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Resource Allocation Problems

n processes, k resources, n À k
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Resource Allocation Problems

Critical Section (CS)

■ Code to access a resource
■ Finite but unbounded (i.e. unpredictable)

With Several Resources (k > 1)

■ Concurrency: Maximize the utilization of the resources
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`-Exclusion [Fischer et al, 79]

` identical copies of a non-shareable reusable resource

Properties

■ Safety: |{processes concurrently in CS}| ≤ `

■ Fairness: Requesting process eventually enters CS

■ Avoiding `-Deadlock:
If |{processes concurrently in CS}| < `

then Ï a requesting process can obtain CS

Ï even if no process leaves CS meanwhile
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Avoiding `-Deadlock [Fischer et al, 79]

`= 4
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Property Handling Concurrency

Avoiding `-deadlock = property handling concurrency

■ Necessary to prevent degenerated solutions:
A mutual exclusion algorithm satisfies the safety and fairness of
`-exclusion problem.

■ But, often not considered in correctness proofs of resource
allocation algorithms.
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Several Properties Handling Concurrency

■ Avoiding `-Deadlock:
`-exclusion problem [Fischer et al, 79]

■ (k ,`)-Liveness:
k-out-of-`-exclusion problem [Datta et al, 03]

■ Maximal-Concurrency:
Committee coordination problem [Bonakdarpour et al, 11]

Drawback : dedicated to a specific problem
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Maximal-Concurrency

Generalization of the previous properties

Maximal-Concurrency
If PFREE 6= ;

then ■ a requesting process can obtain CS
■ even if no process leaves CS meanwhile

Equivalent Definition of Maximal-Concurrency
If CSs last a long enough time

then eventually PFREE =;

where PFREE = { requesting processes can obtain CS without violating safety }
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Local Resource Allocation (LRA) [Cantarell et al, 03]

Generalization of Many Classical Problems

■ Dining Philosophers

■ Local Mutual Exclusion

■ Drinking Philosophers

■ Local Reader/Writer

■ Local Group Mutual Exclusion

■ ...
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Local Resource Allocation (LRA) [Cantarell et al, 03]

LRA

■ Safety: Two neighbors p and q are concurrently executing their CS
using X and Y , respectively, then X 
Y .

■ Fairness: A requesting process eventually enters its CS.

Example: Local Mutual Exclusion

6


Example: Local Reader-Writer Problem


 6
 6
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Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2 p3

p2 continuously requests but never enters its critical section.
Fairness property violated
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(Strong) Partial Maximal-Concurrency

Weaker version of the maximal-concurrency

Partial Maximal-Concurrency, Parameter: X
If CSs last a long enough time

then eventually PFREE ⊆X

PFREE = { requesting processes can obtain CS without violating safety }

Strong Partial Maximal-Concurrency

Partial Maximal-Concurrency with
X = neighbors of a unique process minus one.

p
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Snap-Stabilizing LRA Algorithm
Requirements

Locally Shared Memory Model

■ Locally shared variables
■ Read/write atomicity
■ Distributed weakly fair daemon

Network

■ Connected
■ Bidirectional
■ Identified
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Snap-Stabilization [Bui et al, 07]

time

transient faults

task

correct behavior

no guarantees
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Self-Stabilization [Dijkstra, 74]

time

transient faults

task

stabilization phase

correct behavior

no guarantees
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Snap-Stabilizing LRA Algorithm

Guarantees

■ Snap-stabilizing
■ Strongly partially maximal-concurrent

Ideas

■ ID-based priority

■ Locked state :
■ (Self-stabilizing) Token :
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Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5
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Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Local minimum ⇒ may never enter its CS
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Snap-Stabilizing LRA Algorithm

Self-Stabilizing Token Circulation

■ Safety: There eventually is a unique token holder.
■ Liveness: A process p holds a token infinitely often.

5 2 8 7
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Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7
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Snap-Stabilizing LRA Algorithm: Strong Partial
Maximal-Concurrency
A worst case in the Local Reader-Writer Problem

4 2 5 8

9 6 3 1
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Conclusion

Contributions

■ Definition of the maximal-concurrency
■ Proof of impossibility of maximal-concurrency in LRA
■ Definition of the (strong) partial maximal-concurrency
■ Design and proof of a snap-stabilizing strongly partially

maximal-concurrent LRA algorithm

Perspectives
Define the class of resource allocation problems where
maximal-concurrency/strong partial-maximal concurrency can be
achieved.
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Thank you for your attention.

Do you have any questions ?
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