
Election in Unidirectional Rings with
Homonyms

Anaïs Durand

February 14, 2023

1/13



Joint Work with

Karine Stéphane Ajoy K. Lawrence L.
Altisen Devismes Datta Larmore

I Leader Election in Rings with Bounded Multiplicity (Short paper).
SSS’2016

I Leader Election in Asymmetric Labeled Unidirectional Rings.
IPDPS’2017

I Election in Unidirectional Rings with Homonyms.
Journal of Parallel and Distributed Computing, 2020

2/13



Context

b

a

cd

d

b

a

f e

a

I Leader election
I Ring networks
I Homonym processes
I Asynchronous message-passing
I Reliable FIFO channels

3/13



State of the Art: LE in Rings with Homonyms

I [Flocchini et. al., 04]
Asynchronous LE in bidirectional rings
with 2 labels, asymmetric labeling and n is prime and known

I [Dobrev, Pelc, 04]: Decision on computability + LE
B Synchronous LE in (bidirectional or unidirectional) rings
B Asynchronous LE in bidirectional rings

with knowledge of bounds m ≤ n and M ≥ n

I [Delporte et. al., 14]:
Asynchronous LE in bidirectional rings where
number of labels > greatest proper divisor of n

B with knowledge of n

B without additional knowledge (but only message-terminating)

4/13



A different approach:
Bounding the number of homonyms

I Inspired from [Dereniowski, Pelc, 16]:
Decision on computability + LE

in networks of arbitrary topology
with knowledge of a bound k on the multiplicity of a label `.

I Unidirectional ring classes:
B Hk: multiplicity of a label ≤ k

B U∗: at least one label is unique
B A: asymmetric labeling

I Goal: Asynchronous process-terminating leader election

5/13



A different approach:
Bounding the number of homonyms

I Inspired from [Dereniowski, Pelc, 16]:
Decision on computability + LE

in networks of arbitrary topology
with knowledge of a bound k on the multiplicity of a label `.

I Unidirectional ring classes:
B Hk: multiplicity of a label ≤ k

B U∗: at least one label is unique
B A: asymmetric labeling

I Goal: Asynchronous process-terminating leader election

5/13



Results

ĀA

Impossible
[Angluin,80]

I Hk: multiplicity of a label ≤ k

I U∗: at least one label is unique
I A: asymmetric labeling

6/13



Results

ĀA

U∗

Impossible
[IPDPS’17]

I Hk: multiplicity of a label ≤ k

I U∗: at least one label is unique
I A: asymmetric labeling

6/13



Results

ĀA

U∗

Impossible
[IPDPS’17]

I Hk: multiplicity of a label ≤ k

I U∗: at least one label is unique
I A: asymmetric labeling

6/13



Results

ĀA

Hk

Impossible
[SSS’16]

I Hk: multiplicity of a label ≤ k

I U∗: at least one label is unique
I A: asymmetric labeling

6/13



Results

Alg1

ĀA

U∗

Hk

I Hk: multiplicity of a label ≤ k

I U∗: at least one label is unique
I A: asymmetric labeling

6/13



Results

Alg2
Alg3

ĀA

U∗

Hk

I Hk: multiplicity of a label ≤ k

I U∗: at least one label is unique
I A: asymmetric labeling

6/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

k ≥ 3

I Counter = rough estimation of the
multiplicity

I Process elimination:

B Lower counter, 6= label
→ label not unique

B Same counter 6= 0, lower label
→ not lowest unique

I Message elimination:
B Passive, same label

→ not relevant
I Election detection:

receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

0

0

0

0

0

k ≥ 3 I Counter = rough estimation of the
multiplicity

I Process elimination:

B Lower counter, 6= label
→ label not unique

B Same counter 6= 0, lower label
→ not lowest unique

I Message elimination:
B Passive, same label

→ not relevant
I Election detection:

receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

0

0

0

0

0

〈1,0〉

〈1,0〉

〈3,0〉

〈1,0〉

〈2,0〉

k ≥ 3 I Counter = rough estimation of the
multiplicity

I Process elimination:

B Lower counter, 6= label
→ label not unique

B Same counter 6= 0, lower label
→ not lowest unique

I Message elimination:
B Passive, same label

→ not relevant
I Election detection:

receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

0

0

0

0

1

〈2,0〉

〈1,1〉

〈1,0〉

〈3,0〉

〈1,0〉

k ≥ 3 I Counter = rough estimation of the
multiplicity

I Process elimination:

B Lower counter, 6= label
→ label not unique

B Same counter 6= 0, lower label
→ not lowest unique

I Message elimination:
B Passive, same label

→ not relevant
I Election detection:

receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

1

0

1

0

1

〈1,1〉

〈2,0〉

〈1,1〉

〈1,1〉

〈3,0〉

k ≥ 3 I Counter = rough estimation of the
multiplicity

I Process elimination:
B Lower counter, 6= label

→ label not unique

B Same counter 6= 0, lower label
→ not lowest unique

I Message elimination:
B Passive, same label

→ not relevant
I Election detection:

receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

0

2

0

2

〈3,0〉

〈1,2〉

〈2,0〉

〈1,2〉

〈1,1〉

k ≥ 3 I Counter = rough estimation of the
multiplicity

I Process elimination:
B Lower counter, 6= label

→ label not unique

B Same counter 6= 0, lower label
→ not lowest unique

I Message elimination:
B Passive, same label

→ not relevant

I Election detection:
receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

0

0

〈3,0〉

〈1,2〉

〈2,0〉

〈1,2〉

k ≥ 3 I Counter = rough estimation of the
multiplicity

I Process elimination:
B Lower counter, 6= label

→ label not unique

B Same counter 6= 0, lower label
→ not lowest unique

I Message elimination:
B Passive, same label

→ not relevant

I Election detection:
receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

1

1

〈3,1〉

〈2,1〉

k ≥ 3 I Counter = rough estimation of the
multiplicity

I Process elimination:
B Lower counter, 6= label

→ label not unique

B Same counter 6= 0, lower label
→ not lowest unique

I Message elimination:
B Passive, same label

→ not relevant

I Election detection:
receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

1

1 〈2,1〉

〈3,1〉
k ≥ 3 I Counter = rough estimation of the

multiplicity
I Process elimination:

B Lower counter, 6= label
→ label not unique

B Same counter 6= 0, lower label
→ not lowest unique

I Message elimination:
B Passive, same label

→ not relevant

I Election detection:
receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

1

1

〈2,1〉

〈3,1〉

k ≥ 3 I Counter = rough estimation of the
multiplicity

I Process elimination:
B Lower counter, 6= label

→ label not unique
B Same counter 6= 0, lower label

→ not lowest unique
I Message elimination:

B Passive, same label
→ not relevant

I Election detection:
receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

1

〈3,1〉

〈2,1〉

k ≥ 3 I Counter = rough estimation of the
multiplicity

I Process elimination:
B Lower counter, 6= label

→ label not unique
B Same counter 6= 0, lower label

→ not lowest unique
I Message elimination:

B Passive, same label
→ not relevant

I Election detection:
receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

k〈2,k〉
k ≥ 3 I Counter = rough estimation of the

multiplicity
I Process elimination:

B Lower counter, 6= label
→ label not unique

B Same counter 6= 0, lower label
→ not lowest unique

I Message elimination:
B Passive, same label

→ not relevant
I Election detection:

receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

〈2,k+1〉

k ≥ 3 I Counter = rough estimation of the
multiplicity

I Process elimination:
B Lower counter, 6= label

→ label not unique
B Same counter 6= 0, lower label

→ not lowest unique
I Message elimination:

B Passive, same label
→ not relevant

I Election detection:
receiving 〈label, k〉

7/13



Alg1 for U∗ ∩Hk

Asynchronous process-terminating leader election

I Time complexity: O(kn) steps
asymptotically optimal

I Number of messages: O(n2 + kn)

I Memory requirement: dlog(k + 1)e+ b + 4 bits
where b = number of bits to store a label

asymptotically optimal

8/13



Alg2 for A ∩Hk

Goal: Electing the process whose label sequence is a Lyndon Word
Lyndon Word = smallest rotation in lexicographic order

1

2
1

2
2

p3

p2
p1

p5
p4

I Label sequence at p1:
LS(p1) = 12212

Rotations:
12212 (=LS(p1))
21221 (=LS(p2))
12122 (=LS(p3)) LW 6= LS(p1)
21212 (=LS(p4))
22121 (=LS(p5))

9/13



Alg2 for A ∩Hk

Goal: Electing the process whose label sequence is a Lyndon Word
Lyndon Word = smallest rotation in lexicographic order

1

2
1

2
2

p3

p2
p1

p5
p4

I Label sequence at p1:
LS(p1) = 12212

Rotations:
12212 (=LS(p1))
21221 (=LS(p2))
12122 (=LS(p3)) LW 6= LS(p1)
21212 (=LS(p4))
22121 (=LS(p5))

9/13



Alg2 for A ∩Hk

Goal: Electing the process whose label sequence is a Lyndon Word
Lyndon Word = smallest rotation in lexicographic order

1

2
1

2
2

1

2

1

2

2

〈1〉

〈2〉

〈2〉

〈1〉

〈2〉

k ≥ 3

I Local label aggregation

I n is not known
→ no detection of election yet

I Termination detection:
(2k + 1)× the same label

→ ≥ 2× the label sequence

9/13



Alg2 for A ∩Hk

Goal: Electing the process whose label sequence is a Lyndon Word
Lyndon Word = smallest rotation in lexicographic order

1

2
1

2
2

12

21

12

22

21

〈2〉

〈1〉

〈2〉

〈2〉

〈1〉

k ≥ 3

I Local label aggregation

I n is not known
→ no detection of election yet

I Termination detection:
(2k + 1)× the same label

→ ≥ 2× the label sequence

9/13



Alg2 for A ∩Hk

Goal: Electing the process whose label sequence is a Lyndon Word
Lyndon Word = smallest rotation in lexicographic order

1

2
1

2
2

121

212

122

221

212

〈1〉

〈2〉

〈1〉

〈2〉

〈2〉

k ≥ 3

I Local label aggregation

I n is not known
→ no detection of election yet

I Termination detection:
(2k + 1)× the same label

→ ≥ 2× the label sequence

9/13



Alg2 for A ∩Hk

Goal: Electing the process whose label sequence is a Lyndon Word
Lyndon Word = smallest rotation in lexicographic order

1

2
1

2
2

1212

2122

1221

2212

2121

〈2〉

〈1〉

〈2〉

〈1〉

〈2〉

k ≥ 3

I Local label aggregation

I n is not known
→ no detection of election yet

I Termination detection:
(2k + 1)× the same label

→ ≥ 2× the label sequence

9/13



Alg2 for A ∩Hk

Goal: Electing the process whose label sequence is a Lyndon Word
Lyndon Word = smallest rotation in lexicographic order

1

2
1

2
2

12122

21221

12212

22121

21212

〈2〉

〈2〉

〈1〉

〈2〉

〈1〉

k ≥ 3

I Local label aggregation

I n is not known
→ no detection of election yet

I Termination detection:
(2k + 1)× the same label

→ ≥ 2× the label sequence

9/13



Alg2 for A ∩Hk

Goal: Electing the process whose label sequence is a Lyndon Word
Lyndon Word = smallest rotation in lexicographic order

1

2
1

2
2

121221212212

Smallest repeating prefix = LS

k ≥ 3

I Local label aggregation

I n is not known
→ no detection of election yet

I Termination detection:
(2k + 1)× the same label

→ ≥ 2× the label sequence

9/13



Alg2 for A ∩Hk

Goal: Electing the process whose label sequence is a Lyndon Word
Lyndon Word = smallest rotation in lexicographic order

1

2
1

2
2

121221212212

Smallest repeating prefix = LS

= Lyndon Word

k ≥ 3

I Local label aggregation

I n is not known
→ no detection of election yet

I Termination detection:
(2k + 1)× the same label

→ ≥ 2× the label sequence

9/13



Alg2 for A ∩Hk

Asynchronous process-terminating leader election

I Time complexity: O(kn) steps
asymptotically optimal

I Number of messages: O(kn2)

I Memory requirement: O(knb) bits
where b = number of bits to store a label

10/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

1

2

1

2

2

12122

21221

12212

22121

21212

↓

↓

↓

↓

↓

Phase 1: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

1

2

1

2

2

12122

21221

12212

22121

21212

↓

↓

↓

↓

↓

Phase 1: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

2

2

12122

12212

↓

↓

Phase 2: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

1

2

12122

12212

↓

↓

Phase 3: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

1

2

12122

12212

↓

↓

Phase 3: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

1

2

1

2

2

12122

21221

12212

22121

21212

↓

↓

↓

↓

↓

Phase 1: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

1

2

1

2

2

12122

21221

12212

22121

21212

↓

↓

↓

↓

↓

Phase 1: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

2

1

2

2

1

12122

21221

12212

22121

21212

↓

↓

↓

↓

↓

Phase 2: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

#1

1 12122
↓

Phase 1: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

#1

2 12122
↓

Phase 2: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

#2

1 12122
↓

Phase 3: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

#2

2 12122
↓

Phase 4: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

#2

2 12122
↓

Phase 5: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

#3

1 12122
↓

Phase 6: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

#3

2 12122
↓

Phase 7: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

#4

1 12122
↓

Phase 8: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort

1

2
1

2
2

#4

1 12122
↓

Phase 8: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value

11/13



Alg3 for A ∩Hk

Asynchronous process-terminating leader election

I Time complexity: O(k2n2) steps

I Number of messages: O(k2n2)

I Memory requirement: 2dlog ke+ 3b + 5 bits
where b = number of bits to store a label

asymptotically optimal

12/13



Conclusion

Process-terminating leader election for unidirectional rings with
label multiplicity bounded by k and

I at least one unique label U∗ ∩Hk

Time Memory
Alg.1 asymptotically optimal asymptotically optimal

I asymmetric labeling A ∩Hk

Time Memory
Alg.2 asymptotically optimal large
Alg.3 large asymptotically optimal

13/13


