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Abstract. Auctions have a long history, having been recorded as early as 500
B.C. [17]. Nowadays, electronic auctions have been a great success and are in-
creasingly used. Many cryptographic protocols have been proposed to address
the various security requirements of these electronic transactions, in particular
to ensure privacy. Brandt [4] developed a protocol that computes the winner us-
ing homomorphic operations on a distributed ElGamal encryption of the bids.
He claimed that it ensures full privacy of the bidders, i.e. no information apart
from the winner and the winning price is leaked. We first show that this proto-
col – when using malleable interactive zero-knowledge proofs – is vulnerable to
attacks by dishonest bidders. Such bidders can manipulate the publicly available
data in a way that allows the seller to deduce all participants’ bids. Additionally
we discuss some issues with verifiability as well as attacks on non-repudiation,
fairness and the privacy of individual bidders exploiting authentication problems.

1 Introduction

Auctions are a simple method to sell goods and services. Typically aseller offers a good
or a service, and thebidders make offers. Depending on the type of auction, the offers
might be sent using sealed envelopes which are opened simultaneously to determine the
winner (the “sealed-bid” auction), or anauctioneer could announce prices decreasingly
until one bidder is willing to pay the announced price (the “dutch auction”). Addi-
tionally there might be several rounds, or offers might be announced publicly directly
(the “English” or “shout-out” auction). The winner usuallyis the bidder submitting the
highest bid, but in some cases he might only have to pay the second highest offer as a
price (the “second-price”- or “Vickrey”-Auction). In general a bidder wants to win the
auction at the lowest possible price, and the seller wants tosell his good at the highest
possible price. For more information on different auction methods see [17]. To address
this huge variety of possible auction settings and to achieve different security and effi-
ciency properties numerous protocols have been developed,e.g. [4,11,19,20,21,22,23]
and references therein.

One of the key requirements of electronic auction (e-Auction) protocols is privacy,
i.e. the bids of losing bidders remain private. Brandt proposed a first-price sealed-bid
auction protocol [4,3,2] and claimed that it is fully private, i.e. it leaks no information
apart from the winner, the winning bid, and what can be deduced from these two facts
(e.g. that the other bids were lower).



Our Contributions. The protocol is based on an algorithm that computes the winner
using bids encoded as bit vectors. In this paper we show that the implementation using
the homomorphic property of a distributed Elgamal encryption proposed in the original
paper suffers from a weakness. In fact, we prove that any two different inputs (i.e.
different bids) result in different outcome values, which are only hidden using random
values. We show how a dishonest participant can remove this random noise, if malleable
interactive zero-knowledge proofs are used. The seller canthen efficiently compute the
bids of all bidders, hence completely breaking privacy. We also discuss two problems
with verifiability, and how the lack of authentication enables attacks on privacy even if
the above attack is prevented via non-malleable non-interactive proofs. Additionally we
show attacks on non-repudiation and fairness, and propose solutions to all discovered
flaws in order to recover a fully resistant protocol.

Outline. In the next section, we recall the protocol of Brandt. Then, in the following
sections, we present our attacks in several steps. In Section 3, we first study the proto-
col using interactive zero-knowledge proofs and without noise. Then we show how a
dishonest participant can remove the noise, thus mount the attack on the protocol with
noise, and discuss countermeasures. Finally, in Section4, we discuss verifiability and
in Section5 we discuss attacks on fairness, non-repudiation and privacy exploiting the
lack of authentication.

2 The Protocol

The protocol of Brandt [4] was designed to ensure full privacy in a completely dis-
tributed way. It exploits the homomorphic properties of a distributed El-Gamal encryp-
tion scheme [12] for a secure multi-party computation of the winner. Then ituses zero-
knowledge proofs of knowledge of discrete logarithms to ensure correctness of the bids
while preserving privacy. We first give a high level description of the protocol and then
present details on its main cryptographic primitives.

2.1 Informal Description

The participatingn bidders and the seller communicate essentially using broadcast
messages. The latter can for example be implemented using a bulletin board, i.e. an
append-only memory accessible to everybody. The bids are encoded ask-bit-vectors
where each entry corresponds to a price. If the biddera wants to bid the priceba, all
entries will be1, except the entryba which will beY (a public constant). Each entry of
the vector is then encrypted separately using an-out-of-n-encryption scheme set up by
all bidders. The bidders use multiplications of the encrypted values to compute values
vaj , exploiting the homomorphic property of the encryption scheme. Each one of this
values is1 if the biddera wins at pricej, and is a random number otherwise. The de-
cryption of the final values takes place in a distributed way to ensure that nobody can
access intermediate values.
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2.2 Mathematical Description (Brandt [4])

Let Gq be a multiplicative subgroup of orderq, prime, andg a generator of the group.
We consider thati, h ∈ {1, . . . , n}, j, bida ∈ {1, . . . , k} (wherebida is the bid chosen
by the bidder with indexa), Y ∈ Gq \ {1}. More precisely, then bidders execute the
following five steps of the protocol [4]:
1. Key Generation

Each biddera, whose bidding price isbida among{1, . . . , k} does the following:
– chooses a secretxa ∈ Z/qZ
– chooses randomlyma

ij andraj ∈ Z/qZ for eachi andj.
– publishesya = gxa and proves the knowledge ofya’s discrete logarithm.
– using the publishedyi then computesy =

∏n

i=1 yi.
2. Bid Encryption

Each biddera

– setsbaj =

{

Y if j = bida

1 otherwise
– publishesαaj = baj · y

raj andβaj = graj for eachj.
– proves that for allj, logg(βaj) equalslogy(αaj) or logy

(αaj

Y

)
, and that

logy

(∏
k
j=1

αaj

Y

)

= logg

(
∏k

j=1 βaj

)

.

3. Outcome Computation
– Each biddera computes and publishes for alli andj:

γa
ij =

((
∏n

h=1

∏k
d=j+1 αhd

)

·
(
∏j−1

d=1 αid

)

·
(
∏i−1

h=1 αhj

))ma
ij

δaij =
((
∏n

h=1

∏k
d=j+1 βhd

)

·
(
∏j−1

d=1 βid

)

·
(
∏i−1

h=1 βhj

))ma
ij

and proves its correctness.
4. Outcome Decryption

– Each biddera sendsφa
ij = (

∏n
h=1 δ

h
ij)

xa for eachi andj to the seller and
proves its correctness. After having received all values, the seller publishesφh

ij

for all i, j, andh 6= i.
5. Winner determination

– Everybody can now computevaj =
∏n

i=1
γi
aj∏

n
i=1

φi
aj

for eachj.

– If vaw = 1 for somew, then the biddera wins the auction at pricepw.

2.3 Malleable proofs of knowledge and discrete logarithms

In the original paper [4] the author suggests using zero-knowledge proofs of knowledge
to protect against active adversaries. The basic protocolshe proposes are interactive
and malleable, but can be converted into non-interactive proofs using the Fiat-Shamir
heuristic [13], as advised by the author. We first recall the general idea ofsuch proofs,
then we expose the man-in-the-middle attacks on the interactive version, which we will
use as part of our first attack.

Let PDL denote aproof of knowledge of a discrete logarithm. A first scheme for
PDL was developed in 1986 by Chaum et al. [6]. In the original auction paper [4]
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Brandt proposes to use a non-interactive variant ofPDL as developed by Schnorr [24],
which are malleable. Unfortunately, interactive malleable PDL are subject to man-in-
the-middle attacks [16]. We first recall the classicΣ-protocol on a group with generator
g and orderq [1,5,7]. Peggy and Victor knowv andg, but only Peggy knowsx, so
thatv = gx. She can prove this fact, without revealingx, by executing the following
protocol:

1. Peggy choosesr at random and sendsz = gr to Victor.

2. Victor chooses a challengec at random and sends it to Peggy.

3. Peggy sendss = (r + c · x) mod q to Victor.

4. Victor checks thatgs = z · vc.

Man-in-the-middle attacks on interactive PDL Suppose Peggy possesses some se-
cret discrete logarithmx. We present here the man-in-the-middle attack of [16], where
an attacker can pretend to have knowledge of any affine combination of the secretx,
even providing the associated proof of knowledge, without breaking the discrete loga-
rithm. To prove this possession to say Victor, the attacker will start an interactive proof
knowledge session with Peggy and another one with Victor. The attacker will transform
Peggy’s outputs and forward Victor’s challenges to her. Theidea is to use the proof of
possession of Peggy’sx, to prove possession of1 − x to Victor. Indeed to prove for
instance possession of justx to Victor, an attacker would only have to forward Peggy’s
messages to Victor and Victor’s messages to Peggy. The idea of the attack is similar,
except that one needs to modify the messages of Peggy. We showthe example of1− x
in Figure1 since it is used in Section3.4to mount our attack. Upon demand by Victor
to prove knowledge of1 − x, Mallory, the man-in-the-middle, simply starts a proof of
knowledge ofx with Peggy. Peggy chooses a random exponentr and sends the com-
mitmentz = gr to Mallory. Mallory simply invertsz and sendsy = z−1 to Victor.
Then Victor presents a challengec that Mallory simply forwards without modification
to Peggy. Finally Peggy sends a responses that Mallory combines withc, asu = c− s,
to provide a correct answer to Victor. This is summarized in Figure1.

Peggy Mallory V ictor

Secret : x

Public : g, v = gx g,w = gv−1 g

z = gr
1 : z

// y = z−1
1′ : y

//

c
2 : c

oo c
2′ : c

oo

s = r + c · x
3 : s

// u = c− s
3′ : u

//

Check : gs
?

== z · vc gu
?

== y · wc

Fig. 1: Man-in-the-middlePDL of 1− x, with x an unknown discrete logarithm.
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Actually, the attack works in the generic settings of [5,18] or of Σ-protocols [10].
We letf : Γ → Ω denote a one way homomorphic function between two commutative
groups(Γ,+) and(Ω,×). We use this generalization to prevent possible countermea-
sures of our first attack in Section3.6.

For an integral valueα, α · x ∈ Γ (resp.yα ∈ Ω) denotesα applications of the
group law+ (resp.×). For a secretx ∈ Γ , and any(h, α, β) ∈ Γ × Z2, the attacker
can build a proof of possession ofα ·h+β ·x. In the setting of the example of Figure1,
we usedf(x) = gx, h = 1, α = 1 andβ = −1.

In the general case also, upon demand of proof by Victor, Mallory starts a proof with
Peggy. The secret of Peggy isx, and the associated witnessv is v = f(x). Then Mallory
wants to prove that his witnessw corresponds to any combination ofx with a logarithm
h that he knows. With only public knowledge and his chosen(h, α, β) ∈ Γ × Z2,
Mallory is able to computew = f(h)α · vβ . For the proof of knowledge, Mallory
still modifies the commitmentz = f(r) of Peggy toy = zβ. Mallory forwards the
challengec of Victor without modification. Finally Mallory transformsthe response
s of Peggy, still with only public knowledge and his chosen(h, α, β) ∈ Γ × Z2, as
u = c · (α · h) + β · s. We summarize this general attack on Figure2.

Peggy Mallory V ictor

Secret : x ∈ Γ (h, α, β) ∈ Γ × Z
2

Public : v = f(x) w = f(h)α × vβ f

z = f(r)
1 : z

// y = zβ
1′ : y

//

c
2 : c

oo c
2′ : c

oo

s = r + c · x
3 : s

// u = c · (α · h) + β · s
3′ : u

//

Check : f(s)
?

== z × vc f(u)
?

== y ×wc

Fig. 2: Man-in-the-middle attacks proving knowledge of affine transforms of a secret
discrete logarithm in the generic setting.

Lemma 1. In the man-in-the-middle attack of Figure 2 of the interactive proof of knowl-
edge of a discrete logarithm, Victor is convinced by Mallory’s proof of knowledge of
α · h+ β · x.

Proof. Indeed,

u = c · (α · h) + β · s = c · (α · h) + β · (r + c · x) = β · r + c · (α · h+ β · x). (1)

Now, sincez = f(r), y = zβ, v = f(x) andf(h)α × vβ = w, the latter Equation (1)
proves in turn that

f(u) = f(r)β × f(α · h+ β · x)c = zβ × (f(h)α × f(x)β)c = y × wc. (2)

Now Victor has to verify the commitment-challenge-response (y, c, u) of Mallory for
his witnessw. Then Victor needs to checks whetherf(u) corresponds toy×wc, which
is the case as shown by the latter Equation (2). ⊓⊔
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Generalizations to equality of discrete logarithms We letEQDL denote aproof of
equality of several discrete logarithms. Any PDL can in general easily be transformed
to an EQDL by applying it k times on the same witness. It is often more efficient
to combine the application in one as in [8,9], or more generally as composition ofΣ-
protocols, here with two logarithms and two generatorsg1 andg2. Peggy wants to prove
that she knowsx such thatv = gx1 andw = gx2 :
1. Peggy choosesr at random and sendsλ = gr1 andµ = gr2 to Victor.
2. Victor chooses a challengec at random and sends it to Peggy.
3. Peggy computess = (r + c · x) mod q and sends it to Victor.
4. Victor tests ifgs1 = λ · vc andgs2 = µ · wc.

This protocol remains malleable, and the previous attacks are still valid since the re-
sponse remains of the formr + c · x.

CountermeasuresDirect countermeasures to the above attacks are to use non-interactive
and/or non-malleable proofs:

– An interactive protocol can be converted into a non-interactive one using the Fiat-
Shamir heuristic [13].

– Also the firstPDL by [6] uses bit-flipping, and more generally non-malleable pro-
tocols like [15] could be used.

We will show in the following that if the proofs proposed in the original paper are
not converted into non-interactive proofs, there is an attack on privacy. Note that even
if non-interactive non-malleable zero-knowledge proofs are used, a malicious attacker
in control of the network can nonetheless recover any bidder’s bid as the messages are
not authenticated, as we show in Section5.

3 Attacking the fully private computations

The first attack we present uses some algebraic properties ofthe computations per-
formed during the protocol execution.

3.1 Analysis of the outcome computation

The idea is to analyze the computations done in Step3 of the protocol. Consider the
following example with three bidders and three possible prices. Then the first bidder
computes

γ1
11 = ( (α12 · α13· α22 · α23· α32 · α33) · (1) · (1) )m

1

11

γ1
12 = ( (α13· α23· α33) · (α11) · (1) )m

1

12

γ1
13 = ( (1) · (α11 · α12) · (1) )m

1

13

γ1
21 = ( (α12 · α13· α22 · α23· α32 · α33) · (1) · (α11) )m

1

21

γ1
22 = ( (α13· α23· α33) · (α21) · (α12) )m

1

22

γ1
23 = ( (1) · (α21 · α22) · (α13) )m

1

23

γ1
31 = ( (α12 · α13· α22 · α23· α32 · α33) · (1) · (α11 · α21) )

m1

31

γ1
32 = ( (α13· α23· α33) · (α31) · (α12 · α22) )

m1

32

γ1
33 = ( (1) · (α31 · α32) · (α13 · α23) )

m1

33

6



The second and third bidder do the same computations, but using different random
valuesma

ij . Since eachαij is either the encryption of1 or Y , for example the valueγ1
22

will be an encryption of1 only if

– nobody submitted a higher bid (the first block) and
– bidder 2 did not bid a lower bid (the second block) and
– no bidder with a lower index submitted the same bid (the thirdblock).

If we ignore the exponentiation byma
ij , eachγa

ij is the encryption of the product of

severalbij ’s. Eachbij can be either 1 orY , hence(γa
ij)

−ma
ij will be the encryption of

a valueY lij , where0 ≤ lij ≤ n. The lower bound oflij is trivial, the upper bound
follows from the observation that eachαij will be used at most once, and that each
bidder will encryptY at most once.

Assume for now that we know alllij . We show next that this is sufficient to ob-
tain all bids. Consider the functionf which takes as input the following vector3: b =

logY

((
b11, . . . , b1k, b21, . . . , b2k, . . . , bn1, . . . , bnk

)T
)

, and returns the val-

ueslij . The input vector is thus a vector of all bid-vectors, where1 is replaced by0 and
Y by 1. Consider our above example with three bidders and three possible prices, then
we have:

b = logY

((
b11, b12, b13, b21, b22, b23, b31, b32, b33

)T
)

.

A particular instance where bidder 1 and 3 submit price 1, andbidder 2 submits price

2 would then look as:b =
(
1, 0, 0, 0, 1, 0, 1, 0, 0

)T
. Hence only the factorsα11,

α22 andα31 are encryptions ofY , all otherα’s are encryptions of1. By simply counting
how often the factorsα11, α22 andα31 show up in each equation as described above,

we can compute the following result:f(b) =
(
1, 1, 1, 2, 0, 1, 2, 1, 1

)T
. Note that

since we chose the input off to be a bit-vector, we have to simply count the ones (which
correspond toY ’s) in particular positions inb, where the positions are determined by
the factors insideγa

ij . Hence we can expressf as a matrix, i.e.f(b) = M · b for the
following matrixM :

f(b) = M · b =



















0 1 1 0 1 1 0 1 1
1 0 1 0 0 1 0 0 1
1 1 0 0 0 0 0 0 0

1 1 1 0 1 1 0 1 1
0 1 1 1 0 1 0 0 1

0 0 1 1 1 0 0 0 0

1 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 0 1
0 0 1 0 0 1 1 1 0



















·



















1
0
0

0
1

0

1
0
0



















=



















1
1
1

2
0

1

2
1
1



















To see how the matrixM is constructed, consider for example(γa
22)

−ma
22 = (α13 ·α23 ·

α33) · (α21) · (α12) which corresponds to thesecond rowin the second vertical block:

3 By abuse of notation we writelogs
(

x1, . . . , xn

)

for
(

logs(x1), . . . , logs(xn)
)

.
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– α12 andα13; hence the two ones at position 2 and 3 in the first horizontal block
– α21 andα23; hence the two ones at position 1 and 3 in the second horizontal block
– α33; hence the one at position 3 in the third horizontal block

More generally, we can see that each3× 3 block consists of potentially three parts:
– An upper triangular matrix representing all bigger bids.
– On the diagonal we add a lower triangular matrix representing a lower bid by the

same bidder,
– In the lower left half we add an identity matrix representinga bid at the current

price by a bidder with a lower index.

This corresponds exactly to the structure of the products inside eachγa
ij . It is also equiv-

alent to formula (1) in Section 4.1.1 of the original paper [4] without the random vector
R∗

k. In the following we prove that the functionf is injective. We then discuss how
this function can be efficiently inverted (i.e. how to compute the bids when knowing all
lij ’s).

3.2 Linear algebra toolbox

Let Ik be thek×k identity matrix; letLk be a lowerk×k triangular matrix with zeroes
on the diagonal, ones in the lower part and zeroes elsewhere;and letUk be an upper
k × k triangular matrix with zeroes on the diagonal, ones in the upper part, and zeroes
elsewhere:

Ik =









1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1









Lk =









0 0 · · · 0

1
. . .

. . .
...

...
. . .

. . . 0
1 · · · 1 0









Uk =









0 1 · · · 1

0
. . .

. . .
...

...
. . .

. . . 1
0 · · · 0 0









By abuse of notation we useI, L andU to denote respectivelyIk, Lk andUk. For
a k × k-matrix Mk we define(Mk)

r = M · · ·M (r times) and(Mk)
0 = Ik. Let

(e1, . . . , ek) be the canonical basis.

Lemma 2. Matrices Lk and Uk have the following properties, for 0 < j ≤ k and
r ≥ 0: (Uk)

r · ej =
∑j−r

s=1 es and (Lk)
r · ej =

∑k
s=j+r es.

Lemma 3. Matrices Lk and Uk are nilpotent, i.e. (Uk)
k = 0 and (Lk)

k = 0.

This follows immediately from Lemma2 by computing(Uk)
k · Ik and(Lk)

k · Ik.

Lemma 4. If
∑k

i=1 xi = 1 then we have Lk · x = (1, . . . , 1)T − (Ik + Uk) · x.

Proof. First note that since
∑k

i=1 xi = 1,

Lk · x =









0 0 · · · 0

1
. . .

. . .
...

...
. . .

. . . 0
1 · · · 1 0









·






x1

...
xk




 =










0
x1

x1 + x2

...
∑k−1

i=1 xi










=








1−
∑k

i=1 xi

1−
∑k

i=2 xi

...
1− xk








8



On the other hand, if we let1 = (1, . . . , 1)T , we have also:

1− (Ik + Uk) · x = 1−









1 1 · · · 1

0 1
. ..

...
...

. . .
. .. 1

0 · · · 0 1









·






x1

...
xk




 =








1−
∑k

i=1 xi

1−
∑k

i=2 xi

...
1− xk








Lemma 5. eT1 · Uk−t−1 · z = zk−t−1 + eT1 · Uk−t · z

The proof follows immediately from the fact thateT1 · Uk−x = (0, . . . , 0
︸ ︷︷ ︸

k−x

, 1, . . . , 1
︸ ︷︷ ︸

x

). As

a direct consequence we obtain the following corollary.

Corollary 1. eT1 · Uk−t · z = zk−t + eT1 · Uk−t+1 · z

Lemma 6. For z = ei − ej , we have that (Lk + Uk) · z = −z.

Proof. If i = j, thenz = 0 and the results is true. Suppose w.l.o.g. thati > j (otherwise
we just prove the result for−z). ThenUk ·(ei−ej) =

∑i−1
s=1 es−

∑j−1
s=1 es =

∑i−1
s=j es.

SimilarlyLk · (ei − ej) =
∑k

s=i+1 es −
∑k

s=j+1 es =
∑i

s=j+1 −es. Therefore(Lk +

Uk) · (ei − ej) =
∑i−1

s=j es −
∑i

s=j+1 es = ej − ei = −z.

3.3 How to recover the bids when knowing thelij ’s

As discussed above, we can represent the functionf as a matrix multiplication. LetM
be the following square matrix of sizenk × nk:

M =










(U + L) U . . . . . . U
(U + I) (U + L) U . . . U

...
. . .

. . .
. . .

...
(U + I) . . . (U + I) (U + L) U
(U + I) . . . . . . (U + I) (U + L)










. Thenf(b) = M · b.

The function takes as input a vector composed ofn vectors, each ofk bits. It returns the
nk valueslij , 1 ≤ i ≤ n and1 ≤ j ≤ k. As explained above, the structure of the matrix
is defined by the formula that computesγa

ij , which consists essentially of three factors:
first we multiply allαij which encode bigger bids (represented by the matrixU ), then
we multiply all αij which encode smaller bids by the same bidder (represented by
adding the matrixL on the diagonal), and finally we multiply by allαij which encode
the same bid by bidders with a smaller index (represented by adding the matrixI on the
lower triangle ofM ). In our encoding there will be a “1” in the vector for eachY in the
protocol, hencef will count how manyY s are multiplied when computingγa

ij . Using
this representation we can prove the following theorem.

Theorem 1. f is injective on valid bid vectors, i.e. for two different correct bid vectors
u = [u1, . . . , uk]

T and v = [v1, . . . , vk]
T with u 6= v we have M · u 6= M · v.
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Proof. Let u andv be two correct bid vectors such thatu 6= v. We want to prove that
M ·u 6= M ·v. We make a proof by contradiction, hence we assume thatM ·u = M ·v
or thatM · (u− v) = 0. Becauseu andv are two correct bid vectors, each one of them
is an element of the canonical basis(e1, . . . , ek), i.e. u = ei andv = ej, as shown
in Section3.1. We denoteu − v by z, and consequentlyz = ei − ej. Knowing that
M · z = 0, we prove by induction ona that for alla the following propertyP (a) holds:

P (a) : ∀l, 0 < l ≤ a, diag(Uk−l) · z = 0

wherediag(Uk−x) is ank×nk block diagonal matrix containing only diagonal blocks
of the same matrixUk−x. The validity ofP (k) proves in particular thatdiag(U0) ·zl =
0, i.e.z = 0 which contradicts our hypothesis.

– Casea = 1: we also prove this base case by induction, i.e. for allb ≥ 1 the property
Q(b) holds, where:

Q(b) : ∀m, 0 < m ≤ b, Uk−1 · zm = 0

which gives us thatUk−1 · z = 0.
• Base caseb = 1: We start by looking at the multiplication of the first row ofM

with z. We obtain:(L+U) ·z1+U · (z2+ . . .+zk) = 0. We can multiply each
side byUk−1, and use Lemma6 to obtain:Uk−1 ·[−z1+Uk ·(z2+. . .+zk)] =
0. SinceU is nilpotent, according to Lemma3 the latter gives−Uk−1 · z1 = 0.
Hence we knowQ(1) : Uk−1 · z1 = 0, i.e. the last entry ofz1 is 0.

• Inductive stepb + 1: assumeQ(b). Consider now the multiplication of the
(b + 1)-th row of the matrixM :
(U + I) · z1+ . . .+(U + I) · zb+(L+U) · zb+1+U · (zb+2 + . . .+ zk) = 0.
Then by multiplying byUk−1 and using Lemma6 we obtain:
Uk−1 · [(U + I) · z1 + . . .+ (U + I) · zb − zb+1 +U · (zb+2 + . . .+ zk)] = 0.
SinceU is nilpotent according to Lemma3 we haveUk−1 · z1 + . . .+ Uk−1 ·
zb−Uk−1 ·zb+1 = 0. Using the fact that for allm < b we haveUk−1 ·zm = 0,
the latter gives−Uk−1 · zb+1 = 0.

– Inductive stepa+1: assumeP (a). By induction onb ≥ 1 we will show thatQ′(b)
holds, where

Q′(b) : ∀m, 0 < m ≤ b, Uk−(a+1) · zm = 0

which gives us thatUk−(a+1) · z = 0, i.e.P (a+ 1).
• Base caseb = 1: Consider the multiplication of the first row withUk−(a+1):
Uk−(a+1) · [(L+U) · z1 +U · (z2 + . . .+ zk)] = 0 which can be rewritten as
−Uk−(a+1) · z1 + Uk−a · (z2 + . . .+ zk)] = 0. UsingUk−a · zl = 0 for all l,
we can conclude that−Uk−(a+1) · z1 = 0, i.e.Q′(1) holds.

• Inductive stepb + 1: assumeQ′(b). Consider now the(b + 1)-th row of the
matrixM :
(U + I) · z1+ . . .+(U + I) · zb+(L+U) · zb+1+U · (zb+2 + . . .+ zk) = 0.
Then by multiplying byUk−(a+1) and using Lemma6 we obtain:
Uk−(a+1) · [(U + I) · z1 + . . . + (U + I) · zb + −zb+1 + U · (zb+2 + . . . +
zk)] = 0. UsingUk−a · zl = 0 for all l, we can conclude thatUk−(a+1) · z1 +
. . . + Uk−(a+1) · zb − Uk−(a+1) · zb+1 = 0. Now, for all m < b, we have
Uk−(a+1) · zm = 0, so that−Uk−(a+1) · zb+1 = 0; i.e.Q′(b+ 1) holds. ⊓⊔

10



This theorem shows that if there is a constellation of bids that led to certain valueslij ,
this constellation is unique. Hence we are able to invertf on valid outputs. We will now
show that this can be efficiently done.

An efficient algorithm Our aim is solve the following linear system:M ·x = l. We will
use the same steps we used for the proof of injectivity to solve this system efficiently.
First note that

M · x = l ⇒ diag(Uk−t−1) ·M · x = diag(Uk−t−1) · l.

Consider ther-th block of sizek of the latter equality. We havexr = (xr,1, xr,2, . . . ,
xr,k). When multiplying byeT1 we obtain the first line of this block. Ther-th block of
M · x is

(U + I)x1 + . . .+ (U + I)xr−1 + (L+ U)xr + Uxr+1 + . . .+ Uxk

= U(
∑k

i=1 xi) + (
∑r−1

i=1 xi) + Lxr

and ther-th block ofl is lr. Hence:

eT1

[

Uk−t
(
∑k

i=1 xi

)

+ Uk−t−1
(
∑r−1

i=1 xi

)

+ Uk−t−1Lxr

]
= eT1 U

k−t−1lr

Using Lemma4, we can exchangeL in the latter to get:

eT1

[

Uk−t
(
∑k

i=1 xi

)

+ Uk−t−1
(
∑r−1

i=1 xi

)

+ Uk−t−1 (1− (In + Un)xr)
]

= eT1 U
k−t−1lr. We then remark thateT1 U

k−t−1
1 = t+ 1, which gives:

eT1

[

Uk−t
(
∑k

i=1,i6=r xi

)

+ Uk−t−1
(
∑r−1

i=1 xi

)

− Uk−t−1xr

]

= eT1 U
k−t−1lr − (t+ 1). Using Lemma5, we have

eT1

[

Uk−t
((
∑k

i=1 xi

)

− 2xr

)

+ Uk−t−1
(
∑r−1

i=1 xi

)]

+ (t+ 1)− eT1 U
k−t−1lr

= xr,k−t−1 (3)

Using several times Corollary1 we have:

• eT1 U
k−t

((
∑k

i=1 xi

)

− 2xr

)

= eT1 U
k−t+1

((
∑k

i=1 xi

)

− 2xr

)

+ eTk−t

((
∑k

i=1 xi

)

− 2xr

)

• eT1 U
k−t−1

(
∑r−1

i=1 xi

)

= eT1 U
k−t
(
∑r−1

i=1 xi

)

+ eTk−t−1

(
∑r−1

i=1 xi

)

• eT1 U
k−t−1lr = eT1 U

k−tlr + lr,k−t−1

By changingt to t− 1 in Equation (3) we get:

eT1

[

Uk−t+1
((
∑k

i=1 xi

)

− 2xr

)

+ Uk−t
(
∑r−1

i=1 xi

)]

+ t− eT1 U
k−tlr = xr,k−t.

Then regrouping the applications of Corollary1 and the latter formula within Equa-
tion (3), we obtain:

xr,k−t+eTk−t

((
k∑

i=1

xi

)

− 2xr

)

+ek−t−1

(
r−1∑

i=1

xi

)

+1+lr,k−t−1 = xr,k−t−1 (4)

This gives us a formula to compute the values ofxi,j , starting with the last element
of the first blockx1,k. Then we can compute the last elements of all other blocks
x2,k, . . . , xn,k, and then the second to last elementsx1,k−1, . . . , xn,k−1, etc.
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Complexity Analysis. To obtain all values, we have to apply the above formula for
eacht ≤ n andr ≤ k, hence we have:

n∑

t=1

k∑

r=1

(k + r) = n

(

k2 +
k(k + 1)

2

)

=
3

2
nk2 +

1

2
nk ∈ O

(
nk2

)

This is efficient enough to be computed on a standard PC for realistic values ofn (the
number of bidders) andk (the number of possible bids). Those could be less than a
hundred bidders with a thousand different prices, thus requiring about the order of only
a hundred million arithmetic operations. It is anyway the order of magnitude of the
number of operations required of each user just to compute her encrypted bids.

3.4 Attack on the random noise: how to obtain thelij ’s

In the previous section we showed that knowing thelij ’s allows us the efficiently break
the privacy of all bidders. Here is how to obtain thelij ’s. The seller will learn allvij =
(
Y lij

)(
∑n

h=1
mh

ij) at the end of the protocol. Since themh
ij are randomly chosen, this

will be a random value iflij 6= 0. However a malicious bidder (“Mallory”, of indexa)
can cancel out themh

ij as follows: in Step3 of the protocol each bidder will compute
his γa

ij andδaij . Mallory waits until all other bidders have published theirvalues (the
protocol does not impose any synchronization or special ordering) and then computes
his valuesγω

ij andδωij as:

γω
ij =

((
∏n

h=1

∏k

d=j+1 αhd

)

·
(
∏j−1

d=1 αid

)

·
(
∏i−1

h=1 αhj

))

·
(
∏

k 6=ω γk
ij

)−1

δωij =
((
∏n

h=1

∏k
d=j+1 βhd

)

·
(
∏j−1

d=1 βid

)

·
(
∏i−1

h=1 βhj

))

·
(
∏

k 6=ω δkij

)−1

The first part is a correct encryption ofY lij , with mω
ij = 1 for all i andj. The second

part is the inverse of the product of all the other biddersγk
ij andδkij , and thus it will

eliminate the random exponents. Hence after decryption theseller obtainsvij = Y lij ,
wherelij < n for a smalln. He can computelij by simply (pre-)computing all possible
valuesY r and testing for equality. This allows the seller to obtain the necessary values
and then to use the resolution algorithm to obtain each bidder’s bid. Note that although
we changed the intermediate values, the output still gives the correct result (i.e. winning
bid). Therefore, the attack might even be unnoticed by the other participants. Note also
that choosing a differentYi per bidder does not prevent the attack, since all theYi need
to be public in order to prove the correctness of the bid in Step 2 of the protocol.

However the protocol requires Mallory to prove thatγω
ij and δωij have the same

exponent. This is obviously the case, but Mallory does not know the exact value of
this exponent. Thus it is impossible for him to execute the proposed zero-knowledge
protocol directly.

In the original paper [4] the malleable interactive proof of [8], presented in Sec-
tion 2.3, is used to prove the correctness ofγa

ij andδaij in Step3 of the protocol. If this
proof is not converted into a non-interactive proof, then Mallory is able to fake it as
follows.
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3.5 Proof of equality of the presented outcomes

Note that we can rewriteγω
ij andδωij as:

v = γω
ij =









n∏

h=1

k∏

d=j+1

αhd



 ·

(
j−1
∏

d=1

αid

)

·

(
i−1∏

h=1

αhj

)



︸ ︷︷ ︸

g1

1−(
∑

k 6=ω
mk

ij)

w = δωij =









n∏

h=1

k∏

d=j+1

βhd



 ·

(
j−1
∏

d=1

βid

)

·

(
i−1∏

h=1

βhj

)



︸ ︷︷ ︸

g2

1−(
∑

k 6=ω
mk

ij)

When Mallory, the bidderm, is asked by Victor for a proof of correctness of his values,
he starts by asking all other bidders for proofs to initialize the man-in-the-middle attack
of Figure1. Each of them answers with valuesλo = gzo1 andµo = gzo2 . Mallory can
then answer Victor with valuesλ =

∏

o λ
−1
o andµ =

∏

o µ
−1
o , whereo ∈ ([1, n] \m).

Victor then sends a challengec, which Mallory simply forwards to the other bidders.
They answer withro = zo + c ·mo

ij , and Mallory sendsr = c−
∑

o ro to Victor, who
can check thatgr1 = λ·vc andgr2 = µ ·wc. If the other bidders did their proofs correctly,
then Mallory’s proof will appear valid to Victor:

λ · vc =
∏

o λ
−1
o ·

(

g
1−(

∑
o
mo

ij)
1

)c

=
∏

o g
−zo
1 · g

c−c(
∑

o
mo

ij)
1 = g

c−
∑

o(zo+cmo
ij)

1

µ · wc =
∏

o µ
−1
o ·

(

g
1−(

∑
o mo

ij)
2

)c

=
∏

o g
−zo
2 · g

c−c(
∑

o mo
ij)

2 = g
c−

∑
o(zo+cmo

ij)
2

Hence in the case of malleable interactive zero-knowledge proofs Mallory is able to
modify the valuesγω

ij andδωij as necessary, and even prove the correctness using the
bidders. Hence the modifications may stay undetected and theseller will be able to
break privacy.

3.6 The complete attack and countermeasures

Putting everything together, the attack works as follows:

1. The bidders set up the keys as described in the protocol.
2. They encrypt and publish their bids.
3. They computeγh

ij andδhij and publish them.
4. Mallory, who is a bidder himself, waits until all other bidders have published their

values. He then computes his values as defined above, and publishes them.
5. If he is asked for a proof, he can proceed as explained abovein Section3.5.
6. The bidders (including Mallory) jointly decrypt the values.
7. The seller obtains allY lij ’s. He can then compute thelij ’s by testing at mostn

possibilities.
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8. Once he has all values, he can invert the functionf as explained above.
9. He obtains all bidders bids.

Again, note that for all honest bidders, this execution willlook normal, so they might
not even notice that an attack took place. To prevent this attack, one could perform the
following actions:

– To counteract the removal of the noise of Section3.4, the bidders could check
whether the product of theγa

i,j for all biddersa is equal to the product of theαhd

without any noise (exponent is1). Unfortunately, the man-in-the-middle attack gen-
eralizes to any exponent as shown in Figure2. Therefore the attacker could use a
randomly chosen exponent only known to him.

– As mentioned above, another countermeasure is the use of non-interactive, non-
malleable proofs of knowledge. In this case, we will show in Section5 that it is still
possible to attack a targeted bidder’s privacy.

4 Attacking verifiability

Brandt claims that the protocol is verifiable as the parties have to provide zero-knowledge
proofs for their computations, however there are two problems.

4.1 Exceptional values

First, a winning bidder cannot verify if he actually won. To achieve privacy, the protocol
hides all outputs ofvaj except for the entry containing “1”4. This is done by exponenti-

ation with random valuesma
ij inside all entriesγa

ij andδaij , i.e. by computingx
∑

a
ma

ij

ij

wherexij is the product of someαij as specified in the protocol. Ifxij is one,xm
ij

will still return one for anym, and in principle something different from one for any
other value ofxij . Now, the random valuesma

ij may add up to zero (modq), hence
the returned value will bexm

ij = x0
ij = 1 and the bidder will conclude that he won,

although he actually lost (xij 6= 1). Hence simply verifying the proofs is not sufficient
to be convinced that the observed outcome is correct. For thesame reason the seller
might observe two or more “1”-values, even though all proofsare correct. In such a
situation he is unable to decide which bidder actually won since he cannot determine
which “1”s correspond to a real bids, and hence which bid is the highest real bid. If two
“1”s correspond to real bids, he could even exploit such a situation to his advantage: he
can tell both bidders that they won and take money from both, although there is only
one good to sell – this is normally prohibited by the protocol’s tie-breaking mechanism.
If the bidders do not exchange additional data there is no wayfor them to discover that
something went wrong, since the seller is the only party having access to all values.

A solution to this problem could work as follows: when computing theγa
ij andδaij ,

the bidders can check if the product

xij =





n∏

h=1

k∏

d=j+1

αhd



 ·

(
j−1
∏

d=1

αid

)

·

(
i−1∏

h=1

αhj

)

4 Note that the protocol contains a mechanism to resolve ties,i.e. there should always be exactly
one entry equal to 1, even in the presence of ties.
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is equal to one – if yes, they restart the protocol using different keys and random values.
If not, they continue, and check if

∏

a γ
a
ij = 1. If yes, they choose different random val-

uesma
ij and re-compute theγa

ij andδaij , otherwise they continue. Since the probability
of the random values adding up to zero is low, this will rapidly lead to correct values.

4.2 Different private keys

Second, the paper does not precisely specify the proofs thathave to be provided in the
joint decryption phase. If the bidders only prove that they use the same private key on
all decryptionsand not also that it is the one they used to generate their public key,
they may use a wrong one. This will lead to a wrong decryption where with very high
probability no value is “1”, as they will be random. Hence allbidders will think that
they lost, thus allowing a malicious bidder to block the whole auction, as no winner
is determined. Hence, if we assume that the verification testconsists in verifying the
proofs, a bidder trying to verify that he lost using the proofs might perform the verifica-
tion successfully, although the result is incorrect and he actually won – since he would
have observed a “1” if the vector had been correctly decrypted.

This problem can be addressed by requiring the bidders to also prove that they used
the same private key as in the key generation phase.

5 Attacks using the lack of authentication

The protocol as described in the original paper does not include any authentication of
the messages. This means that an attacker in control of the network can impersonate
any party, which can be exploited in many ways. However, the authors supposed in the
original paper a “reliable broadcast channel, i.e. the adversary has no control of com-
munication” [4]. Yet even under this assumption dishonest participants can impersonate
other participants by submitting messages on their behalf.Additionally, this assumption
is difficult to achieve in asynchronous systems [14]. In the following we consider an
attacker in control of the network, however many attacks canalso be executed analo-
gously by dishonest parties (which are considered in the original paper) in the reliable
broadcast setting.

5.1 Another attack on privacy

Our first attack on privacy only works in the case of malleableinteractive proofs. If we
switch to non-interactive non-malleable proofs, Mallory cannot ask the other bidders
for proofs using a challenge of his choice.

However, even with non-interactive non-malleable zero-knowledge proofs, the pro-
tocol is still vulnerable to attacks on a targeted bidder’s privacy if an attacker can im-
personate any bidder of his choice as well as the seller, which is the case for an attacker
controlling the network due to the lack of authentication. In particular, if he wants to
know Alice’s bid he can proceed as follows:

1. Mallory impersonates all other bidders. He starts by creating keys on their behalf
and publishes the valuesyi and the corresponding proofs for all of them.
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2. Alice also creates her secret keyshare and publishesya together with a proof.
3. Alice and Mallory compute the public keyy.
4. Alice encrypts her bid and publishes herαaj andβbj together with the proofs.
5. Mallory publishesαij = αaj andβij = βaj for all other biddersi and also copies

Alice’s proofs.
6. Alice and Mallory execute the computations described in the protocol and publish

γa
ij andδaij .

7. They computeφa
ij and send it to the seller.

8. The seller publishes theφa
ij and computes thevaj .

Since all submitted bids are equal, the seller (which might also be impersonated by Mal-
lory) will obtain Alice’s bid as the winning price, hence it is not private any more. This
attack essentially simulates a whole instance of the protocol to make Alice indirectly
reveal a bid that was intended for another, probably real auction. To counteract this it is
not sufficient for Alice to check that the other bids are different: Mallory can produce
differentαij = αajy

x together withβij = βajg
x which are still correct encryptions of

Alice bids.
Note that the same attack also works if dishonest bidders collude with the seller:

they simply re-submit the targeted bidders bid as their own bid.

5.2 Attacking fairness, non-repudiation and verifiability

The lack of authentication obviously entails that a winningbidder can claim that he
did not submit his bid, hence violating non-repudiation (even in the case of reliable
broadcast). Additionally, this also enables an attack on fairness: an attacker in control
of the network can impersonate all bidders vis-à-vis the seller, submitting bids of his
choice on their behalf and hence completely controlling thewinner and winning price.
This also causes another problem with verifiability: it is impossible to verify if the bids
were submitted by the registered bidders or by somebody else.

5.3 Countermeasures

The solution to these problems is simple: all the messages need to be authenticated, e.g.
using signatures or Message Authentication Codes (MACs) based on a trust anchor, for
example a Public Key Infrastructure (PKI).

6 Conclusion

In this paper we analyze the protocol of Brandt [4] from various angles. We show that
the underlying computations have a weakness which can be exploited by malicious bid-
ders to break privacy if malleable interactive zero-knowledge proofs are used. We also
identified two problems with verifiability and proposed solutions. Finally we showed
how the lack of authentication can be used to mount differentattacks on privacy, verifi-
ability as well as fairness and non-repudiation. Again we suggested a solution to address
the discovered flaws.

So sum up, the following countermeasures have to be implemented:
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– Use of non-interactive or non-malleable zero-knowledge proofs.
– All messages have to be authenticated, e.g. using a Public-Key Infrastructure (PKI)

and signatures.
– In the outcome computation step: when computing theγa

ij andδaij , the bidders can

check ifxij =
(
∏n

h=1

∏k

d=j+1 αhd

)

·
(
∏j−1

d=1 αid

)

·
(
∏i−1

h=1 αhj

)

is equal to one –

if yes, they restart the protocol using different keys and random values. If not, they
continue, and check if

∏

a γ
a
ij = 1. If yes, they choose different random valuesma

ij

and re-compute theγa
ij andδaij , otherwise they continue.

– In the outcome decryption step: the bidders have to prove that the valuexa they
used to decrypt is the samexa they used to generate their public keyya in the first
step.

The attacks show that properties such as authentication canbe necessary to achieve
other properties which might appear to be unrelated at first sight, like for instance pri-
vacy. It also points out that there is a difference between computing the winner in a fully
private way, and ensuring privacy for the bidders: in the second attack we use modified
inputs to break privacy even though the computations themselves are secure. Addition-
ally our analysis highlights that the choice of interactiveor non-interactive, malleable
or non-malleable proofs is an important decision in any protocol design.

As for possible generalizations of our attacks, of course the linear algebra part of our
first attack is specific to this protocol. Yet the man-in-the-middle attack on malleable
proofs as well as the need of authentication for privacy are applicable to any protocol.
Similarly, checking all exceptional cases and ensuring that the same keys are used all
along the process are also valid insights for other protocols.
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