
Leader Election in Rings with Bounded Multiplicity (Short Paper)

Karine Altisen, Ajoy K. Datta, Stéphane Devismes, **Anaïs Durand**, and Lawrence L. Larmore

November 8, 2016

Leader Election in Rings with Bounded Multiplicity (Short Paper)

- Leader election
- Unidirectional rings
- Homonym processes
- Deterministic algorithm
- Message-passing model
- Process-terminating algorithm

Leader Election in Rings

Anonymous processes:

▶ Deterministic solution: Impossible [Angluin, 80], [Lynch, 96]

Leader Election in Rings

Anonymous processes:

- ► Deterministic solution: Impossible [Angluin, 80], [Lynch, 96]
- Probabilistic solution: [Xu and Srimani, 06], [Kutten et al., 13]

Identified processes:

 Deterministic solution: [LeLann, 77], [Chang and Roberts, 79], [Petersen, 82] ...

Leader Election in Rings

Anonymous processes:

- ► Deterministic solution: Impossible [Angluin, 80], [Lynch, 96]
- Probabilistic solution: [Xu and Srimani, 06], [Kutten et al., 13]

Homonym processes

Identified processes:

 Deterministic solution: [LeLann, 77], [Chang and Roberts, 79], [Petersen, 82] ...

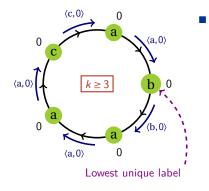
Leader Election in Rings of Homonym Processes

	PT/MT	Asynch.	Unidir./Bidir.	Know	Ring Class	# Msg	Time
[Delporte <i>et al.</i> , 14]	МТ	~	Bidir.		# labels > great- est proper divisor of n	?	?
	PT	~		n		$O(n \log n)$?
[Dobrev and Pelc, 04]	PT	×	Bidir. + unidir.	m≤n	Decide if inputs are unambiguous	$O(n \log n)$	<i>O</i> (<i>M</i>)
		~	Bidir.	$M \ge n$		O(nM)	?
[Flocchini et al., 04]	PT	~	Bidir.	n	Prime <i>n</i> , 2 labels, Asymmetric ring	?	?

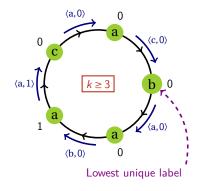
- MT = Message-terminating: Processes do not terminate but only a finite number of messages are exchanged.
- PT = Process-terminating: Every process eventually halts.

Our Contribution

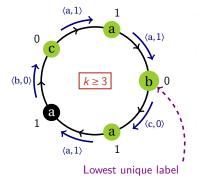
Ring classes:

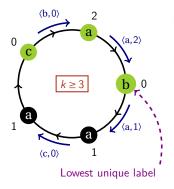

- \mathcal{U}^* : at least one unique label
- \mathcal{K}_k : multiplicity of labels bounded by k

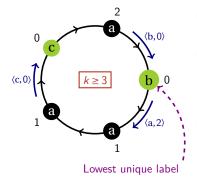
Message-terminating leader election:

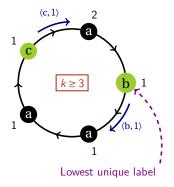

- ▶ Impossible in \mathcal{K}_k
- Impossible in \mathscr{U}^* (work under submission)

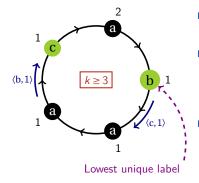
Process-terminating leader election algorithm for $\mathcal{U}^* \cap \mathcal{K}_k$:

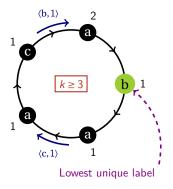

- Time complexity: at most n(k+2)
- # messages: $O(n^2 + kn)$
- Memory requirement: $\left[\log(k+1)\right] + \log(n) + 4$

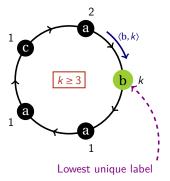

Counter = rough estimation of the multiplicity

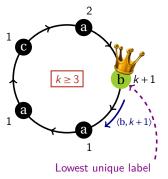

- Counter = rough estimation of the multiplicity
- Process elimination:
 - ▶ Lower counter, \neq ID → not unique


- Counter = rough estimation of the multiplicity
- Process elimination:
 - ▶ Lower counter, \neq ID → not unique
- Message elimination:
 - ▶ Passive, same ID \rightarrow not relevant


- Counter = rough estimation of the multiplicity
- Process elimination:
 - ▶ Lower counter, \neq ID → not unique
- Message elimination:
 - ▶ Passive, same ID \rightarrow not relevant


- Counter = rough estimation of the multiplicity
- Process elimination:
 - ▶ Lower counter, \neq ID → not unique
 - Message elimination:
 - ▶ Passive, same ID \rightarrow not relevant


- Counter = rough estimation of the multiplicity
- Process elimination:
 - Lower counter, \neq ID \rightarrow not unique
- Message elimination:
 - ▶ Passive, same ID \rightarrow not relevant


- Counter = rough estimation of the multiplicity
- Process elimination:
 - ▶ Lower counter, \neq ID → not unique
 - Same counter ≠ 0, lower ID → not lowest unique
- Message elimination:
 - Passive, same ID \rightarrow not relevant

- Counter = rough estimation of the multiplicity
- Process elimination:
 - ▶ Lower counter, \neq ID → not unique
 - Same counter ≠ 0, lower ID → not lowest unique
- Message elimination:
 - ▶ Passive, same ID \rightarrow not relevant

- Counter = rough estimation of the multiplicity
- Process elimination:
 - ▶ Lower counter, \neq ID \rightarrow not unique
 - Same counter ≠ 0, lower ID → not lowest unique
- Message elimination:
 - Passive, same ID \rightarrow not relevant
- Election detection: receiving $\langle id, k \rangle$

- Counter = rough estimation of the multiplicity
- Process elimination:
 - Lower counter, \neq ID \rightarrow not unique
 - Same counter ≠ 0, lower ID → not lowest unique
 - Message elimination:
 - Passive, same ID \rightarrow not relevant
 - Election detection: receiving $\langle id, k \rangle$

Process-terminating leader election algorithm for $\mathcal{U}^* \cap \mathcal{K}_k$

- Time complexity: at most n(k+2)
 Asymptotically optimal (work under submission)
- # messages: $O(n^2 + kn)$
- Memory requirement: $\lceil \log(k+1) \rceil + \log(n) + 4$

Thank you for your attention.

Do you have any questions ?

Leader Election in Rings with Bounded Multiplicity (Short Paper)