Leader Election in Asymmetric Labeled Unidirectional Rings

Karine Altisen, Ajoy K. Datta, Stéphane Devismes, Anaïs Durand, and Lawrence L. Larmore

May 30, 2017

Context

■ Leader election

- Unidirectional rings

■ Homonym processes
■ Deterministic algorithm

- Asynchronous message-passing

State of the Art

Leader Election in Rings

+	Deterministi solution
Anonymous	Impossible [Angluin, 80] [Lynch, 96]

State of the Art

Leader Election in Rings

Deterministic	
solution	
Anonymous	Impossible [Angluin, 80] [Lynch, 96]
[Xu and Srimani, 06]	
[Kutten et al., 13]	

State of the Art

Leader Election in Rings

$+$	Deterministic solution	Probabilistic solution
Anonymous processes	Impossible [Angluin, 80] [Lynch, 96]	Possible [Xu and Srimani, 06] [Kutten et al., 13]
	Possible	
Identified processes	[LeLann, 77] Chang and Roberts, 79] [Peterson, 82]	

State of the Art

Leader Election in Rings

State of the Art

Leader Election in Rings of Homonym Processes

	PT／MT	Asynch．	Uni．／Bi．	Known	Ring Class	\＃Msg	Time	Memory
［Delporte et al．，14］	MT	0	Bi．		\＃labels＞greatest proper divisor of n	？	？	？
	PT	0		n		$O(n \log n)$	？	？
［Dobrev， Pelc，04］	PT	区	Bi．＋uni．	$m \leq n$	Decide if inputs are unambiguous	$O(n \log n)$	$O(M)$	$O(n b)$
		回	Bi．	$M \geq n$		$O(n M)$	？	$O(M b)$
［SSS 2016］	PT	回	Uni．	k	\exists unique label and \＃proc with same label $\leq \mathrm{k}$	$O(k n)$	$O(k n)$	$O(\log k+b)$
［IPDPS 2017］	PT	0	Uni．	k	Asymmetric la－ belling and \＃proc with same label $\leq k$	$\begin{gathered} O\left(n^{2}+k n\right) \\ O\left(k^{2} n^{2}\right) \end{gathered}$	$O(k n)$ $O\left(k^{2} n^{2}\right)$	$\begin{gathered} O(k n b) \\ O(\log k+b) \end{gathered}$

■ Uni ：Unidirectional／Bi ：Bidirectional
■ MT＝Message－terminating：Processes do not explicitly terminate but only a finite number of messages are exchanged．
■ PT＝Process－terminating：Every process eventually halts．

Contributions

MT-LE Impossible [Angluin,80]

- \mathcal{A} : Rings with asymmetric labelling
- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election
- \mathcal{U}^{*} : Rings with at least one unique label
- \mathcal{K}_{k} : Rings with no more than k processes with the same label

Contributions

PT-LE Impossible

- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election
- A: Rings with asymmetric labelling

■ $\overline{\mathcal{A}}$: Rings with symmetric labelling

- \mathcal{U}^{*} : Rings with at least one unique label
- \mathcal{K}_{k} : Rings with no more than k processes with the same label

Contributions

- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election
- \mathcal{A} : Rings with asymmetric labelling

■ $\overline{\mathcal{A}}$: Rings with symmetric labelling

- \mathcal{U}^{*} : Rings with at least one unique label
- \mathcal{K}_{k} : Rings with no more than k processes with the same label

Contributions

MT-LE Impossible

- A: Rings with asymmetric labelling
- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election
- \mathcal{U}^{*} : Rings with at least one unique label
- \mathcal{K}_{k} : Rings with no more than k processes with the same label

Contributions

PT-LE Algorithm for $\mathcal{U}^{*} \cap \mathcal{K}_{k}$ [SSS 2016]

- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election
- \mathcal{A} : Rings with asymmetric labelling
$\square \overline{\mathcal{A}}$: Rings with symmetric labelling
- \mathcal{U}^{*} : Rings with at least one unique label
- \mathcal{K}_{k} : Rings with no more than k processes with the same label

First PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Chosen Leader:
process whose LabelSequence $=$ LyndonWord(LabelSequence)
Lyndon Word = smallest rotation in lexicographic order

■ Label Sequence at p_{1} :
$L S_{p_{1}}=12212$

Rotations:

12212	$\left(=L S_{p_{1}}\right)$
21221	$\left(=L S_{p_{2}}\right)$
12122	$\left(=L S_{p_{3}}\right) \quad L W \neq L S_{p_{1}}$
21212	$\left(=L S_{p_{4}}\right)$
22121	$\left(=L S_{p_{5}}\right)$

First PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Chosen Leader:
process whose LabelSequence $=$ LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order

- Local label aggregation

First PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Chosen Leader:
process whose LabelSequence $=$ LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order

■ Local label aggregation

First PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Chosen Leader:
process whose LabelSequence $=$ LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order

■ Local label aggregation

First PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Chosen Leader:
process whose LabelSequence $=$ LyndonWord(LabelSequence)
Lyndon Word = smallest rotation in lexicographic order

- Local label aggregation
- 1 Do not know n
\Rightarrow Leader cannot detect its election

First PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Chosen Leader:
process whose LabelSequence $=$ LyndonWord(LabelSequence)
Lyndon Word = smallest rotation in lexicographic order

- Local label aggregation

- 1 Do not know n
\Rightarrow Leader cannot detect its election
- Termination detection $=$ $(2 k+1) \times$ the same label \Rightarrow at least 2 times the sequence of labels

First PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

- Time complexity: at most $(2 k+2) n$ time units

■ Message complexity: at most $n^{2}(2 k+1)$ messages
■ Memory: $(2 k+1) n b+2 b+3$ bits, where $b=$ number of bits to store an ID

Asymptotically optimal time complexity

but
Large memory requirement

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Decrease memory usage \Rightarrow Peterson principle with radix sort

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Decrease memory usage \Rightarrow Peterson principle with radix sort

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Decrease memory usage \Rightarrow Peterson principle with radix sort

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Decrease memory usage \Rightarrow Peterson principle with radix sort

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Decrease memory usage \Rightarrow Peterson principle with radix sort

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Phase Shift

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Execution

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Termination Detection: count $=\mathrm{k}+1$ count $=\#$ phases where Known $=$ Label

Phase 1

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

- Termination Detection: count $=\mathrm{k}+1$ count $=\#$ phases where Known $=$ Label

Phase 2

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

- Termination Detection: count $=\mathrm{k}+1$ count $=\#$ phases where Known $=$ Label

Phase 3

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

- Termination Detection: count $=\mathrm{k}+1$ count $=\#$ phases where Known $=$ Label

Phase 4

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

- Termination Detection: count $=\mathrm{k}+1$ count $=\#$ phases where Known $=$ Label

Phase 5

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

- Termination Detection: count $=\mathrm{k}+1$ count $=\#$ phases where Known $=$ Label

Phase 6

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

- Termination Detection: count $=\mathrm{k}+1$ count $=\#$ phases where Known $=$ Label

Phase 7

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

- Termination Detection: count $=\mathrm{k}+1$ count $=\#$ phases where Known $=$ Label

Phase 8

Second PT-LE Algorithm for $\mathcal{A} \cap \mathcal{K}_{k}$

■ Memory: $2\lceil\log k\rceil+3 b+5$ bits, where $b=$ number of bits to store an ID

■ Time complexity: $O\left(k^{2} n^{2}\right)$ time units
■ Message complexity: $O\left(k^{2} n^{2}\right)$ messages

Asymptotically optimal memory requirement but
 Large time complexity

Conclusion

Class	
$\overline{\mathcal{A}}$	Message-terminating leader election impossible
\mathcal{K}_{k}	Message-terminating leader election impossible
\mathcal{U}^{*}	Process-terminating leader election impossible
\mathcal{A}	Process-terminating leader election impossible

Class	Lower Bound on Time	Time	Nbr of Msgs	
$\mathcal{U}^{*} \cap \mathcal{K}_{k}[$ SSS 2016	$\Omega(k n)$	$O(k n)$	$O\left(n^{2}+k n\right)$	$O(\log k+b)$
$\mathcal{A} \cap \mathcal{K}_{k}$	$\Omega(k n)$	$O(k n)$	$O\left(n^{2} k\right)$	$O(k n b)$
		$O\left(k^{2} n^{2}\right)$	$O\left(k^{2} n^{2}\right)$	$O(\log k+b)$

$$
b=\# \text { bits to store a label }
$$

- \mathcal{A} : Rings with asymmetric labelling
- $\overline{\mathcal{A}}$: Rings with symmetric labelling
- \mathcal{U}^{*} : Rings with at least one unique label
- \mathcal{K}_{k} : Rings with no more than k processes with the same label

Thank you for your attention.

Do you have any questions ?

