
Concurrency in Snap-Stabilizing Local Resource
Allocation

Karine Altisen Stéphane Devismes Anaïs Durand

May ??, 2015

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
1/22

Resource Allocation Problems

n processes, k resources, n À k

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
2/22

Resource Allocation Problems

Critical Section (CS)

■ Code to access a resource
■ Finite but unbounded (i.e. unpredictable)

With Several Resources (k > 1)

■ Concurrency: Maximize the utilization of the resources

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
3/22

Resource Allocation Problems

Critical Section (CS)

■ Code to access a resource
■ Finite but unbounded (i.e. unpredictable)

With Several Resources (k > 1)

■ Concurrency: Maximize the utilization of the resources

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
3/22

Resource Allocation Problems

Critical Section (CS)

■ Code to access a resource
■ Finite but unbounded (i.e. unpredictable)

With Several Resources (k > 1)

■ Concurrency: Maximize the utilization of the resources

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
3/22

`-Exclusion [Fischer et al, 79]

` identical copies of a non-shareable reusable resource

Properties

■ Safety: |{processes concurrently in CS}| ≤ `

■ Fairness: Requesting process eventually enters CS

■ Avoiding `-Deadlock:
If |{processes concurrently in CS}| < `

then Ï a requesting process can obtain CS

Ï even if no process leaves CS meanwhile

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
4/22

`-Exclusion [Fischer et al, 79]

` identical copies of a non-shareable reusable resource

Properties

■ Safety: |{processes concurrently in CS}| ≤ `

■ Fairness: Requesting process eventually enters CS

■ Avoiding `-Deadlock:
If |{processes concurrently in CS}| < `

then Ï a requesting process can obtain CS

Ï even if no process leaves CS meanwhile

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
4/22

`-Exclusion [Fischer et al, 79]

` identical copies of a non-shareable reusable resource

Properties

■ Safety: |{processes concurrently in CS}| ≤ `

■ Fairness: Requesting process eventually enters CS

■ Avoiding `-Deadlock:
If |{processes concurrently in CS}| < `

then Ï a requesting process can obtain CS

Ï even if no process leaves CS meanwhile

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
4/22

`-Exclusion [Fischer et al, 79]

` identical copies of a non-shareable reusable resource

Properties

■ Safety: |{processes concurrently in CS}| ≤ `

■ Fairness: Requesting process eventually enters CS

■ Avoiding `-Deadlock:
If |{processes concurrently in CS}| < `

then Ï a requesting process can obtain CS

Ï even if no process leaves CS meanwhile

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
4/22

Avoiding `-Deadlock [Fischer et al, 79]

`= 4

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
5/22

Avoiding `-Deadlock [Fischer et al, 79]

`= 4

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
5/22

Avoiding `-Deadlock [Fischer et al, 79]

`= 4

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
5/22

Avoiding `-Deadlock [Fischer et al, 79]

`= 4

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
5/22

Avoiding `-Deadlock [Fischer et al, 79]

`= 4

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
5/22

Property Handling Concurrency

Avoiding `-deadlock = property handling concurrency

■ Necessary to prevent degenerated solutions:
A mutual exclusion algorithm satisfies the safety and fairness of
`-exclusion problem.

■ But, often not considered in correctness proofs of resource
allocation algorithms.

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
6/22

Property Handling Concurrency

Avoiding `-deadlock = property handling concurrency

■ Necessary to prevent degenerated solutions:
A mutual exclusion algorithm satisfies the safety and fairness of
`-exclusion problem.

■ But, often not considered in correctness proofs of resource
allocation algorithms.

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
6/22

Property Handling Concurrency

Avoiding `-deadlock = property handling concurrency

■ Necessary to prevent degenerated solutions:
A mutual exclusion algorithm satisfies the safety and fairness of
`-exclusion problem.

■ But, often not considered in correctness proofs of resource
allocation algorithms.

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
6/22

Several Properties Handling Concurrency

■ Avoiding `-Deadlock:
`-exclusion problem [Fischer et al, 79]

■ (k ,`)-Liveness:
k-out-of-`-exclusion problem [Datta et al, 03]

■ Maximal-Concurrency:
Committee coordination problem [Bonakdarpour et al, 11]

Drawback : dedicated to a specific problem

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
7/22

Several Properties Handling Concurrency

■ Avoiding `-Deadlock:
`-exclusion problem [Fischer et al, 79]

■ (k ,`)-Liveness:
k-out-of-`-exclusion problem [Datta et al, 03]

■ Maximal-Concurrency:
Committee coordination problem [Bonakdarpour et al, 11]

Drawback : dedicated to a specific problem

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
7/22

Maximal-Concurrency

Generalization of the previous properties

Maximal-Concurrency
If PFREE 6= ;

then ■ a requesting process can obtain CS
■ even if no process leaves CS meanwhile

Equivalent Definition of Maximal-Concurrency
If CSs last a long enough time

then eventually PFREE =;

where PFREE = { requesting processes can obtain CS without violating safety }

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
8/22

Maximal-Concurrency

Generalization of the previous properties

Maximal-Concurrency
If PFREE 6= ;

then ■ a requesting process can obtain CS
■ even if no process leaves CS meanwhile

Equivalent Definition of Maximal-Concurrency
If CSs last a long enough time

then eventually PFREE =;

where PFREE = { requesting processes can obtain CS without violating safety }

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
8/22

Maximal-Concurrency

Generalization of the previous properties

Maximal-Concurrency
If PFREE 6= ;

then ■ a requesting process can obtain CS
■ even if no process leaves CS meanwhile

Equivalent Definition of Maximal-Concurrency
If CSs last a long enough time

then eventually PFREE =;
where PFREE = { requesting processes can obtain CS without violating safety }

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
8/22

Local Resource Allocation (LRA) [Cantarell et al, 03]

Generalization of Many Classical Problems

■ Dining Philosophers

■ Local Mutual Exclusion

■ Drinking Philosophers

■ Local Reader/Writer

■ Local Group Mutual Exclusion

■ ...

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
9/22

Local Resource Allocation (LRA) [Cantarell et al, 03]

LRA

■ Safety: Two neighbors p and q are concurrently executing their CS
using X and Y , respectively, then X
Y .

■ Fairness: A requesting process eventually enters its CS.

Example: Local Mutual Exclusion

6

Example: Local Reader-Writer Problem

 6
 6

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
10/22

Local Resource Allocation (LRA) [Cantarell et al, 03]

LRA

■ Safety: Two neighbors p and q are concurrently executing their CS
using X and Y , respectively, then X
Y .

■ Fairness: A requesting process eventually enters its CS.

Example: Local Mutual Exclusion

6

Example: Local Reader-Writer Problem

 6
 6

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
10/22

Local Resource Allocation (LRA) [Cantarell et al, 03]

LRA

■ Safety: Two neighbors p and q are concurrently executing their CS
using X and Y , respectively, then X
Y .

■ Fairness: A requesting process eventually enters its CS.

Example: Local Mutual Exclusion

6

Example: Local Reader-Writer Problem

 6
 6

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
10/22

Local Resource Allocation (LRA) [Cantarell et al, 03]

LRA

■ Safety: Two neighbors p and q are concurrently executing their CS
using X and Y , respectively, then X
Y .

■ Fairness: A requesting process eventually enters its CS.

Example: Local Mutual Exclusion

6

Example: Local Reader-Writer Problem

 6
 6

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
10/22

Local Resource Allocation (LRA) [Cantarell et al, 03]

LRA

■ Safety: Two neighbors p and q are concurrently executing their CS
using X and Y , respectively, then X
Y .

■ Fairness: A requesting process eventually enters its CS.

Example: Local Mutual Exclusion

6

Example: Local Reader-Writer Problem

 6
 6

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
10/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2 p3

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2 p3

Fairness

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2 p3

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2
Y

p3
X

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2
Y

p3
X

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2
Y

p3
X

Maximal-Concurrency

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2
Y

p3
X

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2
Y

p3
X

Finite CS

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1 p2
Y

p3
X

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1 p2
Y

p3
X

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2
Y

p3
X

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2
Y

p3
X

p2 continuously requests but never enters its critical section.

Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

Impossibility Result: Maximal-Concurrency in LRA

Two resources: X 6
Y

p1
X

p2
Y

p3
X

p2 continuously requests but never enters its critical section.
Fairness property violated

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
11/22

(Strong) Partial Maximal-Concurrency

Weaker version of the maximal-concurrency

Partial Maximal-Concurrency, Parameter: X
If CSs last a long enough time

then eventually PFREE ⊆X

PFREE = { requesting processes can obtain CS without violating safety }

Strong Partial Maximal-Concurrency

Partial Maximal-Concurrency with
X = neighbors of a unique process minus one.

p

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
12/22

(Strong) Partial Maximal-Concurrency

Weaker version of the maximal-concurrency

Partial Maximal-Concurrency, Parameter: X
If CSs last a long enough time

then eventually PFREE ⊆X

PFREE = { requesting processes can obtain CS without violating safety }

Strong Partial Maximal-Concurrency

Partial Maximal-Concurrency with
X = neighbors of a unique process minus one.

p

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
12/22

(Strong) Partial Maximal-Concurrency

Weaker version of the maximal-concurrency

Partial Maximal-Concurrency, Parameter: X
If CSs last a long enough time

then eventually PFREE ⊆X

PFREE = { requesting processes can obtain CS without violating safety }

Strong Partial Maximal-Concurrency

Partial Maximal-Concurrency with
X = neighbors of a unique process minus one.

p

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
12/22

Snap-Stabilizing LRA Algorithm
Requirements

Locally Shared Memory Model

■ Locally shared variables
■ Read/write atomicity
■ Distributed weakly fair daemon

Network

■ Connected
■ Bidirectional
■ Identified

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
13/22

Snap-Stabilizing LRA Algorithm
Requirements

Locally Shared Memory Model

■ Locally shared variables
■ Read/write atomicity
■ Distributed weakly fair daemon

Network

■ Connected
■ Bidirectional
■ Identified

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
13/22

Snap-Stabilization [Bui et al, 07]

time

transient faults

task

correct behavior

no guarantees

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
14/22

Self-Stabilization [Dijkstra, 74]

time

transient faults

task

stabilization phase

correct behavior

no guarantees

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
15/22

Snap-Stabilizing LRA Algorithm

Guarantees

■ Snap-stabilizing
■ Strongly partially maximal-concurrent

Ideas

■ ID-based priority

■ Locked state :
■ (Self-stabilizing) Token :

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
16/22

Snap-Stabilizing LRA Algorithm

Guarantees

■ Snap-stabilizing
■ Strongly partially maximal-concurrent

Ideas

■ ID-based priority

■ Locked state :
■ (Self-stabilizing) Token :

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
16/22

Snap-Stabilizing LRA Algorithm

Guarantees

■ Snap-stabilizing
■ Strongly partially maximal-concurrent

Ideas

■ ID-based priority

■ Locked state :
■ (Self-stabilizing) Token :

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
16/22

Snap-Stabilizing LRA Algorithm

Guarantees

■ Snap-stabilizing
■ Strongly partially maximal-concurrent

Ideas

■ ID-based priority

■ Locked state :

■ (Self-stabilizing) Token :

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
16/22

Snap-Stabilizing LRA Algorithm

Guarantees

■ Snap-stabilizing
■ Strongly partially maximal-concurrent

Ideas

■ ID-based priority

■ Locked state :
■ (Self-stabilizing) Token :

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
16/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation

17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

6

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

9 2 7

6 3 5

Local minimum ⇒ may never enter its CS

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
17/22

Snap-Stabilizing LRA Algorithm

Self-Stabilizing Token Circulation

■ Safety: There eventually is a unique token holder.
■ Liveness: A process p holds a token infinitely often.

5 2 8 7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
18/22

Snap-Stabilizing LRA Algorithm

Self-Stabilizing Token Circulation

■ Safety: There eventually is a unique token holder.
■ Liveness: A process p holds a token infinitely often.

5 2 8 7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
18/22

Snap-Stabilizing LRA Algorithm

Self-Stabilizing Token Circulation

■ Safety: There eventually is a unique token holder.
■ Liveness: A process p holds a token infinitely often.

5 2 8 7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
18/22

Snap-Stabilizing LRA Algorithm

Self-Stabilizing Token Circulation

■ Safety: There eventually is a unique token holder.
■ Liveness: A process p holds a token infinitely often.

5 2 8 7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
18/22

Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
19/22

Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
19/22

Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
19/22

Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
19/22

Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
19/22

Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
19/22

Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
19/22

Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
19/22

Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
19/22

Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
19/22

Snap-Stabilizing LRA Algorithm: Fairness
Example on the Local Reader-Writer Problem

1

6
4

3

9

5
2

8

7

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
19/22

Snap-Stabilizing LRA Algorithm: Strong Partial
Maximal-Concurrency
A worst case in the Local Reader-Writer Problem

4 2 5 8

9 6 3 1

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
20/22

Snap-Stabilizing LRA Algorithm: Strong Partial
Maximal-Concurrency
A worst case in the Local Reader-Writer Problem

4 2 5 8

9 6 3 1

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
20/22

Snap-Stabilizing LRA Algorithm: Strong Partial
Maximal-Concurrency
A worst case in the Local Reader-Writer Problem

4 2 5 8

9 6 3 1

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
20/22

Snap-Stabilizing LRA Algorithm: Strong Partial
Maximal-Concurrency
A worst case in the Local Reader-Writer Problem

4 2 5 8

9 6 3 1

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
20/22

Snap-Stabilizing LRA Algorithm: Strong Partial
Maximal-Concurrency
A worst case in the Local Reader-Writer Problem

4 2 5 8

9 6 3 1

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
20/22

Snap-Stabilizing LRA Algorithm: Strong Partial
Maximal-Concurrency
A worst case in the Local Reader-Writer Problem

4 2 5 8

9 6 3 1

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
20/22

Snap-Stabilizing LRA Algorithm: Strong Partial
Maximal-Concurrency
A worst case in the Local Reader-Writer Problem

4 2 5 8

9 6 3 1

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
20/22

Conclusion

Contributions

■ Definition of the maximal-concurrency
■ Proof of impossibility of maximal-concurrency in LRA
■ Definition of the (strong) partial maximal-concurrency
■ Design and proof of a snap-stabilizing strongly partially

maximal-concurrent LRA algorithm

Perspectives
Define the class of resource allocation problems where
maximal-concurrency/strong partial-maximal concurrency can be
achieved.

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
21/22

Conclusion

Contributions

■ Definition of the maximal-concurrency
■ Proof of impossibility of maximal-concurrency in LRA
■ Definition of the (strong) partial maximal-concurrency
■ Design and proof of a snap-stabilizing strongly partially

maximal-concurrent LRA algorithm

Perspectives
Define the class of resource allocation problems where
maximal-concurrency/strong partial-maximal concurrency can be
achieved.

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
21/22

Thank you for your attention.

Do you have any questions ?

Anaïs Durand Concurrency in Snap-Stabilizing Local Resource Allocation
22/22

