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I Leader election
I Ring networks
I Homonym processes
I Asynchronous message-passing
I Reliable FIFO channels
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State of the Art: LE in Rings with Homonyms

I [Flocchini et. al., 04]
Asynchronous LE in bidirectional rings
with 2 labels, asymmetric labeling and n is prime and known

I [Dobrev, Pelc, 04]: Decision on computability + LE
B Synchronous LE in (bidirectional or unidirectional) rings
B Asynchronous LE in bidirectional rings

with knowledge of bounds m ≤ n and M ≥ n

I [Delporte et. al., 14]:
Asynchronous LE in bidirectional rings where
number of labels > greatest proper divisor of n

B with knowledge of n

B without additional knowledge (but only message-terminating)
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A different approach:
Bounding the number of homonyms

I Inspired from [Dereniowski, Pelc, 16]:
Decision on computability + LE

in networks of arbitrary topology
with knowledge of a bound k on the multiplicity of a label `.

I Unidirectional ring classes:
B Hk: multiplicity of a label ≤ k

B U∗: at least one label is unique
B A: asymmetric labeling

I Goal: Asynchronous process-terminating leader election
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Results

ĀA
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Alg1 for U∗ ∩Hk

Goal: Electing the lowest unique label

1

2
1

3
1

k ≥ 3

I Counter = rough estimation of the
multiplicity

I Process elimination:

B Lower counter, 6= label
→ label not unique

B Same counter 6= 0, lower label
→ not lowest unique

I Message elimination:
B Passive, same label

→ not relevant
I Election detection:

receiving 〈label, k〉
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Alg1 for U∗ ∩Hk

Asynchronous process-terminating leader election

I Time complexity: O(kn) steps
asymptotically optimal

I Number of messages: O(n2 + kn)

I Memory requirement: dlog(k + 1)e+ b + 4 bits
where b = number of bits to store a label

asymptotically optimal
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Alg2 for A ∩Hk

Goal: Electing the process whose label sequence is a Lyndon Word
Lyndon Word = smallest rotation in lexicographic order
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p4

I Label sequence at p1:
LS(p1) = 12212

Rotations:
12212 (=LS(p1))
21221 (=LS(p2))
12122 (=LS(p3)) LW 6= LS(p1)
21212 (=LS(p4))
22121 (=LS(p5))
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Alg2 for A ∩Hk

Asynchronous process-terminating leader election

I Time complexity: O(kn) steps
asymptotically optimal

I Number of messages: O(kn2)

I Memory requirement: O(knb) bits
where b = number of bits to store a label
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Alg3 for A ∩Hk

Goal: Reducing the memory requirement of Alg2 using Peterson
principle with radix sort
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Phase 1: k = 3
I During a phase:

not lowest value of active processes
→ process eliminated

I Phase switch:
sending its value to its neighbor

when? k + 1 times current value

I Termination detection:
k + 1 times its label as value
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Alg3 for A ∩Hk

Asynchronous process-terminating leader election

I Time complexity: O(k2n2) steps

I Number of messages: O(k2n2)

I Memory requirement: 2dlog ke+ 3b + 5 bits
where b = number of bits to store a label

asymptotically optimal
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Conclusion

Process-terminating leader election for unidirectional rings with
label multiplicity bounded by k and

I at least one unique label U∗ ∩Hk

Time Memory
Alg.1 asymptotically optimal asymptotically optimal

I asymmetric labeling A ∩Hk

Time Memory
Alg.2 asymptotically optimal large
Alg.3 large asymptotically optimal
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