Leader Election in Asymmetric Labeled Unidirectional Rings

Karine Altisen, Ajoy K. Datta, Stéphane Devismes, **Anaïs Durand**, and Lawrence L. Larmore

May 30, 2017

Leader Election in Asymmetric Labeled Unidirectional Rings

- Leader election
- Unidirectional rings
- Homonym processes
- Deterministic algorithm
- Asynchronous message-passing

Leader Election in Rings

Anaïs Durand

State of the Art

Leader Election in Rings

+	Deterministic solution	Probabilistic solution		
Δησηγρομε	Impossible	Possible		
processes	[Angluin, 80]	[Xu and Srimani, 06]		
	[Lynch, 96]	[Kutten <i>et al.</i> , 13]		

State of the Art

Leader Election in Rings

Leader Election in Asymmetric Labeled Unidirectional Rings

State of the Art

Leader Election in Rings

Leader Election in Asymmetric Labeled Unidirectional Rings

Leader Election in Rings of Homonym Processes

	РТ/МТ	Asynch.	Uni./Bi.	Known	Ring Class	# Msg	Time	Memory
[Delporte et al., 14]	МТ	~	Bi.		# labels > greatest proper divisor of <i>n</i>	?	?	?
	РТ	~		n		$O(n \log n)$?	?
[Dobrev, Pelc, 04]	РТ	×	Bi. + uni.	$m \le n$	Decide if inputs are unambiguous	$O(n \log n)$	O(M)	O(nb)
		~	Bi.	$M \ge n$		O(nM)	?	O(Mb)
[SSS 2016]	РТ	~	Uni.	k	∃ unique label and # proc with same label ≤ k	O(kn)	O(kn)	$O(\log k + b)$
[IPDPS 2017]	РТ		Uni.	k	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O(n^2 + kn)$	O(kn)	O(knb)
						O(k ² n ²)	$O(k^2n^2)$	$O(\log k + b)$

- Uni : Unidirectional / Bi : Bidirectional
- MT = Message-terminating: Processes do not explicitly terminate but only a finite number of messages are exchanged.
- **P**T = Process-terminating: Every process eventually halts.

- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election

- **\overline{\mathcal{A}}**: Rings with symmetric labelling
 - \mathcal{U}^* : Rings with at least one unique label
- *K_k*: Rings with no more than *k* processes with the same label

- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election

- \checkmark \mathcal{A} : Rings with asymmetric labelling
- **\overline{\mathcal{A}}**: Rings with symmetric labelling
 - \mathcal{U}^* : Rings with at least one unique label
- *K_k*: Rings with no more than *k* processes with the same label

- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election

- A: Rings with asymmetric labelling
- $\overline{\mathcal{A}}$: Rings with symmetric labelling
- \mathcal{U}^* : Rings with at least one unique label
- *K_k*: Rings with no more than *k* processes with the same label

Contributions

- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election

- A: Rings with asymmetric labelling
- **\overline{\mathcal{A}}**: Rings with symmetric labelling
 - \mathcal{U}^* : Rings with at least one unique label
- *K_k*: Rings with no more than *k* processes with the same label

- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election

- \blacksquare \mathcal{A} : Rings with asymmetric labelling
- **\overline{\mathcal{A}}**: Rings with symmetric labelling
 - \mathcal{U}^* : Rings with at least one unique label
- *K_k*: Rings with no more than *k* processes with the same label

Chosen Leader:

process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order

Label Sequence at *p*₁:

 $LS_{p_1} = 12212$ Rotations: 12212 (= LS_{p_1}) 21221 (= LS_{p_2}) **12122** (= LS_{p_3}) $LW \neq LS_{p_1}$ 21212 (= LS_{p_4})

22121 $(= LS_{p_{\rm E}})$

Chosen Leader:

process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order

Local label aggregation

Chosen Leader:

process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order

Local label aggregation

Chosen Leader:

process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order

Local label aggregation

Chosen Leader:

process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order

- Local label aggregation
- ▲ Do not know n ⇒ Leader cannot detect its election

Chosen Leader:

process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order

= LyndonWord(Smallest repeating prefix)

- Local label aggregation
- ▲ Do not know n ⇒ Leader cannot detect its election
- Termination detection = (2k + 1) × the same label ⇒ at least 2 times the sequence of labels

- **Time complexity:** at most (2k+2)n time units
- Message complexity: at most $n^2(2k+1)$ messages
- Memory: (2k + 1)nb + 2b + 3 bits, where b = number of bits to store an ID

Asymptotically optimal time complexity but Large memory requirement

⁹/15

Phase Shift

Execution

Termination Detection: count = k+1count = # phases where Known = Label

 p_1 p_5 p_2 2 (2) p_4 *p*3 $\operatorname{count} = 1$ **1**2122 Known

Phase 1

Termination Detection: count = k+1count = # phases where Known = Label

Phase 2 p_1 p_5 p_2 p_4 *p*₃ $\operatorname{count} = 1$ 12122 Known

Termination Detection: count = k+1count = # phases where Known = Label

Phase 3 p_1 p_5 p_2 p_4 *p*3 count = 212122 Known

Termination Detection: count = k+1count = # phases where Known = Label

 p_1 p_5 p_2 p_4 *p*₃ count = 212122 Known

Phase 4

■ Termination Detection: count = k+1

count = # phases where Known = Label

■ Termination Detection: count = k+1

count = # phases where Known = Label

Phase 6 p_1 p_5 **p**₂ p_4 *p*3 count = 3**1**2122 Known

Termination Detection: count = k+1 count = # phases where Known = Label

Phase 7 p_1 p_5 **p**₂ p_4 *p*₃ count = 312122

Known

Termination Detection: count = k+1 count = # phases where Known = Label

Phase 8 p_1 p_5 **p**₂ p_4 Da count = 4 = k+1k = 312122 Known

- Memory: $2 \lceil \log k \rceil + 3b + 5$ bits, where b = number of bits to store an ID
- **Time complexity:** $O(k^2n^2)$ time units
- Message complexity: $O(k^2n^2)$ messages

Asymptotically optimal memory requirement but Large time complexity

Conclusion

Class	
$\overline{\mathcal{A}}$	Message-terminating leader election impossible
\mathcal{K}_k	Message-terminating leader election impossible
\mathcal{U}^*	Process-terminating leader election impossible
\mathcal{A}	Process-terminating leader election impossible

Class	Lower Bound on Time	Time	Nbr of Msgs	Memory
$\mathcal{U}^* \cap \mathcal{K}_k$ [SSS 2016]	$\Omega(kn)$	O(kn)	$O(n^2 + kn)$	$O(\log k + b)$
$\mathcal{A}\cap\mathcal{K}_k$	O(kn)	O(kn)	$O(n^2k)$	O(knb)
	32(KII)	$O(k^2n^2)$	$O(k^2n^2)$	$O(\log k + b)$

b = # bits to store a label

- A: Rings with asymmetric labelling
- **\overline{\mathcal{A}}**: Rings with symmetric labelling
- U*: Rings with at least one unique label
- \mathcal{K}_k : Rings with no more than k processes with the same label

Thank you for your attention.

Do you have any questions ?

Anaïs Durand

Leader Election in Asymmetric Labeled Unidirectional Rings