is correct, while otherwise
he outputs 0.

We define A’s advantage on this experiment as

AdvAnon
A,G-SIG(λ) =

∣∣∣∣Pr[ExpAnon
A,G-SIG(λ) = 1]− 1

2

∣∣∣∣
and the advantage on the experiment as

AdvAnon
G-SIG(λ) = max

A∈Poly(λ)
{AdvAnon

A,G-SIG(λ)}.

A group signature G-SIG is anonymous when if AdvAnon
G-SIG(λ)

is negligible.

B. SECURITY PROOFS

B.1 Distance-hijacking Resistance
Proof Proof of Theorem 4. Note that if A uses the

message Prompt as the initial message, i.e., he lets an hon-
est prover send it and then his authentication automatically
fails, as idpub(P) and/or idprv(P) do not correspond to the
identity of A.

Hence, consider the case in which A initiated the protocol
with a message e∗ (associated with α∗, β∗). Let e (and α||β)
denote the values picked by a nearby honest prover P . For
each challenge ci, either A uses Prompt to let P respond or
he uses Commit to respond himself before receiving ci.

• If he uses Prompt, his response is valid with probability
1
2
. This is the probability to have αi = α∗i (or βi = β∗i).

• If he uses Commit, either α∗i = β∗i ⊕ mi, and he can
commit to a correct response with probability 1, or α∗i 6=
β∗i ⊕mi, and he must guess the challenge to commit to the
correct response. Since m is uniformly distributed and
unknown to A when he picks α||β, Pr[α∗i = β∗i ⊕mi] = 1

2
.

Hence, the probability to commit to the valid response is
Pr[α∗i = β∗i ⊕mi] · 1 + Pr[α∗i 6= β∗i ⊕mi] · 1

2
= 3

4
.

It follows that the best strategy for A is to respond by him-
self, as in a classical DF, using Commit. For n challenges,
his advantage AdvDH

DB(A) is at most
(

3
4

)n
, which is negligi-

ble.

B.2 Privacy Property
Proof Proof of Theorem 5. Assume that there exists

a polynomial-time adversary A s. t. AdvPriv
A,TREADPub(λ) is

non-negligible. We show how to build an adversary B s. .t.
AdvIND-CCA2

B,PKE (λ) is also non-negligible.
Initially, the challenger sends a key pkv to B. Then, B

runs DB.gen(1λ) to generate the setup parameters of the
scheme and sends to A the public set-ups and pkv. Having
access to PKE-oracles from his challenger, B can simulate
the DB-oracles for A as follows.

DB.Joinc(·): on i, B returns a public/secret key pair (pki, ski)
of the new prover Pi using DB.join(λ).

DB.Prover(·): B simulates Pi for A using ski and pkv.

DB.Verifier: B simulates V for A as follows:

Initialization phase B receives e fromA and retrieves
the message (α||β||idprv(Pi)||σp) = PKE.decskv (e)
using his oracle. If S.vervki(σp, α||β||idprv(Pi)) = 0
(vki is the verification key of Pi), B returns ⊥
and aborts this simulation. Finally, he picks m

$←
{0, 1}n and returns it.

Distance-bounding phase B picks cj ∈ {0, 1}, sends
it to A and waits for the response rj . He repeats
this protocol for all j in {0, . . . , n}.

Verification phase If, for all j in {0, . . . , n}, rj = αj
when cj = 0 and rj = βj ⊕mj when cj = 1 then B
returns 1 to A, while otherwise he returns 0.

A sends (i0, i1) to B. Afterwards, B sets a counter l := 0
and simulates the challenge oracle DB.Proverb as follows.

Initialization phase B picks α||β $← {0, 1}2n and com-
putes the two signatures σ0

p = S.sigski0
(α||β||idprv(Pi0))

and σ1
p = S.sigski1

(α||β||idprv(Pi1)). He then sends

the messages m0 = (α||β||idprv(Pi0)||σ0
p) and m1 =

(α||β||idprv(Pi1)||σ1
p) to his challenge encryption ora-

cle SKE.enck(LRb(·, ·)) to obtain e. Afterwards, he sets
Listl = (α, β, e) and increments the counter l by one.
Finally, he returns e and receives m.

Distance-bounding phase B uses α, β andm to correctly
respond to the challenges ci sent by A.

Verification phase B receives OutV from A.

After the challenge, DB.Joinc(·) and DB.Prover(·) are sim-
ulated by B as in the first phase of the experiment. Hence,
DB.Verifier can be simulated as follows:

Initialization phase B receives e from A. If there is no
0 ≤ d ≤ l s. t. Listd = (α, β, e), B simulates the oracle

as in the first phase. Otherwise, B picks m
$← {0, 1}n

and returns it.

Distance-bounding phase B picks cj ∈ {0, 1}, sends it
to A and waits for the response rj . He repeats this
protocol for all j in {0, . . . , n}.

Verification phase Using Listd = (α, β, e), if for all j ∈
{0, . . . , n}, rj = αj when cj = 0 and rj = βj ⊕ mj

when cj = 1, B returns 1 to A. Otherwise, he simply
returns 0.

Finally, A returns b′ to B who returns it to the challenger.
The experiment is perfectly simulated for A, and in con-

sequence B wins his experiment with the same probability
that A wins his. Thus, AdvPriv

A,TREADPub(λ) = AdvIND-CCA2
B,PKE (λ),

contradicting the assumption on PKE.

B.3 Anonymity Property
Proof Proof of Theorem 6. Assume that there exists

a polynomial-time adversary A s. t. AdvAnon
A,TREADANO (λ) is

non-negligible. We show how to construct an adversary B
s. t. AdvAnon

B,G-SIG(λ) is also non-negligible.
Initially, the challenger sends a key gpk and a revoked

list RL to B. Then, B generates a public/private key pair
pkv, skv for the verifier using PKE.gen(1λ). Thus, B sends
(pkv, gpk,RL) to A and creates the empty list CU. Having
access to G-SIG-oracles from his challenger, B can simulate
the DB-oracles for A as follows:

DB.Joinh(·): on i, creates Pi with G.Joinh(·), and adds Pi
to UL.

DB.Joinc(·): on i, creates a corrupted Pi with G.Joinc(·),
adds Pi to UL and CU and returns sski.

DB.Revoke(·): on i, revokes Pi with G.Revoke(·), which up-
dates RL and returns it.

DB.Corrupt(·): on i, corrupts Pi with G.Corrupt(·) and gets
sski. B adds Pi to CU and returns sski.

DB.Prover(·): B simulates Pi for A as follows.

Initialization phase B picks α||β $← {0, 1}2n and uses
his oracle G.Sign(·, ·) to get the corresponding sig-
nature σp = G.sigsski

(α||β). He computes e =
PKE.encpkv (α||β||σp) and returns it. He then gets
m.

Distance-bounding phase B uses α, β andm to cor-
rectly respond to the challenges ci sent by A.

Verification phase B receives OutV from A.

DB.Verifier: B simulates V for A as follows:

Initialization phase B receives e fromA and retrieves
the message (α||β||σp) = PKE.decskv (e). If the ver-
ification G.vergpk(σp, α||β,RL) = 0 then B returns
⊥ and aborts this oracle simulation. Finally, he

picks m
$← {0, 1}n and returns it.

Distance-bounding phase B picks cj ∈ {0, 1}, sends
it to A and waits the response rj . He repeats this
protocol for all j in {0, . . . , n}.

Verification phase If, for all j in {0, . . . , n}, rj = αj
when cj = 0 and rj = βj ⊕mj when cj = 1 then B
returns 1 to A, while otherwise he returns 0.

A sends (i0, i1) to B. If i0 or i1 ∈ CU, B aborts the experi-
ment. Otherwise, B sends (i0, i1) to the challenger. Then, B
returns ⊥ when he simulates Corrupt(·) and Revoke(·) on in-
puts i0 and i1 . Afterward, B simulates the challenge oracle
DB.Proverb for Pib as follows:

Initialization phase B picks α||β $← {0, 1}2·n, uses his or-
acleG.Signb(·, ·) to get the signature σp = G.sigsski

(α||β),
and returns e = PKE.encpkv (α||β||σp). He then gets m.

Distance-bounding phase B uses α, β andm to correctly
respond to the challenges ci sent by A.

Verification phase B receives OutV from A.

Finally, A returns b′ to B who returns it to the challenger.
The experiment is perfectly simulated for A, This im-

plies that B wins his experiment with the same probabil-
ity that A wins his experiment. Thus, AdvAnon

B,G-SIG(λ) =

AdvAnon
A,TREADAno(λ), contradicting the assumption that an ad-

versary should have a negligible advantage on G-SIG.

