Election in Unidirectional Rings with Homonyms

Anaïs Durand

February 14, 2023

Joint Work with

Karine Altisen

Stéphane Devismes

Real Providence

Lawrence L. Larmore

- Leader Election in Rings with Bounded Multiplicity (Short paper). SSS'2016
- Leader Election in Asymmetric Labeled Unidirectional Rings. IPDPS'2017
- Election in Unidirectional Rings with Homonyms. Journal of Parallel and Distributed Computing, 2020

Context

/13

- Leader election
- Ring networks
- Homonym processes
- Asynchronous message-passing
- Reliable FIFO channels

State of the Art: LE in Rings with Homonyms

 [Flocchini et. al., 04]
 Asynchronous LE in bidirectional rings with 2 labels, asymmetric labeling and n is prime and known

▷ [Dobrev, Pelc, 04]: Decision on computability + LE
 ▷ Synchronous LE in (bidirectional or unidirectional) rings
 ▷ Asynchronous LE in bidirectional rings
 with knowledge of bounds m ≤ n and M ≥ n

 [Delporte et. al., 14]:
 Asynchronous LE in bidirectional rings where number of labels > greatest proper divisor of n

 \triangleright with knowledge of **n**

without additional knowledge (but only message-terminating)

A different approach: Bounding the number of homonyms

A different approach: Bounding the number of homonyms

Inspired from [Dereniowski, Pelc, 16]: Decision on computability + LE in networks of arbitrary topology with knowledge of a bound k on the multiplicity of a label l.

► <u>Unidirectional ring classes:</u>
► H_k: multiplicity of a label < k</p>

- $\triangleright \ \mathcal{U}^*$: at least one label is unique
- \triangleright \mathcal{A} : asymmetric labeling

Goal: Asynchronous process-terminating leader election

Impossible [IPDPS'17]

- ▶ $\mathcal{H}_{\mathbf{k}}$: multiplicity of a label $\leq \mathbf{k}$
- \mathcal{U}^* : at least one label is unique
 - \mathcal{A} : asymmetric labeling

6/13

⁵/13

- ▶ $\mathcal{H}_{\mathbf{k}}$: multiplicity of a label $\leq \mathbf{k}$
- \mathcal{U}^* : at least one label is unique
- A: asymmetric labeling

- ▶ $\mathcal{H}_{\mathbf{k}}$: multiplicity of a label $\leq \mathbf{k}$
- \mathcal{U}^* : at least one label is unique
 - \mathcal{A} : asymmetric labeling

Goal: Electing the lowest unique label

 $\mathbf{k} \geq 3$

/13

Goal: Electing the lowest unique label

Counter = rough estimation of the multiplicity

13

Goal: Electing the lowest unique label

Counter = rough estimation of the multiplicity

13

Goal: Electing the lowest unique label

Counter = rough estimation of the multiplicity

Goal: Electing the lowest unique label

- Counter = rough estimation of the multiplicity
 - Process elimination:
 - $\vdash \text{Lower counter, } \neq \text{label} \\ \rightarrow \text{label not unique}$

Goal: Electing the lowest unique label

- Counter = rough estimation of the multiplicity
 - Process elimination:

<u>Message elimination:</u>
 Passive, same label

 \rightarrow not relevant

Goal: Electing the lowest unique label

- Counter = rough estimation of the multiplicity
 - Process elimination:

- <u>Message elimination:</u>
 Passive, same label
 - \rightarrow not relevant

Goal: Electing the lowest unique label

- Counter = rough estimation of the multiplicity
 - Process elimination:

- <u>Message elimination:</u>
 Passive, same label
 - \rightarrow not relevant

Goal: Electing the lowest unique label

- Counter = rough estimation of the multiplicity
 - Process elimination:

Message elimination:

Passive, same label

 \rightarrow not relevant

Goal: Electing the lowest unique label

- Counter = rough estimation of the multiplicity
 - Process elimination:
- Message elimination:
 - ▷ Passive, same label
 - \rightarrow not relevant

Goal: Electing the lowest unique label

- Counter = rough estimation of the multiplicity
 - Process elimination:
 - Message elimination:
 - ▷ Passive, same label
 - \rightarrow not relevant

Goal: Electing the lowest unique label

- Counter = rough estimation of the multiplicity
 - Process elimination:
- Message elimination:
 - ▷ Passive, same label
 - \rightarrow not relevant
- **Election detection:**
 - receiving (label, \mathbf{k})

Goal: Electing the lowest unique label

- Counter = rough estimation of the multiplicity
 - Process elimination:
 - $\begin{array}{l} \triangleright \ \ \, \mbox{Lower counter}, \neq \mbox{label} \\ \rightarrow \ \mbox{label not unique} \\ \triangleright \ \ \, \mbox{Same counter} \neq 0, \ \mbox{lower label} \\ \rightarrow \ \mbox{not lowest unique} \end{array}$
- Message elimination:
 - ▷ Passive, same label
 - \rightarrow not relevant
- **Election detection:**
 - receiving (label, \mathbf{k})

Asynchronous process-terminating leader election

Time complexity: O(kn) steps

asymptotically optimal

Number of messages: $O(\mathbf{n}^2 + \mathbf{kn})$

Memory requirement: [log(k+1)] + b + 4 bits where b = number of bits to store a label asymptotically optimal

$\frac{\text{Label sequence at } p_1:}{\mathfrak{G}(p_1) = 12212}$

<u>Goal</u>: Electing the process whose label sequence is a Lyndon Word Lyndon Word = smallest rotation in lexicographic order

Local label aggregation

 $\begin{array}{l} \textbf{n} \text{ is not known} \\ \rightarrow \text{ no detection of election yet} \end{array}$

<u>Goal</u>: Electing the process whose label sequence is a Lyndon Word Lyndon Word = smallest rotation in lexicographic order

 $k \ge 3$

Local label aggregation

▶ **n** is not known → no detection of election yet

Termination detection:

 $(2\mathbf{k}+1)\times$ the same label $\rightarrow \geq 2\times$ the label sequence

<u>Goal</u>: Electing the process whose label sequence is a Lyndon Word Lyndon Word = smallest rotation in lexicographic order

 $k \ge 3$

Local label aggregation

n is not known \rightarrow no detection of election yet

Alg₂ for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Asynchronous process-terminating leader election

Time complexity: O(kn) steps

asymptotically optimal

Number of messages: O(kn²)

Memory requirement: O(knb) bits where b = number of bits to store a label

<u>*Goal:*</u> Reducing the memory requirement of Alg_2 using Peterson principle with radix sort

$$\mathbf{k} = 3$$

 $\begin{array}{l} \underline{\textit{During a phase:}}\\ \text{not lowest value of active processes}\\ & \longrightarrow \text{process eliminated} \end{array}$

Phase switch:

sending its value to its neighbor

Asynchronous process-terminating leader election

- Time complexity: O(k²n²) steps
- ▶ <u>Number of messages</u>: O(k²n²)
- Memory requirement: 2[log k] + 3b + 5 bits where b = number of bits to store a label asymptotically optimal

Conclusion

Process-terminating leader election for unidirectional rings with label multiplicity bounded by \mathbf{k} and

 Time
 Memory

 Alg.1 asymptotically optimal
 asymptotically optimal

asymmetric labeling

at least one unique label

 $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

 $\mathcal{U}^* \cap \mathcal{H}_{\mathbf{k}}$

TimeMemoryAlg.2asymptotically optimallargeAlg.3largeasymptotically optimal