Election in Unidirectional Rings with Homonyms

Anaïs Durand

February 14, 2023

Joint Work with

Karine Altisen

Stéphane Devismes

Ajoy K. Datta

Lawrence L. Larmore

- Leader Election in Rings with Bounded Multiplicity (Short paper). SSS'2016
- Leader Election in Asymmetric Labeled Unidirectional Rings. IPDPS'2017
- Election in Unidirectional Rings with Homonyms. Journal of Parallel and Distributed Computing, 2020

Context

- Leader election
- Ring networks
- Homonym processes
- Asynchronous message-passing
- Reliable FIFO channels

State of the Art: LE in Rings with Homonyms

- [Flocchini et. al., 04]

Asynchronous LE in bidirectional rings with 2 labels, asymmetric labeling and \boldsymbol{n} is prime and known

- [Dobrev, Pelc, 04]: Decision on computability + LE
\triangleright Synchronous LE in (bidirectional or unidirectional) rings
\triangleright Asynchronous LE in bidirectional rings with knowledge of bounds $\boldsymbol{m} \leq \boldsymbol{n}$ and $\mathbf{M} \geq \boldsymbol{n}$
- [Delporte et. al., 14]:

Asynchronous LE in bidirectional rings where number of labels $>$ greatest proper divisor of \boldsymbol{n}
\triangleright with knowledge of n
\triangleright without additional knowledge (but only message-terminating)

A different approach:
 Bounding the number of homonyms

- Inspired from [Dereniowski, Pelc, 16]:

Decision on computability + LE
in networks of arbitrary topology
with knowledge of a bound \mathbf{k} on the multiplicity of a label ℓ.

A different approach:
 Bounding the number of homonyms

- Inspired from [Dereniowski, Pelc, 16]:

Decision on computability + LE
in networks of arbitrary topology
with knowledge of a bound \boldsymbol{k} on the multiplicity of a label ℓ.

- Unidirectional ring classes:
$\triangleright \mathcal{H}_{\boldsymbol{k}}$: multiplicity of a label $\leq \boldsymbol{k}$
$\triangleright \mathcal{U}^{*}$: at least one label is unique
$\triangleright \mathcal{A}$: asymmetric labeling
- Goal: Asynchronous process-terminating leader election

Results

- $\mathcal{H}_{\mathbf{k}}$: multiplicity of a label $\leq \boldsymbol{k}$
- \mathcal{U}^{*} : at least one label is unique
- \mathcal{A} : asymmetric labeling

Results

- $\mathcal{H}_{\mathbf{k}}$: multiplicity of a label $\leq \boldsymbol{k}$
- \mathcal{U}^{*} : at least one label is unique
- \mathcal{A} : asymmetric labeling

Results

- $\mathcal{H}_{\boldsymbol{k}}$: multiplicity of a label $\leq \boldsymbol{k}$
- \mathcal{U}^{*} : at least one label is unique
- \mathcal{A} : asymmetric labeling

Results

- $\mathcal{H}_{\mathbf{k}}$: multiplicity of a label $\leq \boldsymbol{k}$
- \mathcal{U}^{*} : at least one label is unique
$-\mathcal{A}$: asymmetric labeling

Results

- $\mathcal{H}_{\mathbf{k}}$: multiplicity of a label $\leq \boldsymbol{k}$
- \mathcal{U}^{*} : at least one label is unique
$-\mathcal{A}$: asymmetric labeling

Results

- $\mathcal{H}_{\boldsymbol{k}}$: multiplicity of a label $\leq \boldsymbol{k}$
- \mathcal{U}^{*} : at least one label is unique
- \mathcal{A} : asymmetric labeling

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$

- Counter $=$ rough estimation of the multiplicity

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$
$\langle 3,0\rangle \underbrace{\langle 1,0\rangle}_{\langle 1,0\rangle}$

- Counter $=$ rough estimation of the multiplicity

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$

- Counter $=$ rough estimation of the multiplicity

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{k}$

Goal: Electing the lowest unique label
$k \geq 3$

- Counter $=$ rough estimation of the multiplicity
- Process elimination:
\triangleright Lower counter, \neq label
\rightarrow label not unique

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$

- Counter $=$ rough estimation of the multiplicity
- Process elimination:
\triangleright Lower counter, \neq label
\rightarrow label not unique
- Message elimination:
\triangleright Passive, same label
\rightarrow not relevant

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$

- Counter $=$ rough estimation of the multiplicity
- Process elimination:
\triangleright Lower counter, \neq label
\rightarrow label not unique
- Message elimination:
\triangleright Passive, same label
\rightarrow not relevant

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$

- Counter $=$ rough estimation of the multiplicity
- Process elimination:
\triangleright Lower counter, \neq label
\rightarrow label not unique
- Message elimination:
\triangleright Passive, same label
\rightarrow not relevant

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$

- Counter $=$ rough estimation of the multiplicity
- Process elimination:
\triangleright Lower counter, \neq label
\rightarrow label not unique
- Message elimination:
\triangleright Passive, same label
\rightarrow not relevant

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$

- Counter $=$ rough estimation of the multiplicity
- Process elimination:
\triangleright Lower counter, \neq label
\rightarrow label not unique
\triangleright Same counter $\neq 0$, lower label
\rightarrow not lowest unique
- Message elimination:
\triangleright Passive, same label
\rightarrow not relevant

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$

- Counter $=$ rough estimation of the multiplicity
- Process elimination:
\triangleright Lower counter, \neq label
\rightarrow label not unique
\triangleright Same counter $\neq 0$, lower label
\rightarrow not lowest unique
- Message elimination:
\triangleright Passive, same label
\rightarrow not relevant

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$

- Counter $=$ rough estimation of the multiplicity
- Process elimination:
\triangleright Lower counter, \neq label
\rightarrow label not unique
\triangleright Same counter $\neq 0$, lower label
\rightarrow not lowest unique
- Message elimination:
\triangleright Passive, same label
\rightarrow not relevant
- Election detection:
receiving 〈label, $\mathbf{k}\rangle$

UNIVERSITÉ
Clermont Auvergne

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the lowest unique label
$k \geq 3$

- Counter $=$ rough estimation of the multiplicity
- Process elimination:
\triangleright Lower counter, \neq label
\rightarrow label not unique
\triangleright Same counter $\neq 0$, lower label
\rightarrow not lowest unique
- Message elimination:
\triangleright Passive, same label
\rightarrow not relevant
- Election detection:
receiving 〈label, $\mathbf{k}\rangle$

Alg_{1} for $\mathcal{U}^{*} \cap \mathcal{H}_{k}$

Asynchronous process-terminating leader election

- Time complexity: $O(\mathrm{kn})$ steps
asymptotically optimal
- Number of messages: $O\left(\mathbf{n}^{2}+\mathbf{k n}\right)$
- Memory requirement: $\lceil\log (\mathbf{k}+1)\rceil+\mathbf{b}+4$ bits where $\mathbf{b}=$ number of bits to store a label asymptotically optimal

Alg_{2} for $\mathcal{A} \cap \mathcal{H}_{\boldsymbol{k}}$

- Label sequence at p_{1} :
$\operatorname{LS}\left(p_{1}\right)=12212$

Alg_{2} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Electing the process whose label sequence is a Lyndon Word Lyndon Word = smallest rotation in lexicographic order

- Label sequence at p_{1} :

$$
\mathbb{S}\left(p_{1}\right)=12212
$$

Rotations:

12212	$\left(=\operatorname{TS}\left(p_{1}\right)\right)$
21221	$\left(=\mathbb{T S}\left(p_{2}\right)\right)$
12122	$\left(=\mathbf{T S}\left(p_{3}\right)\right)$
21212	$\left(=\mathbb{T}\left(p_{4}\right)\right)$
22121	$\left(=\operatorname{TS}\left(p_{5}\right)\right)$

Alg_{2} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Electing the process whose label sequence is a Lyndon Word Lyndon Word = smallest rotation in lexicographic order
$k \geq 3$

- Local label aggregation

Alg_{2} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Electing the process whose label sequence is a Lyndon Word Lyndon Word = smallest rotation in lexicographic order
$k \geq 3$

- Local label aggregation

Alg_{2} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Electing the process whose label sequence is a Lyndon Word Lyndon Word = smallest rotation in lexicographic order
$k \geq 3$

- Local label aggregation

Alg_{2} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Electing the process whose label sequence is a Lyndon Word Lyndon Word = smallest rotation in lexicographic order
$k \geq 3$

- Local label aggregation

Alg_{2} for $\mathcal{A} \cap \mathcal{H}_{\boldsymbol{k}}$

Goal: Electing the process whose label sequence is a Lyndon Word Lyndon Word = smallest rotation in lexicographic order
$k \geq 3$

- Local label aggregation
- \mathbf{n} is not known
\rightarrow no detection of election yet

Alg_{2} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Electing the process whose label sequence is a Lyndon Word Lyndon Word = smallest rotation in lexicographic order
$k \geq 3$

Smallest repeating prefix $=\mathbb{L}$

- Local label aggregation
- \mathbf{n} is not known
\rightarrow no detection of election yet
- Termination detection:
$(2 \boldsymbol{k}+1) \times$ the same label
$\rightarrow \geq 2 \times$ the label sequence

Alg_{2} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Electing the process whose label sequence is a Lyndon Word Lyndon Word = smallest rotation in lexicographic order
$k \geq 3$

Smallest repeating prefix $=\mathbb{I S}$ $=$ Lyndon Word

- Local label aggregation
- \mathbf{n} is not known
\rightarrow no detection of election yet
- Termination detection:
$(2 \boldsymbol{k}+1) \times$ the same label
$\rightarrow \geq 2 \times$ the label sequence

Alg_{2} for $\mathcal{A} \cap \mathcal{H}_{\boldsymbol{k}}$

Asynchronous process-terminating leader election

- Time complexity: $O(\mathrm{kn})$ steps
asymptotically optimal
- Number of messages: $O\left(\mathrm{kn}^{2}\right)$
- Memory requirement: O (knb) bits
where $\mathbf{b}=$ number of bits to store a label

Clermont Auvergne

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

- During a phase:
not lowest value of active processes
\rightarrow process eliminated

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

- During a phase:
not lowest value of active processes
\rightarrow process eliminated

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

```
Phase 2:
\(k=3\)
```

- During a phase:

not lowest value of active processes
\rightarrow process eliminated

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{k}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

$$
\text { Phase 3: } \quad k=3
$$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{k}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

$$
\text { Phase 3: } \quad k=3
$$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{k}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

$$
k=3
$$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

- During a phase:
not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor

UNIVERSITÉ
Clermont Auvergne

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{k}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

- During a phase:
not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{k}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

- During a phase:
not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor when? $\quad \mathbf{k}+1$ times current value

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{k}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

$$
\text { Phase 1: } \quad k=3
$$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor when? $\mathbf{k}+1$ times current value
- Termination detection:
$\mathbf{k}+1$ times its label as value

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

$$
\text { Phase 2: } \quad k=3
$$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor when? $\quad \mathbf{k}+1$ times current value
- Termination detection:
$\mathbf{k}+1$ times its label as value

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort

$$
\text { Phase 3: } \quad k=3
$$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor when? $\quad \mathbf{k}+1$ times current value
- Termination detection:
$\mathbf{k}+1$ times its label as value

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort
Phase 4:
$k=3$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor when? $\quad \mathbf{k}+1$ times current value
- Termination detection:
$\mathbf{k}+1$ times its label as value

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort
Phase 5:
$k=3$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor when? $\quad \mathbf{k}+1$ times current value
- Termination detection:
$\mathbf{k}+1$ times its label as value

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort
Phase 6:
$k=3$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor when? $\quad \mathbf{k}+1$ times current value
- Termination detection:
$\mathbf{k}+1$ times its label as value

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort
Phase 7:
$k=3$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor when? $\quad \mathbf{k}+1$ times current value
- Termination detection:
$\mathbf{k}+1$ times its label as value

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort
Phase 8:
$k=3$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor when? $\quad \mathbf{k}+1$ times current value
- Termination detection:
$\mathbf{k}+1$ times its label as value

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{\mathbf{k}}$

Goal: Reducing the memory requirement of Alg_{2} using Peterson principle with radix sort
Phase 8:
$k=3$

- During a phase:

not lowest value of active processes
\rightarrow process eliminated
- Phase switch:
sending its value to its neighbor when? $\quad \mathbf{k}+1$ times current value
- Termination detection:
$\mathbf{k}+1$ times its label as value

Alg_{3} for $\mathcal{A} \cap \mathcal{H}_{k}$

Asynchronous process-terminating leader election

- Time complexity: $O\left(\mathbf{k}^{2} \mathbf{n}^{2}\right)$ steps
- Number of messages: $O\left(\mathbf{k}^{2} \mathbf{n}^{2}\right)$
- Memory requirement: $2\lceil\log \mathbf{k}\rceil+3 \mathbf{b}+5$ bits

$$
\begin{array}{r}
\text { where } \mathbf{b}=\text { number of bits to store a label } \\
\text { asymptotically optimal }
\end{array}
$$

Conclusion

Process-terminating leader election for unidirectional rings with label multiplicity bounded by \boldsymbol{k} and

- at least one unique label

Alg. $1 \frac{\text { Time }}{\text { asymptotically optimal }}$

- asymmetric labeling
$\mathcal{A} \cap \mathcal{H}_{k}$
Time
Alg. 2 asymptotically optimal
Alg. 3
large
Memory
large
asymptotically optimal

