Leader Election in Rings with Bounded Multiplicity (Short Paper)

Karine Altisen, Ajoy K. Datta, Stéphane Devismes, Anaïs Durand, and Lawrence L. Larmore

November 8, 2016

Context

- Leader election
- Unidirectional rings

■ Homonym processes

- Deterministic algorithm

■ Message-passing model
■ Process-terminating algorithm

State of the Art

Leader Election in Rings

■ Anonymous processes:

- Deterministic solution: Impossible [Angluin, 80], [Lynch, 96]

State of the Art

Leader Election in Rings

- Anonymous processes:
- Deterministic solution: Impossible [Angluin, 80], [Lynch, 96]
- Probabilistic solution: [Xu and Srimani, 06], [Kutten et al., 13]

■ Identified processes:

- Deterministic solution: [LeLann, 77], [Chang and Roberts, 79], [Petersen, 82] ...

State of the Art

Leader Election in Rings

- Anonymous processes:
- Deterministic solution: Impossible [Angluin, 80], [Lynch, 96]
- Probabilistic solution: [Xu and Srimani, 06], [Kutten et al., 13]

■ Homonym processes
■ Identified processes:

- Deterministic solution: [LeLann, 77], [Chang and Roberts, 79], [Petersen, 82] ...

State of the Art

Leader Election in Rings of Homonym Processes

	PT/MT	Asynch.	Unidir./Bidir.	Know	Ring Class	\# Msg	Time
[Delporte et al., 14]	MT	0	Bidir.		\# labels > greatest proper divisor of n	?	?
	PT	0		n		$O(n \log n)$?
[Dobrev and Pelc, 04]	PT	x	Bidir. + unidir.	$\begin{aligned} & m \leq n \\ & M \geq n \end{aligned}$	Decide if inputs are unambiguous	$O(n \log n)$	$O(M)$
		(0)	Bidir.			$O(n M)$?
[Flocchini et al., 04]	PT	\square	Bidir.	n	Prime n, 2 labels, Asymmetric ring	?	?

■ MT = Message-terminating: Processes do not terminate but only a finite number of messages are exchanged.
■ PT = Process-terminating: Every process eventually halts.

Our Contribution

■ Ring classes:

- \mathscr{U}^{*} : at least one unique label
- \mathscr{K}_{k} : multiplicity of labels bounded by k

■ Message-terminating leader election:

- Impossible in \mathscr{K}_{k}
- Impossible in \mathscr{U}^{*} (work under submission)

■ Process-terminating leader election algorithm for $\mathscr{U}^{*} \cap \mathbb{K}_{k}$:

- Time complexity: at most $n(k+2)$
- \# messages: $O\left(n^{2}+k n\right)$
- Memory requirement: $\lceil\log (k+1)\rceil+\log (n)+4$

Algorithm

- Counter $=$ rough estimation of the multiplicity

Algorithm

- Counter $=$ rough estimation of the multiplicity
■ Process elimination:
- Lower counter, $\neq \mathrm{ID} \rightarrow$ not unique

Algorithm

■ Counter $=$ rough estimation of the multiplicity

- Process elimination:
- Lower counter, $\neq \mathrm{ID} \rightarrow$ not unique
- Message elimination:
- Passive, same ID \rightarrow not relevant

Algorithm

- Counter $=$ rough estimation of the multiplicity
- Process elimination:
- Lower counter, $\neq \mathrm{ID} \rightarrow$ not unique
- Message elimination:
- Passive, same ID \rightarrow not relevant

Algorithm

- Counter $=$ rough estimation of the multiplicity
- Process elimination:
- Lower counter, $\neq \mathrm{ID} \rightarrow$ not unique
- Message elimination:
- Passive, same ID \rightarrow not relevant

Algorithm

■ Counter $=$ rough estimation of the multiplicity
■ Process elimination:

- Lower counter, $\neq \mathrm{ID} \rightarrow$ not unique
- Message elimination:
- Passive, same ID \rightarrow not relevant

Algorithm

- Counter $=$ rough estimation of the multiplicity
■ Process elimination:
- Lower counter, $\neq \mathrm{ID} \rightarrow$ not unique
- Same counter $\neq 0$, lower ID \rightarrow not lowest unique
- Message elimination:
- Passive, same ID \rightarrow not relevant

Algorithm

- Counter $=$ rough estimation of the multiplicity
■ Process elimination:
- Lower counter, $\neq \mathrm{ID} \rightarrow$ not unique
- Same counter $\neq 0$, lower ID \rightarrow not lowest unique
- Message elimination:
- Passive, same ID \rightarrow not relevant

Algorithm

Algorithm

Algorithm

Process-terminating leader election algorithm for $\mathscr{U}^{*} \cap \mathbb{K}_{k}$

- Time complexity: at most $n(k+2)$

Asymptotically optimal (work under submission)

- \# messages: $O\left(n^{2}+k n\right)$

■ Memory requirement: $\lceil\log (k+1)\rceil+\log (n)+4$

Thank you for your attention.

Do you have any questions ?

