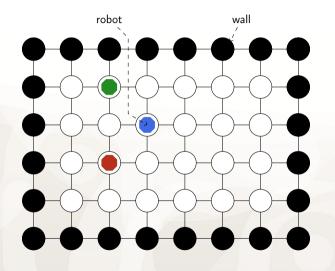
#### Optimal Asynchronous Perpetual Grid Exploration

#### Quentin Bramas, Stéphane Devismes, Anaïs Durand Pascal Lafourcade, Anissa Lamani



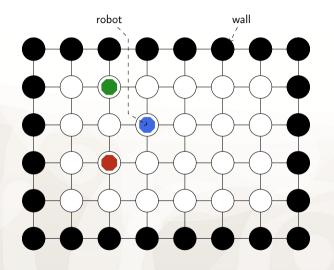






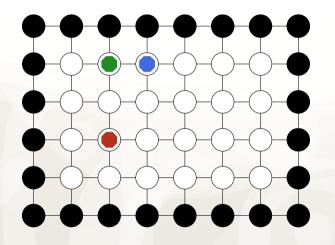



October 20th, 2024



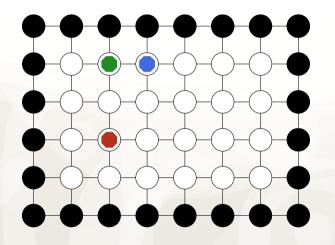






- Finite grid
- Autonomous mobile robots
- Perpetual exploration

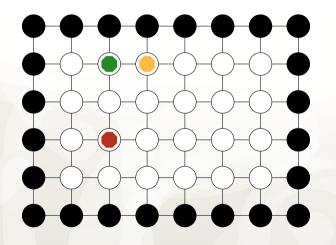





- Finite grid
- Autonomous mobile robots
- Perpetual exploration
- Discrete moves

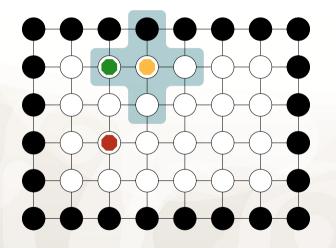





- Finite grid
- Autonomous mobile robots
- Perpetual exploration
- Discrete moves



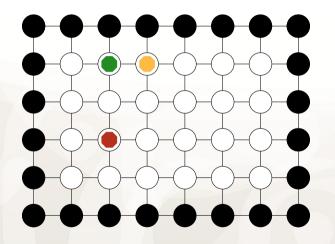



- Finite grid
- Autonomous mobile robots
- Perpetual exploration
- Discrete moves
- Lights of different colors





- Finite grid
- Autonomous mobile robots
- Perpetual exploration
- Discrete moves
- Lights of different colors






- Finite grid
- Autonomous mobile robots
- Perpetual exploration
- Discrete moves
- Lights of different colors
- Limited visibility range



<sup>2</sup>/11



- Finite grid
- Autonomous mobile robots
- Perpetual exploration
- Discrete moves
- Lights of different colors
- Limited visibility range
- No memory or direct communication

#### **Computational Model: Orientation System**

No compass or global coordinate system

► With common chirality:







#### **Computational Model: Orientation System**

No compass or global coordinate system

► With common chirality:







#### **Computational Model: Orientation System**

≢

=

**—** 

LCM

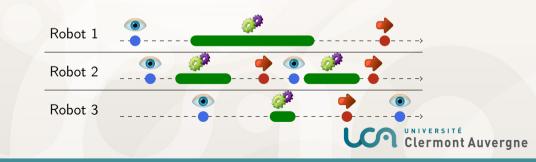
**Clermont Auvergne** 

=

=

No compass or global coordinate system

► With common chirality:


Without common chirality:

#### Computational Model: Asynchronous Look-Compute-Move

[Suzuki and Yamashita, 99]

- Look (Instantaneous)
   Compute (Instaneous)
   Compute (Instaneous)
   Compute
- Move . Move towards its destination

(instantaneous)



#### Asynchronous perpetual grid exploration with luminous robots

| Chirality | Visibility | Robots | Colors | Possible? |
|-----------|------------|--------|--------|-----------|
|           | 1          | finite | finite | 8         |



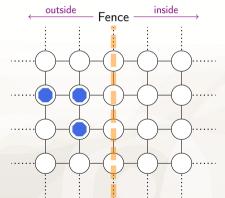
#### Asynchronous perpetual grid exploration with luminous robots

| Chirality | Visibility | Robots   | Colors | Possible? |
|-----------|------------|----------|--------|-----------|
| <b>v</b>  | 1          | finite   | finite | 8         |
|           | 2          | $\leq 3$ | 1      | 8         |

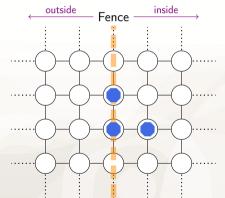


5/11

#### Asynchronous perpetual grid exploration with luminous robots


| Chirality | Visibility | Robots   | Colors | Possible?             |
|-----------|------------|----------|--------|-----------------------|
| 0         | 1          | finite   | finite | 8                     |
|           | 2          | $\leq 3$ | 1      | ×                     |
|           | 2          | 3        | 2      | 🔮 [Bramas et al., 23] |
|           | 2          | 4        | 1      | $\bigcirc$            |

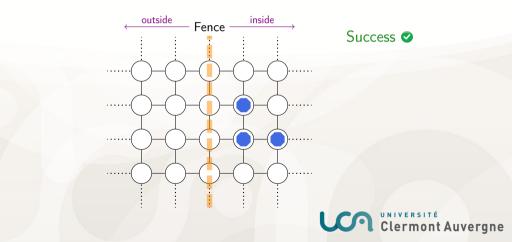
5/11


Asynchronous perpetual grid exploration with luminous robots

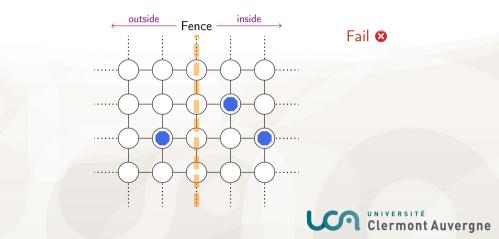
| Chirality | Visibility | Robots   | Colors | Possible?             |
|-----------|------------|----------|--------|-----------------------|
|           | 1          | finite   | finite | 8                     |
|           | 2          | $\leq 3$ | 1      | 8                     |
|           | 2          | 3        | 2      | 🔮 [Bramas et al., 23] |
|           | 2          | 4        | 1      |                       |
| 8         | 2          | 3        | 2      |                       |
|           | 3          | 3        | 1      | $\bigcirc$            |

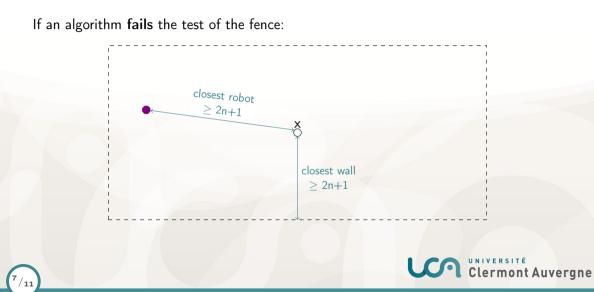
**Test of the fence:** A group of robots can move from outside to inside a fence without leaving a robot behind

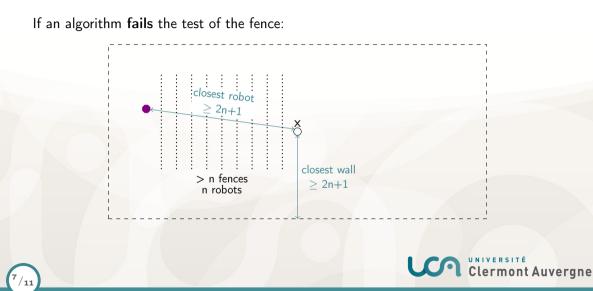


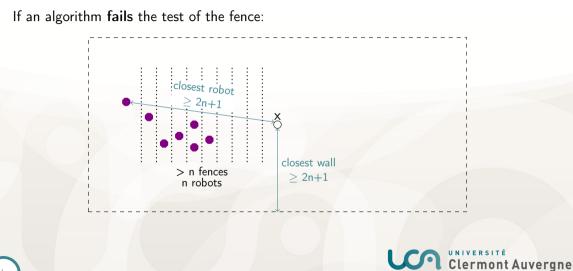

**Test of the fence:** A group of robots can move from outside to inside a fence without leaving a robot behind



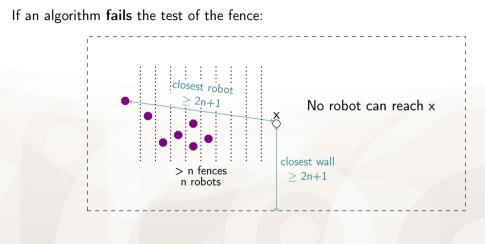

6/11



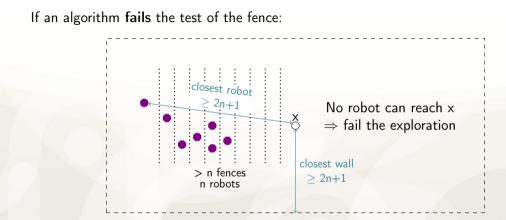


**Test of the fence:** A group of robots can move from outside to inside a fence without leaving a robot behind




**Test of the fence:** A group of robots can move from outside to inside a fence without leaving a robot behind





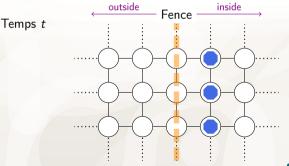



/11



/11

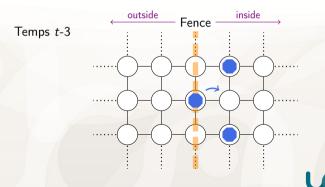



**By contradiction**, assume an asynchronous PGE algorithm with visibility range 1 (whatever the number of robots, with or without common chirality)

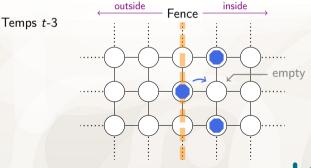


**By contradiction**, assume an asynchronous PGE algorithm with visibility range 1 (whatever the number of robots, with or without common chirality)

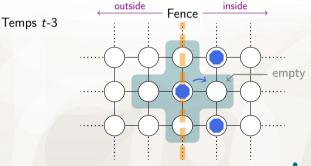



**By contradiction**, assume an asynchronous PGE algorithm with visibility range 1 (whatever the number of robots, with or without common chirality)

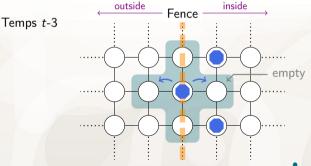




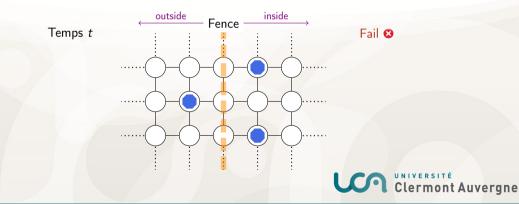

**By contradiction**, assume an asynchronous PGE algorithm with visibility range 1 (whatever the number of robots, with or without common chirality)


 $\mbox{Asynchronous} \Rightarrow \mbox{can}$  choose a scheduler that selects robots one-by-one (round-robin) for full LCM-cycle




**By contradiction**, assume an asynchronous PGE algorithm with visibility range 1 (whatever the number of robots, with or without common chirality)




**By contradiction**, assume an asynchronous PGE algorithm with visibility range 1 (whatever the number of robots, with or without common chirality)



**By contradiction**, assume an asynchronous PGE algorithm with visibility range 1 (whatever the number of robots, with or without common chirality)



**By contradiction**, assume an asynchronous PGE algorithm with visibility range 1 (whatever the number of robots, with or without common chirality)



<sup>9</sup>/11

Asynchronous perpetual grid exploration with luminous robots

| Chirality | Visibility | Robots   | Colors | Possible?             |
|-----------|------------|----------|--------|-----------------------|
|           | 1          | finite   | finite | 8                     |
|           | 2          | $\leq 3$ | 1      | 8                     |
|           | 2          | 3        | 2      | 🔮 [Bramas et al., 23] |
|           | 2          | 4        | 1      | $\bigcirc$            |
| 8         | 2          | 3        | 2      |                       |
|           | 3          | 3        | 1      | Ø                     |









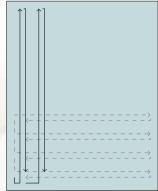




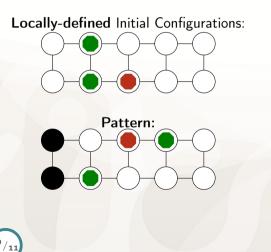




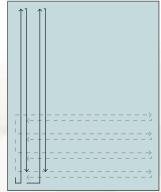
# Locally-defined Initial Configurations:

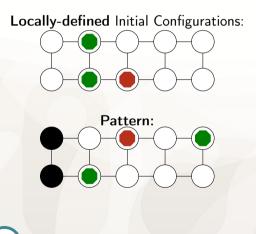

#### **Exploration**:



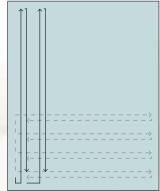


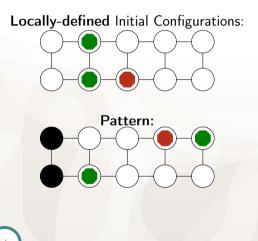

# Locally-defined Initial Configurations:


#### **Exploration**:

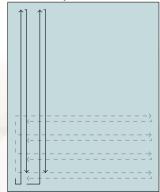






#### **Exploration**:






#### **Exploration**:





#### **Exploration**:



#### Conclusion

/ 11

Asynchronous perpetual grid exploration with luminous robots

| Chirality | Visibility | Robots   | Colors | Possible?             |   |
|-----------|------------|----------|--------|-----------------------|---|
| 0         | 1          | finite   | finite | 8                     |   |
|           | 2          | $\leq 3$ | 1      | 8                     |   |
|           | 2          | 3        | 2      | 📀 [Bramas et al., 23] | ) |
|           | 2          | 4        | 1      |                       | ľ |
| 8         | 2          | 3        | 2      |                       | ľ |
|           | 3          | 3        | 1      |                       |   |

#### Conclusion

/ 11

Asynchronous perpetual grid exploration with luminous robots

| Chirality | Visibility | Robots   | Colors | Possible?             | not locally                |
|-----------|------------|----------|--------|-----------------------|----------------------------|
|           | 1          | finite   | finite | 8                     | defined                    |
|           | 2          | $\leq 3$ | 1      | 8                     |                            |
|           | 2          | 3        | 2      | 🕑 [Bramas et al., 23] | $\boldsymbol{\mathcal{V}}$ |
|           | 2          | 4        | 1      | <ul> <li>✓</li> </ul> | mal                        |
| 8         | 2          | 3        | 2      | $\checkmark$          | optii                      |
|           | 3          | 3        | 1      |                       | 0                          |



#### Conclusion

Asynchronous perpetual grid exploration with luminous robots



