Concurrency in Snap-Stabilizing Local Resource

Allocation

Karine Altisen Stéphane Devismes Anais Durand

May 7?7, 2015

UNIVERSITE
GRENOBLE !
ALPES erimac

R PERSYVAL —Lab

Concurrency in Snap-Stabilizing Local Resource Allocation @

Resource Allocation Problems

n processes, k resources, n>> k

ST ST &N

Concurrency in Snap-Stabilizing Local Resource Allocation @

Resource Allocation Problems

Critical Section (CS)

m Code to access a resource

m Finite but unbounded (i.e. unpredictable)

Concurrency in Snap-Stabilizing Local Resource Allocation @

Resource Allocation Problems

Critical Section (CS)

m Code to access a resource

m Finite but unbounded (i.e. unpredictable)

With Several Resources (k> 1)

Concurrency in Snap-Stabilizing Local Resource Allocation @

Resource Allocation Problems

Critical Section (CS)

m Code to access a resource

m Finite but unbounded (i.e. unpredictable)

With Several Resources (k> 1)

m Concurrency: Maximize the utilization of the resources

Concurrency in Snap-Stabilizing Local Resource Allocation @

¢-Exclusion [Fischer et al, 79]

¢ identical copies of a non-shareable reusable resource

Concurrency in Snap-Stabilizing Local Resource Allocation @

¢-Exclusion [Fischer et al, 79]

¢ identical copies of a non-shareable reusable resource

m Safety: |{processes concurrently in CS}| < /¢

Concurrency in Snap-Stabilizing Local Resource Allocation @

¢-Exclusion [Fischer et al, 79]

¢ identical copies of a non-shareable reusable resource

m Safety: |{processes concurrently in CS}| < /¢

m Fairness: Requesting process eventually enters CS

Concurrency in Snap-Stabilizing Local Resource Allocation @

¢-Exclusion [Fischer et al, 79]

¢ identical copies of a non-shareable reusable resource

m Safety: |{processes concurrently in CS}| < /¢

m Fairness: Requesting process eventually enters CS

m Avoiding /-Deadlock:
If [{processes concurrently in CS}| < ¢

then » a requesting process can obtain CS

» even if no process leaves CS meanwhile

Concurrency in Snap-Stabilizing Local Resource Allocation @

Avoiding ¢-Deadlock [Fischer et al, 79]

&N gN S g Qu gN

Avoiding ¢-Deadlock [Fischer et al, 79]

| ,7 Y
- -

&V &V &V v & &v
/ 7

Concurrency in Snap-Stabilizing Local Resource Allocation

Avoiding ¢-Deadlock [Fischer et al, 79]

| ,7 Y

SN SN N gv o gN gv
Y W)

Concurrency in Snap-Stabilizing Local Resource Allocation

Avoiding ¢-Deadlock [Fischer et al, 79]

Concurrency in Snap-Stabilizing Local Resource Allocation

Avoiding ¢-Deadlock [Fischer et al, 79]

Concurrency in Snap-Stabilizing Local Resource Allocation

Property Handling Concurrency

Avoiding ¢-deadlock = property handling concurrency

Concurrency in Snap-Stabilizing Local Resource Allocation @

Property Handling Concurrency

Avoiding ¢-deadlock = property handling concurrency

m Necessary to prevent degenerated solutions:
A mutual exclusion algorithm satisfies the safety and fairness of
Z-exclusion problem.

Concurrency in Snap-Stabilizing Local Resource Allocation @

Property Handling Concurrency

Avoiding ¢-deadlock = property handling concurrency

m Necessary to prevent degenerated solutions:
A mutual exclusion algorithm satisfies the safety and fairness of
Z-exclusion problem.

m But, often not considered in correctness proofs of resource
allocation algorithms.

Concurrency in Snap-Stabilizing Local Resource Allocation @

Several Properties Handling Concurrency

m Avoiding /-Deadlock:
¢-exclusion problem [Fischer et al, 79]

m (k,¢)-Liveness:
k-out-of-¢-exclusion problem [Datta et al, 03]

m Maximal-Concurrency:
Committee coordination problem [Bonakdarpour et al, 11]

Concurrency in Snap-Stabilizing Local Resource Allocation @

Several Properties Handling Concurrency

m Avoiding /-Deadlock:
¢-exclusion problem [Fischer et al, 79]

m (k,¢)-Liveness:
k-out-of-¢-exclusion problem [Datta et al, 03]

m Maximal-Concurrency:
Committee coordination problem [Bonakdarpour et al, 11]

Drawback : dedicated to a specific problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Maximal-Concurrency

Generalization of the previous properties

where Peree = { requesting processes can obtain CS without violating safety }

Concurrency in Snap-Stabilizing Local Resource Allocation @

Maximal-Concurrency

Generalization of the previous properties

Maximal-Concurrency

If Peree # @

then m a requesting process can obtain CS

m even if no process leaves CS meanwhile

where Peree = { requesting processes can obtain CS without violating safety }

Concurrency in Snap-Stabilizing Local Resource Allocation @

Maximal-Concurrency

Generalization of the previous properties

Maximal-Concurrency
If Prree # @

then ® a requesting process can obtain CS

m even if no process leaves CS meanwhile

Equivalent Definition of Maximal-Concurrency

If CSs last a long enough time
then eventually Prree = @

where Peree = { requesting processes can obtain CS without violating safety }

Concurrency in Snap-Stabilizing Local Resource Allocation @

Local Resource Allocation (LRA) [Cantarell et al, 03]

Generalization of Many Classical Problems

m Dining Philosophers

m Local Mutual Exclusion

m Drinking Philosophers

m Local Reader/Writer

m Local Group Mutual Exclusion

Concurrency in Snap-Stabilizing Local Resource Allocation

Local Resource Allocation (LRA) [Cantarell et al, 03]

LRA

Concurrency in Snap-Stabilizing Local Resource Allocation m

Local Resource Allocation (LRA) [Cantarell et al, 03]

LRA

m Safety: Two neighbors p and g are concurrently executing their CS
using X and Y, respectively, then X =Y.

Concurrency in Snap-Stabilizing Local Resource Allocation m

Local Resource Allocation (LRA) [Cantarell et al, 03]

LRA

m Safety: Two neighbors p and g are concurrently executing their CS
using X and Y, respectively, then X =Y.

m Fairness: A requesting process eventually enters its CS.

Concurrency in Snap-Stabilizing Local Resource Allocation m

Local Resource Allocation (LRA) [Cantarell et al, 03]

LRA

m Safety: Two neighbors p and g are concurrently executing their CS
using X and Y, respectively, then X =Y.

m Fairness: A requesting process eventually enters its CS.

Example: Local Mutual Exclusion

]]
E 2 7

Concurrency in Snap-Stabilizing Local Resource Allocation m

Local Resource Allocation (LRA) [Cantarell et al, 03]

LRA

m Safety: Two neighbors p and g are concurrently executing their CS
using X and Y, respectively, then X =Y.

m Fairness: A requesting process eventually enters its CS.

Example: Local Mutual Exclusion
; ",75”é v
Example: Local Reader-Writer Problem

©-® ®p PF

Concurrency in Snap-Stabilizing Local Resource Allocation m

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

P1

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

Fairness

P1 2

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

Maximal-Concurrency

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

P2 % 2

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

p> continuously requests but never enters its critical section.

Concurrency in Snap-Stabilizing Local Resource Allocation @

Impossibility Result: Maximal-Concurrency in LRA

Two resources: XY

p> continuously requests but never enters its critical section.
Fairness property violated

Concurrency in Snap-Stabilizing Local Resource Allocation @

(Strong) Partial Maximal-Concurrency

Weaker version of the maximal-concurrency

Concurrency in Snap-Stabilizing Local Resource Allocation @

(Strong) Partial Maximal-Concurrency

Weaker version of the maximal-concurrency

Partial Maximal-Concurrency, Parameter: X

If CSs last a long enough time
then eventually Peree € X

Prree = { requesting processes can obtain CS without violating safety }

Concurrency in Snap-Stabilizing Local Resource Allocation @

(Strong) Partial Maximal-Concurrency

Weaker version of the maximal-concurrency

Partial Maximal-Concurrency, Parameter: X

If CSs last a long enough time
then eventually Peree € X

Prree = { requesting processes can obtain CS without violating safety }

Strong Partial Maximal-Concurrency

Partial Maximal-Concurrency with
X = neighbors of a unique process minus one.

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Requirements

Locally Shared Memory Model

m Locally shared variables
m Read/write atomicity
m Distributed weakly fair daemon

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Requirements

Locally Shared Memory Model

m Locally shared variables
m Read/write atomicity
m Distributed weakly fair daemon

Network

m Connected
m Bidirectional
m |dentified

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilization [Bui et al, 07]

transient faults
—>

no guarantees

time

Concurrency in Snap-Stabilizing Local Resource Allocation @

Self-Stabilization [Dijkstra, 74]

transient faults
>

no guarantees

. i
stabilization phase ime

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Guarantees

m Snap-stabilizing

m Strongly partially maximal-concurrent

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Guarantees

m Snap-stabilizing

m Strongly partially maximal-concurrent

Ideas

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Guarantees

m Snap-stabilizing

m Strongly partially maximal-concurrent

deas

m ID-based priority

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Guarantees

m Snap-stabilizing

m Strongly partially maximal-concurrent

deas

m ID-based priority

m Locked state : =

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Guarantees

m Snap-stabilizing

m Strongly partially maximal-concurrent

Ideas

m ID-based priority

m Locked state : ==
m (Self-stabilizing) Token : W

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

I
6 5

Concurrency in Snap-Stabilizing Local Resource Allocation @

@g%@

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

c
5

Concurrency in Snap-Stabilizing Local Resource Allocation @

@@
o

{

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

C

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

@QW@

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm
Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Example on the Local Reader-Writer Problem

Local minimum = may never enter its CS

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm

Self-Stabilizing Token Circulation

m Safety: There eventually is a unique token holder.

m Liveness: A process p holds a token infinitely often.

Concurrency in Snap-Stabilizing Local Resource Allocation m

Snap-Stabilizing LRA Algorithm

Self-Stabilizing Token Circulation

m Safety: There eventually is a unique token holder.

m Liveness: A process p holds a token infinitely often.

Concurrency in Snap-Stabilizing Local Resource Allocation m

Snap-Stabilizing LRA Algorithm

Self-Stabilizing Token Circulation

m Safety: There eventually is a unique token holder.

m Liveness: A process p holds a token infinitely often.

o

oo

Concurrency in Snap-Stabilizing Local Resource Allocation m

Snap-Stabilizing LRA Algorithm

Self-Stabilizing Token Circulation

m Safety: There eventually is a unique token holder.

m Liveness: A process p holds a token infinitely often.

&)

oo

Concurrency in Snap-Stabilizing Local Resource Allocation m

Snap-Stabilizing LRA Algorithm: Fairness

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Fairness

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Fairness

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Fairness

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Fairness

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Fairness

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Fairness

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Fairness

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Fairness

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Fairness

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Fairness

Example on the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Strong Partial

Maximal-Concurrency

A worst case in the Local Reader-Writer Problem

‘e “e
9

O

3

Concurrency in Snap-Stabilizing Local Resource Allocation @

&

Snap-Stabilizing LRA Algorithm: Strong Partial

Maximal-Concurrency

A worst case in the Local Reader-Writer Problem

)
©)

o - P}
‘e © @
(9)

(3

Concurrency in Snap-Stabilizing Local Resource Allocation @

&

Snap-Stabilizing LRA Algorithm: Strong Partial

Maximal-Concurrency

A worst case in the Local Reader-Writer Problem

@7

©

3

Concurrency in Snap-Stabilizing Local Resource Allocation @

& ot

Snap-Stabilizing LRA Algorithm: Strong Partial

Maximal-Concurrency

A worst case in the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Strong Partial
Maximal-Concurrency

A worst case in the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Strong Partial
Maximal-Concurrency

A worst case in the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Snap-Stabilizing LRA Algorithm: Strong Partial
Maximal-Concurrency

A worst case in the Local Reader-Writer Problem

Concurrency in Snap-Stabilizing Local Resource Allocation @

Conclusion

Contributions

m Definition of the maximal-concurrency
m Proof of impaossibility of maximal-concurrency in LRA
m Definition of the (strong) partial maximal-concurrency

m Design and proof of a snap-stabilizing strongly partially
maximal-concurrent LRA algorithm

Concurrency in Snap-Stabilizing Local Resource Allocation @

Conclusion

Contributions

Definition of the maximal-concurrency
Proof of impossibility of maximal-concurrency in LRA

Definition of the (strong) partial maximal-concurrency

Design and proof of a snap-stabilizing strongly partially
maximal-concurrent LRA algorithm

Perspectives

Define the class of resource allocation problems where
maximal-concurrency/strong partial-maximal concurrency can be
achieved.

Concurrency in Snap-Stabilizing Local Resource Allocation @

Thank you for your attention.

Do you have any questions ?

Concurrency in Snap-Stabilizing Local Resource Allocation @

