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Sorbonne Université, CNRS, LIP6, IUF

F-75005 Paris, France

June 10, 2024

Abstract

Self-stabilizing protocols enable distributed systems to recover correct
behavior starting from any arbitrary configuration. In particular, when
processors communicate by message passing and the communication links
are unbounded, fake messages may be placed in communication links by
an adversary. When the number of such fake messages is unknown, self-
stabilization may require huge resources:

• generic solutions (a.k.a. data link protocols) require unbounded re-
sources, which makes them unrealistic to deploy,

• specific solutions (e.g., census or tree construction) requireOpn lognq

or Op∆lognq bits of memory per node, where n denotes the network
size and ∆ its maximum degree, which may prevent scalability.

We investigate the possibility of resource-efficient self-stabilizing pro-
tocols in this context.

Specifically, we present self-stabilizing protocols for p∆ ` 1q-coloring
and maximal independent set construction in any n-node graph, under the
asynchronous message-passing model. The problem of p∆ ` 1q-coloring
sand maximal independent set construction are considered benchmarking
problems for local tasks. Our protocols offer many desirable features.
They are deterministic, converge in Opk∆n2 lognq message exchanges,
where k is the (unknown) initial number of (possibly corrupted) messages
in a communication link. They use messages of Oplog logn ` log∆q bits
with a memory of Op∆log∆ ` log lognq bits at each node. The resource
consumption of our protocols is thus almost oblivious to the number of
nodes, enabling scalability. Moreover, a striking property of our protocols
is that the nodes do not need to know the number, or any bound on the
number of messages initially present in each communication link of the
initial (potentially corrupted) network configuration. This permits our
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protocols to handle any future network with unknown message capacity
communication links.

A key building block of our coloring and maximal independent set
schemes is an algorithm to obtain an acyclic orientation of graph edges,
that is of independent interest, and can serve as a useful tool for solving
other tasks in this challenging setting.

Mots-clés: Self-stabilizing algorithm, message passing, unbounded capacity
communication, nodes coloring.

1 Introduction

Self-stabilization [14, 15, 39] is a versatile technique that enables recovery after
arbitrary transient faults hit the distributed system, where both the partici-
pating processes and the communication medium are subject to be corrupted.
Roughly, a self-stabilizing protocol is able to bring the system back to a legal
configuration, starting from an arbitrary initial, potentially corrupted, config-
uration. The core motivation for designing self-stabilizing protocols has been
underlined by Varghese and Jarayam [42], who observed that, whenever pro-
cesses can crash and recover, a message-passing distributed system may reach
any arbitrary global state, where the local variables stored at the processes may
be inconsistent, and/or the communication links may contain spurious erroneous
messages. As the global state is arbitrary, one may even assume that the local
variables at the nodes as well as the contents of the messages are adversarially
set to prevent recovery.

It is worth pointing out that self-stabilization in the presence of fake messages
in the communication links is a challenge. Specifically, it is particularly difficult
to ensure recovery when no upper bound is known on the number of (possibly
fake) messages in transit in the initial configuration. Conversely, if an upper
bound is known, then one can reset the system to a clean configuration by, first,
emptying the links, and, second, resetting all local variables using a protocol
that can “trust” the messages. Hence, non-surprisingly, the vast majority of
recent works in self-stabilization assumes a weaker adversary than the one we
consider in this paper. In particular, a widely used model of self-stabilization is
the state model.

1.1 State Model, and Data Link Protocols.

In the state model, processes atomically read the states of their neighboring
processes for updating their state. That is, the state model abstracts away
all issues related to corrupted communication media. Indeed, the state model
is motivated by the fact that there exist self-stabilizing data link protocols [2,
11, 16, 18, 25, 32, 41]. Such protocols provide (to another protocol) a layer that
ensures reliable communications between neighbors exchanging messages over
unreliable communication links. Yet, the use of data link protocols such as the
ones in the aforementioned previous work yields important issues.

In particular, if the initial number of spurious messages in the communi-
cation links is unknown (this also implies that the link maximum capacity is
unbounded), then Gouda and Multari [25] proved that it is impossible to design
a self-stabilizing data link protocol using a finite number of configurations (a.k.a.
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global states). Therefore, one has to relax the constraints on the protocol. Such
a relaxation may consist in designing pseudo-stabilizing data link protocols [11].
However, a pseudo-stabilizing protocol only guarantees that an infinite suffix of
the execution satisfies the specification of the system, and hence its stabilization
time becomes unbounded. Another relaxation consists of using self-stabilizing
data link protocols that are not bounded in terms of resources. However, such
protocols require either unbounded variables [18, 25, 32], unbounded code size
(a.k.a. aperiodic functions) [2], or an ever-growing number of messages [18],
which is undesirable from a practical point of view. A third relaxation consists
of using randomization [2], but then the correctness of the system is not certain.

As a consequence, in the framework of data link self-stabilization, previ-
ous works often assume that the initial number of spurious messages present
in the communication links is known to the participating processes [32], or al-
ternatively, that the link capacity is bounded [1, 10] (hence, the initial number
of spurious messages is upper bounded by the link capacity).1 Under this as-
sumption, very efficient self-stabilizing solutions can be obtained (see, e.g., [41]).
Actually, assuming that the number of erroneous messages initially present in
the links is known to the nodes, even stronger self-stabilizing properties can be
guaranteed, such as snap-stabilization [16] (a snap-stabilizing data link proto-
col guarantees that reliable communications between participating processes are
immediately available after a failure).

From the above, one can conclude that, while the knowledge (or approximate
knowledge) of the number of possible initial spurious messages in the commu-
nication links enables the design of efficient self-stabilizing data link protocols,
the lack of this knowledge (or an approximation of it) precludes the existence of
bounded-size self-stabilizing deterministic data link solutions. In other words,
when no bound is known, the use of data link protocols does not provide fully
practical solutions for the design of efficient self-stabilizing protocols. Therefore,
one has to focus on self-stabilization for message-passing systems, without using
data links.

1.2 Message-Passing Model.

Self-stabilizing protocols that operate in message passing systems with unknown
initial link capacity and unbounded capacity links are the most versatile, since
they can directly be executed in newly set up networks whose characteristics
were unknown when the protocol was designed. However, previous works that do
not rely on a data link layer require large messages, large memory, or both. For
instance, the versatile census protocol in [13] collects the entire graph topology at
each node, and therefore requires message and memory of Opn∆ log nq bits in n-
node networks with maximum degree ∆. Similarly, the versatile technique based
on so-called r-operators, where the algebraic properties of the executed protocol
guarantees self-stabilization, has been shown to be quite efficient in general [12,
19,20]. However, to our knowledge, in the message passing setting, there exists
r-operators only for variants of tree construction tasks [12]. Moreover, while
the size of the messages used by such protocols remains in Oplog nq bits, the
memory at each node might grow as much as Ωp∆ log nq bits.

1
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1.3 Local tasks, Vertex coloring, and Maximal Indepen-
dent Set.

One may wonder whether the large amount of memory and communications
resources used in the context of unknown and unbounded capacity links is due to
the global nature of the task to be solved (census, tree construction). Hence, an
intriguing question arises: do local tasks yield high resource consumption when
solved self-stabilizingly in an asynchronous setting with unbounded capacity
links and unknown initial number of messages? A benchmarking local task in
the domain of self-stabilization is that of vertex coloring. In vertex coloring,
every process in the network must maintain a color variable such that, for every
two adjacent nodes, the value of their color variables is distinct. Typically, the
number of colors is supposed to be restricted in the range t1, 2, . . . ,∆ ` 1u in
networks with nodes with maximum degree ∆. Vertex coloring is one of the
most studied tasks in distributed network computing in general, and in self-
stabilization in particular, as witnessed by numerous contributions: [5, 7–9, 23,
26, 28, 36–38]. While most previous work about self-stabilizing vertex coloring
considered the state model (see [8, 9, 23, 26, 38]), a few paper considered the
message passing model [5, 28, 36, 37]. However, all of the existing solutions for
this latter model provide probabilistic guarantees only [28, 36, 37], except the
recent contribution by Barenboim et al [5]. Moreover, most of them assume
some strong or weak forms of a synchronous execution model [5,28,37]. Shortly
put, to our knowledge, there are no deterministic self-stabilizing vertex coloring
protocols that operate in the asynchronous message passing setting, where the
number of initial spurious messages in communication links is unknown to the
participating processes, and the link capacity is unbounded.

General p∆ ` 1q-node coloring in a distributed fashion was initiated by
Linial [34] in the synchronous LOCAL model. Linial showed that in constant-
degree graphs the p∆ ` 1q-coloring problem requires Ωplog˚ nq rounds. While
Linial does not study the space complexity of this problem, the LOCAL model
requires each node to send its neighborhood messages carrying its unique ID,
yielding a Ωplog nq lower bound on every message size. Focusing on the upper
bounds in the same model, the best known result for deterministic algorithms in
general graphs are Oplog2 ∆ log nq rounds [22] and rOp

?
∆ ` log˚ nq rounds [4].

The first one [22] requires messages of size Oplog nq bits and Op∆ log nq bits
per process. The second one [4] requires Oplog n ` ∆ log∆q bits per process.
Self-stabilizing algorithms considered the asynchronous setting, counting the
number of individual node steps to reach a p∆ ` 1q-node coloring. The general
solution by Gradinariu and Tixeuil [26] requires Op∆nq steps and Oplog∆q bits
by process. In unidirectional general networks, deterministic self-stabilizing so-
lutions [8] are Ωpnpn ´ 1q{2q steps, while probabilistic ones [7] are Op∆nq steps
in expectation. Both algorithms require only Oplog∆q bits. In the last three
papers [7, 8, 26], the state model is used. This implies that processes can read
the entire memory of their neighbors freely and atomically, hence there is no
copying of relevant information (e.g. their neighbor ID or color) in their own
memory.

A Maximal Independent Set (MIS) is a set of processes such that no two
neighboring processes belong to the set (Independent Set), and the set is maxi-
mal (i.e., it is not the subset of another independent set). While the centralized
sequential solution to this local task is simple, the first studies considered the
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design of fast parallel MIS construction protocols [31, 35]. In the distributed
version of the problem, processes maintain a Boolean variable stating whether
they belong to the MIS [6, 21]. Most of the self-stabilizing algorithms for this
problem consider the state model [3, 27, 30, 40]. To our knowledge, the only so-
lution considering the message-passing model is the one proposed by Goddard
et al. [24], however this protocol considers a synchronous setting. It stabilizes
in Opnq synchronous rounds and Opn2q (individual node) steps. It requires
Op∆ log nq bits of memory per process and the exchanged messages have a size
of at least Oplog nq bits. The state model protocols [3, 27, 40] operate under an
asynchronous scheduler. All protocols require Opnq steps to construct the MIS
and a memory of size Op1q bits (yet they require to compare the (whole) id of
a process and its neighbors at each step, which is a free operation in the state
model).

To design our coloring and MIS algorithms, we use a Directed Acyclic Graph
(DAG) construction protocol as a building block. Building a DAG in a prob-
abilistic way requires only a constant expected stabilization time, assuming a
wireless communication model [28, 37]. However no deterministic bounds have
been provided in this model. Ghosh and Karaata [23] proposed a deterministic
self-stabilizing DAG construction over planar graphs. However, its complexity
was not studied, and remains unknown.

1.4 Our contribution.

Until this paper, it remained unknown whether resource-efficient self-stabilizing
solutions exist when communication links have unbounded capacity and an un-
known initial number of messages. We show that, for some local tasks, the
answer to this question is positive.

In more detail, we establish the following result: without any assumption
on the number of messages present initially (and their content), starting from
any configuration, we present protocols that are self-stabilizing for the tasks
of vertex coloring and MIS construction. They use Oplog log n ` ∆ log∆q bits
of memory per node and Oplog log n ` log∆q bits of information per message,
where n denotes the number of nodes in the network and ∆ its maximum degree.
Notice that we consider an upper bound k on the initial number of messages
in the communication links. This upper bound is only used to analyze the
number of exchanged messages of our algorithms, yet it is not necessary for
their correctness and convergence.

A key ingredient of our protocols of independent interest is a symmetry-
breaking mechanism that locally orients every link in the network so that the
overall orientation is acyclic (hence constructing a directed acyclic graph in
the network), simplifying the design of higher layer algorithms such as vertex
coloring or maximal independent set.

Our work thus paves the way toward resource-efficient self-stabilizing proto-
cols for the most challenging communication model, enabling solutions to remain
valid when new networks are considered.
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2 Model

The communication model consists of a point-to-point communication network
described by a connected graph G “ pV,Eq where the nodes V represent the
processes and the set E represents bidirectional communication channels. Pro-
cesses communicate by message passing: a process sends a message to another
by depositing the message in the corresponding channel. We denote by Npvq

the set of processes that are neighbors of process v, i.e., there exists a commu-
nication link between them and v. Let us denote by n the number of processes
and by ∆ the degree of the graph. Note that we denote by δpvq the degree of
node v.

2.1 Communications.

The communication model is asynchronous message passing with FIFO channels
(on each link messages are delivered in the same order as they have been sent).
The capacity of each link is unbounded. The initial number of messages per
link is bounded by an integer k, however the nodes do not know k.2 Qpu, vq “

pmq,mq´1, . . . ,m1q is the queue representing the messages in FIFO order in the
channel from u to v, where m1 is the head of the queue. We assume each node
v is fair with respect to its input channels: if v receives an arbitrarily large
number of messages, then a given message m cannot stay in v’s input channel
forever. We denote by M the set of all possible messages. A node v has access
to locally unique port numbers associated with its adjacent edges. We do not
assume any consistency between port numbers of a given edge. In short, port
numbers are constant throughout the execution but two neighboring processes
can associate different port numbers for the communication link between them.
We denote by Portspvq the set of port numbers for the adjacent edges of process
v. The port number associated by v to the edge pv, uq, if it exists, is denoted
ptpv, uq.

2.2 Execution.

Each process v maintains some variables. We denote by varv the value of
variable var at process v. The state of a process is the vector of the values of
its variables. A configuration is the vector of the states of every process and the
content of the channels between every two neighboring processes. We denote by
varvpγq the value of variable varv in configuration γ. Similarly, varvru, γs and
Qpγ, v, uq denote the value of the entry u of array varv in γ and the content of
channel Qpv, uq in γ, respectively. The set of all configurations is denoted by Γ.

Let ÞÑ be the binary relation between configurations such that γ ÞÑ γ1 if
the system can reach γ1 from γ by executing an (atomic) step. During a step,
some processes: (a) receive messages (at most one by incoming channel), (b)
do some internal computation, and (c) send some messages (at most one by
outgoing channel). An execution is a maximal sequence of configurations e “

γ0, γ1, . . . , γi, . . . such that @i ą 0, γi´1 ÞÑ γi. Configuration γ0 is the initial
configuration of e.

2This bound k is only used in the complexity study, in order to count the number of
exchanged messages. However, it is not needed for the correctness and convergence of the
proposed algorithms.
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2.3 Identifier.

A node v has access to a constant unique identifier idv, but can only access
its identifier one bit at a time, using the Bitvpiq function. The function Bitv
returns the places where there is a bit with value one in idv. Specifically, Bitvpiq
returns the position (numbered from right to left) of the ith most significant
(i.e. (from left to right) bit equal to 1. This function can be hard-coded in the
immutable code portion of the node. For example, suppose node v has identifier
10 (in decimal notation), or 1010 (in binary notation). Then, one can implement
Bitvpiq as follows for v “ 1010:

Bitvpiq :“

$

&

%

4 if i=1
2 if i=2
-1 if i ą 2

Since we assume that all identifiers are Oplog nq bits long, the Bitv function
only returns values with Oplog log nq bits. Also, when executing Function Bitv,
the program counter only requires Oplog log nq values. In turn, this position can
be encoded with Oplog log nq bits when identifiers are encoded using Oplog nq

bits, as we assume they are. Thus, this allows us to determine the ith bit of the
identifier using only Oplog log nq bits of mutable memory.

Notice that one can choose to hardcode function Bitv directly into the code
of the algorithm instead of storing the identifier in the immutable memory of
the node.

2.4 Self-stabilization.

An algorithm A is self-stabilizing for some specification SP if there exists a
subset of legitimate configurations Γℓ Ď Γ such that:

• Closure: Γℓ is closed, i.e., @γ, γ1 P Γ such that γ ÞÑ γ1, if γ P Γℓ then
γ1 P Γℓ.

• Convergence: Γ Ź Γℓ, i.e., for any execution e “ γ0, γ1, . . . , γi, . . . of A
starting from an arbitrary initial configuration γ0 P Γ, Di ě 0 such that
γi P Γℓ.

• Correctness: For any execution e “ γ0, γ1, . . . , γi, . . . of A starting from
a legitimate configuration γ0 P Γℓ, e satisfies the specification SP .

2.5 Complexities.

When studying the complexity of a self-stabilizing message-passing algorithm,
one usually consider three different complexities: the convergence time, the
number of messages exchanged before convergence, and the memory require-
ment.

For the purpose of time complexity analysis, we define a round as the smallest
execution fragment such that the two following conditions hold: (i) all messages
that were in transit at the beginning of the round are received and processed3

by the nodes, and (ii) all nodes that have no message in transit in their input

3Processed here means that, if the algorithm expects some treatment on the reception of
a message, such treatment has been executed.
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channels trigger a timeout and process it (i.e., execute the code handling the
timeout).

Space-complexity in self-stabilization considers only volatile memory (that
is, memory whose content changes during the execution of the protocol), while
non-volatile memory (whose content does not change during the execution of
the protocol, used e.g., to store the code and the constants, and in particular
the node unique identifier) is not included in the space complexity. Volatile
memory includes the space allocated for protocol variables, and in particular the
program counter (that commands the next line of code to execute). A possible
explanation is that every node can be modeled as an automaton whose states are
the possible states of memory and whose transitions are deduced from the code
of the algorithm (that is deterministic in our case). If a deterministic automaton
has x states, the number of arcs cannot be greater than x2. So, if the node uses
Oplogpxqq bits of memory for the states, it also uses Op2 logpxqq “ Oplogpxqq

bits for the code. Thus, to design a space-efficient self-stabilizing algorithm, one
has to make sure that the program counter does not grow beyond limits.

3 Algorithm DAG

The first layer of our solution is to provide a symmetry-breaking mechanism.
Our approach is to construct a directed acyclic graph (or DAG) based on the
unique identifiers of the nodes: hence an edge is to be oriented from the lower
identifier to the higher identifier. Of course, neighboring nodes do not know
the identifier of the other, and should not communicate the identifier directly
to each other as it would break the oplog nq bits constraint on messages.

3.1 Description of Algorithm DAG

A formal description of our algorithm is presented as Algorithm 1. In a rougher
way, for each adjacent link pv, uq of process v, v maintains a binary variable
Ordvppq, where p “ ptpv, uq, as follows. Ordvppq represents the orientation of
pv, uq. More precisely, Ordvppq equals 0 if v’s identifier is greater than the
identifier of u and 1 otherwise. To update variable Ordvppq, v continuously
exchanges information about its identifier with u in a compact way using the
Bitv function and a counter variable cntv P t1, . . . , rlog
IDvsu of size Oplog log nq bits. Figure 1 shows the DAG that is built on an
example.

When the counter equals to 1, v sends a message to each of its neighbors
u requesting for the position of its own first bit of value one (see Line 12). A
neighbor u replies by a message ă 1, B ą, where B is the position of the first
bit with value one of u (see Line 14). Now, if B ą Bitvp1q, u’s identifier is
greater than that of v, and if B ă Bitvp1q, then u’s identifier is smaller than
that of v. Finally, if B “ Bitvp1q, the comparison should continue. When v has
received answers from every neighbor concerning the first position, v increments
its counter (see Line 8). Then, for each neighbor whose status remains unknown
(that is, the condition B “ Bitvp1q has been satisfied), v requests the value of
the second bit, and so on until all link orientations are established. When this
is the case and the counter has reached the length of the binary identifier, the
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Figure 1: DAG: Ordvppq “ 0 is represented by a circle and Ordvppq “ 1 is
represented by a black triangle.

comparison process restarts, to achieve that the node executes the Restartpvq

function (see Lines 1-4) which, in particular, sets cntv to 1.
Due to the arbitrary initial configuration, where the link may contain an

unknown number of corrupted messages, this process repeats indefinitely. A
Do forever process is used to handle the case of a deadlock due to lack of
messages (see Lines 25-26). Moreover, messages ă ℓ, B ą which are received by
v when its counter cntv is different than ℓ are discarded.

In addition to variables Ordvppq and cntv, process v maintains the following
variables. The variable tmpvppq P t0, 1,Ku is a temporary variable used during
the computation of the order of the identifiers. The assignment of the variable
tmpvppq to K means that the orientation of the link pv, uq (if p “ ptpv, uq) has
not yet been computed at this step of the algorithm. It is important to note
that, contrary to the tmpvppq variable, the Ordvppq variable does not take the
K state. Indeed, once the algorithm has converged, in spite of the permanent
recalculation, the DAG is maintained thanks to this variable which does not
change its value anymore. Moreover, the variable waitv is a set of port numbers
of the node v used to remember the neighbors that have not yet responded to
v during the current step of the DAG calculation.

Some privacy In addition to reducing the memory requirements, using com-
pact identifiers for this algorithm can provide some privacy to the nodes. Indeed,
since the nodes will never exchange their whole identifier at a time, an adver-
sary temporarily listening to the network and capturing a few messages will
only learn a part of their identifiers. Even the nodes will, on average, not learn
the whole identifier of their neighbors. Indeed, they only send the bits that are
necessary for their comparison. In the worst case, the identifier of two neigh-
boring nodes differ only on their least significant bits, so they must discover
the whole identifier of their neighbor to choose the orientation of their common
edge. However, in other cases, only some most significant bits are sufficient to
decide which neighbor has the greatest identifier.

3.2 Correctness of Algorithm DAG

We now state the main result about Algorithm 1:
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Algorithm 1: DAG Algorithm

1 Function Restart(v) is
2 cntv :“ 1; waitv :“ Portspvq

3 forall p P Portspvq:
4 tmpvrps :“ K

5 Function Step(v) is
6 if waitv “ H then
7 if cntv ă rlog idvs then
8 cntv :“ cntv ` 1
9 waitv :“ tp P Portspvq : tmpvrps “ Ku

10 else
11 Restartpvq

12 send ă cntv ą to @p P waitv

13 Upon receipt of ă ℓ ą from port p
14 send ă ℓ,Bitvpℓq ą to p
15 Steppvq

16 Upon receipt of ă ℓ, B ą from port p
17 if pp P waitvq ^ pℓ “ cntvq then
18 waitv :“ waitvztpu

19 if B ą Bitvpℓq then
20 Ordvrps :“ 1; tmpvrps :“ 1

21 if B ă Bitvpℓq _ pB “ Hq then
22 Ordvrps :“ 0; tmpvrps :“ 0

23 Steppvq

24 Do forever
25 if Dp P Portspvq : pp “ ptpv, uqq ^ pQpu, vq “ Hq then
26 Steppvq

10



Theorem 1. Algorithm 1 solves the spanning DAG construction problem in
a self-stabilizing manner in n-nodes graphs with maximum degree ∆, assuming
the message passing model. If the n node identifiers are in r1, ncs for some
c ě 1, then Algorithm 1 uses Oplog log n ` ∆ log∆q bits of memory per node
and Oplog log nq bits per message. Moreover, it converges after Oplog nq rounds,
and the exchange of Opk∆n log nq messages, where k (unknown to the algorithm)
is the maximum number of (potentially corrupted) messages initially present in
each communication link.

An erroneous message is a message that does not match the identifier of the
putative sender node. More formally, the message ă ℓ, B ą in queue Qpv, uq is
erroneous if and only if B ‰ Bitupℓq. To prove Theorem 1, we first prove that
erroneous messages eventually disappear, and that the algorithm never creates
a erroneous message (Lemma 1).

Let us first define some functions used by Lemma 1. Let λm : Γˆ M ˆ V ˆ

V Ñ N be the following function:

λmpγ,m, u, vq “

"

1 if m “ă ℓ, B ą ^pB ‰ Bitupℓqq

0 otherwise

This function captures if a message in the link from u to v is erroneous. The
λQ function captures the number of erroneous messages in the link between u
and v. Let λQ : Γ ˆ V ˆ V Ñ N be the following function:

λQpγ, u, vq “
ÿ

mPQpγ,u,vq

λmpγ,m, u, vq

Let λ : Γ ˆ V Ñ N and Λ : Γ Ñ N be the following functions that respectively
capture the number of erroneous messages that v can receive and the number
of erroneous messages for the entire configuration:

λpγ, vq “
ÿ

uPNpvq

λQpγ, u, vq and Λpγq “
ÿ

vPV

λpγ, vq

Finally, we define the set of configurations ΓB as follows ΓB “ tγ P Γ :
Λpγq “ 0u

Lemma 1. Γ Ź ΓB in Op1q rounds and Opk∆nq messages, and ΓB is closed.

Proof. In configuration γi P Γ, when node v receives an erroneous message
ă ℓ, B ą from u with B ‰ Bitupℓq, v sends in configuration γj with j ą i a
message ă cntv ą (see Line 23 and Function Steppvq of Algorithm 1). As a
consequence, since the erroneous message is no longer in Qpγi, u, vq, we obtain
λQpγi, u, vq ă λQpγj , u, vq. Note that, we obtain λQpγ, u, vq “ 0 after at most k
receptions of messages through the port p of node v (p being the port number of
v leading to u). So, as there at most k initially erroneous messages in each link,
a configuration in ΓB is reached in at most one round. Since a node u processes
at most kδpuq messages per round, the total number of messages sent before a
configuration in ΓB is reached in Opk∆nq.

If node u receives message ă ℓ ą in γi, it sends ă ℓ,Bitupℓq ą in configuration
γx (see Line 13 of Algorithm 1) followed by a message ă cntv ą in γy (see
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Function Steppvq of Algorithm 1), with i ă x ă y. So, u never sends ă ℓ, B ą

with B ‰ Bitupℓq. As a result,

λQpγi, u, vq ă λQpγj , u, vq “ λQpγx, u, vq “ λQpγy, u, vq and Λpγiq ă Λpγyq.

So, ΓB is closed.

In order to define a configuration that satisfies a DAG property, we need
to define some functions and predicates. The function difpv, uq returns the
minimum bit position that differentiates the identifier of v from that of u. More
formally:

difpv, uq “ min
␣

ℓ : ℓ P t1, . . . , rlog nsu ^ Bitvpℓq ‰ Bitupℓq
(

(1)

Now, the following predicates capture whether a node v and its neighbor u
satisfy our DAG condition in configuration γ. The predicate Gl captures the
behavior of variable tmp when the counter cntv has not yet reached the bit that
allows differentiating the identifiers (i.e., when cntv is lower than or equal to
difpu, vq).

Glpγ, u, vq ” pcntvpγq ď difpu, vqq ^ ptmpvrγ, us “ Kq (2)

The predicate Gg captures the behavior of the variable tmp when the counter
cntv has reached the bit that allows differentiating the identifiers. In other
words, when the node v knows it is greater or smaller than its neighbor u. Note
that, at this step, the u node has responded so the port must not be in the waitv
set, which represents the set of ports that have not responded.

Ggpγ, v, uq ” cntvpγq ě difpu, vqq ^ ptmpvrγ, us P t0, 1uq ^ ptpv, uq R waitvpγq

(3)
The G predicate captures the behavior of variable tmp in both cases.

Gpγ, u, vq ” Glpγ, u, vq _ Ggpγ, u, vq (4)

Let ϕppγ, u, vq : Γ ˆ V ˆ V Ñ N be the following function:

ϕppγ, u, vq “

$

&

%

0 if pidu ą idvq ^ pOrdvrγ, us “ 1q ^ Gpγ, v, uq

0 if pidu ă idvq ^ pOrdvrγ, us “ 0q ^ Gpγ, v, uq

1 otherwise
(5)

Let ϕ : Γ ˆ V Ñ N and Φ : Γ Ñ N be the following potential functions:

ϕpγ, vq “
ÿ

uPNpvq

ϕppγ, u, vq and Φpγq “
ÿ

vPV

ϕpγ, vq (6)

Finally, we define the set of configurations ΓDAG as the following ΓDAG “ tγ P ΓB :
Φpγq “ 0u

Lemma 2. ΓB Ź ΓDAG.
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Proof. Let us consider a configuration γ0 P ΓB and a node v such that ϕpγ0, vq ą

0, which has as a direct consequence that there exists a node u P Npvq such
that ϕppγ0, u, vq “ 1.

To reach ϕppγ, u, vq “ 0, the node v must have a correct value in its variable
Ordvrus. To achieve this, it must compare its identifier with that of u. The
only way to compare all the bits of the identifiers of u and v is to increment
the counter of v. The counter of v is incremented in the Step function if and
only if waitv “ H. In the following, we prove that starting from configuration
γ0 P ΓB with waitv ‰ H, the system converges to a configuration γ P ΓB with
waitv “ H.

Let us assume that, waitv ‰ H in the configuration γ0 . It means that
there exists a neighbor u of v such that p P waitv and p “ ptpv, uq. Port p is
removed from the set waitv when v receives message mℓv,B

u “ă ℓ, B ą from u
(see Line 18 of Algorithm 1). Moreover, γ P ΓB guarantees that, when v receives
a message of type ă ℓ, B ą from u then B “ Bitupcntvpγqq. Several cases must
be considered to capture the removal of p from waitv (see Figure 2).

v um
ℓ,B
v

‚

Qpγ, u, vq

Qpγ, v, uq

a). mℓ,B
v P Qpγ, u, vq

v umℓ
v

‚

Qpγ, u, vq

Qpγ, v, uq

b). mℓ,B
v R Qpγ, u, vq ^ mℓ

v P Qpγ, v, uq

v u

Qpγ, u, vq

Qpγ, v, uq

c). mℓ,B
v R Qpγ, u, vq ^ mℓ

v R Qpγ, v, uq

^Qpγ, u, vq ‰ H

v u

Qpγ, u, vq

Qpγ, v, uq

d). mℓ,B
v R Qpγ, u, vq ^ mℓ

v R Qpγ, v, uq

^Qpγ, u, vq “ H

v u

Qpγ, u, vq

Qpγ, v, uq

e). Q2pγ, v, uq “ H

Figure 2: The different cases before the removal of p from waitv

1. First, assume that mℓv,B
u is in Qpγ0, u, vq. Let us define the function

IApγ, u, vq that captures the number of message receipts required to achieve
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the removal of p from waitp, IA : Γ ˆ V ˆ V Ñ N:

IApγ, u, vq “ minti : mi P Qpγ, u, vq ^ mℓv,B
u “ miu (7)

Notice that we assume a numbering of the messages inside the channels in
a FIFO way, just for the reasoning. More formally, if mℓ,B

v P Qpγj , u, vq we
obtain IApγj , u, vq ą IApγj1 , u, vq where j1 ą j and v received a message
from u in γj1 .

2. If mℓv,B
u R Qpγj , u, vq, u must receive a message mℓv

v “ă cntvpγq ą from
v in order to send a message mℓ,B

v in configuration γj1 with j1 ą j (see
Line 12 of Algorithm 1). So let us suppose that, mℓv,B

u R Qpγ0, u, vq and
mℓv

v P Qpγ0, v, uq. The function b : ΓˆV ˆV Ñ N captures the number of
messages that a node can receive before it sends a message of type mℓv,B

u

in this case.

bpγ, v, uq “ minti : mi P Qpγ, v, uq ^ mℓv
u “ miu (8)

Remark that, when a node u receives a message, u replies by sending either
one message (if the received one is of type ă ℓ, B ą, see Lines 23 and 12
of Algorithm 1) or two messages (if the received one is of type ă ℓ ą,
see Lines 12, 14, and 15 of Algorithm 1). Moreover, a configuration in
ΓB does not guarantee that the messages of type ă ℓ ą are equal to mℓ

v.
Let us define the function IBpγ, u, vq : Γ ˆ V ˆ V Ñ N that captures the
number of messages v needs to receive to achieve the removal of p from
waitp:

IBpγ, u, vq “ 2bpγ, v, uq ` |Qpγ, u, vq| (9)

3. Suppose now, mℓv,B
u R Qpγ0, u, vq and mℓv

v R Qpγ0, v, uq but Qpγ0, u, vq ‰

H. Remark that, upon each reception of a message, v executes Step(v)
(see Lines 15 and 23 in Algorithm 1) which in turn sends a message mℓ

v. So
after ICpγ, u, vq messages receptions by v, v executes waitv :“ waitvztpu,
where

ICpγ, u, vq “ 1 ` |2Qpγ, v, uq| ` |Qpγ, u, vq| (10)

4. Suppose now, mℓv,B
u R Qpγ, u, vq, mℓv

u R Qpγ, v, uq and Qpγ, u, vq “ H but
Qpγ, v, uq ‰ H. In this case, the node v execute Do forever and sends
a message mℓ

v (see Lines 24, 25, 26, and 12 in Algorithm 1). So after
ICpγ, u, vq messages received by v, v executes waitv :“ waitvztpu.

5. If Q2pγ, u, vq “ H, where Q2pγ, u, vq denote the set of messages contained
in Qpγ, u, vq and Qpγ, v, uq, both u and v can execute Do forever. The
maximum number of receptions, i.e., 2, is obtained when u and v jointly
execute Do forever.

6. To summarize the following function captures all aforementioned cases,
let dpγ, u, vq : Γ ˆ V ˆ V Ñ N be :

dpγ, u, vq “

$

’

’

’

’

&

’

’

’

’

%

IApγ, u, vq if mℓv,B
u P Qpγ, u, vq

IBpγ, u, vq if mℓv,B
u R Qpγ, u, vq ^ mℓv

v P Qpγ, v, uq

ICpγ, v, vq if mℓv,B
u R Qpγ, u, vq ^ mℓv

v R Qpγ, v, uq

^Q2pγ, u, vq ‰ H

2 if Q2pγ, u, vq “ H

(11)
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and let Dpγ, vq : Γ ˆ V Ñ N be the following potential function:

Dpγ, vq “
ÿ

ptpv,uqPwaitvpγq

dpγ, u, vq (12)

By construction of dpγ, u, vq, upon each reception of a message by v in
configuration γ1, we obtain dpγ, u, vq ą dpγ1, u, vq. So the system reaches
a configuration γe P ΓB such that Dpγe, vq “ 0, in other words waitvpγeq “

H.

Now we must capture the number of messages received by v to increase its
counter until it puts the right values in Ordvrus, namely v reaches a configuration
γ P ΓB where ϕppγ0, u, vq “ 1. A node v executes the algorithm if it receives a
ă ℓ, B ą message, a ă ℓ ą message or in the absence of a message v executes
the function Do forever. In all cases, in γa (with a ą 0), the node v executes
the Steppvq function (see Lines 15, 23, and 26 in the Algorithm 1). In the γe
configuration where waitvpγeq “ H, the v node increases its own counter or
executes the Restart(v) function (see Lines 8, 11 in the Algorithm 1).

Note that, when v executes Restart(v) in configuration γg the function
Glpγg, u, vq becomes true, because the counter of v is set to 1 and the variable
tmpvrps is set to K for all ports of v (see Lines from 2 to 4 in the Algorithm 1).

Moreover, starting from a configuration γr P ΓB where the node v executes
Restart(v), every message m “ă ℓ, B ą in Qpγr1 , u, vq, with r1 ą r, satisfies
Bitupℓq “ B. Then, when cntv reaches difpu, vq in γj , with j ą r, the variables
Ordvrγj , us and tmpvrγj , us takes values 1 if idu ą idv, or 0 if idu ă idv (see
Lines 17 and 18 of Algorithm 1). In addition, ptpv, uq R waitvpγjq so Ggpγj , v, uq

is true and ϕppγ, u, vq reaches 0.

To summarize, starting from a configuration γ0 where ϕppγ0, u, vq “ 1,
ϕppγ, u, vq reaches 0 after at most rlog idvs ´ cntvpγq ` difpu, vq increments of
cntv. Note that, if in the initial configuration γ0, Gpγ0, u, vq is true, the counter
only needs difpu, vq ´ cntvpγq increments. To capture that we define function
ϵ : Γ ˆ V ˆ V Ñ N :

ϵpγ, u, vq “

"

rlog idvs ´ cntvpγq ` difpu, vq if cntv ą difpu, vq

difpu, vq ´ cntv otherwise
(13)

The following function capture all the process of the Algorithm 1, α : ΓˆV Ñ

N ˆ N :
αpγ, vq “ pϵpγ, vq, Dpγ, vqq

and αpγ1, vq ă αpγ, vq if and only if ϵpγ1, u, vq ă ϵpγ, u, vq or ϵpγ1, u, vq “

ϵpγ, u, vq and dpγ1, u, vq ă dpγ1, u, vq. Let γi P ΓB . In a configuration γi`1

where v receives at least one message, we have αpγi`1, u, vq ă αpγi, u, vq. When
αpγj , u, vq “ p0, 0q the function ϕpγj , u, vq decreases by one. Note that after
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that the function α can increase because the computation of the algorithm is
perpetual but the function ϕ does not increase because Ordvrus does not change
anymore.

So, the system reaches a configuration γ where Φpγq “ 0, in other words
γ P ΓDAG and ΓDAG is closed.

Lemma 3. Algorithm 1 converges in Oplog nq rounds, and exchanges before
convergence Opk∆n log nq messages .

Proof. To converge from Γ to ΓB, it requires receiving and disposing of all
erroneous messages in the channels as shown in the proof of Lemma 1. Each
process must treat at most k messages and in one round, the system reaches a
configuration of ΓB.

Then, we use the potential function Φ to compute the number of rounds.
Remember that αpγ, vq “ pϵpγ, vq, Dpγ, vqq. From a configuration γ where
Dpγ, vq ‰ 0, process v has to send Op∆kq messages (at most 3k ` 1 for each
channel) to reach a configuration γ1 where Dpγ, vq ‰ 0. It lasts at most 4
rounds (case c). in the proof of Lemma 2 is the longer one). Function ϵpγ, vq

is bounded by log n. Thus, the system converges from ΓB to ΓDAG in at most
4 log n rounds.

Hence, in at most 4 log n ` 1 round, each node v computes its set of link
directions in the DAG. At each round, v reads kδpvq messages, so the system
converges after Opk∆n log nq messages.

Proof of Theorem 1 We first proved that erroneous messages eventually
disappear, and the Algorithm 1 never creates an erroneous message (Lemma 1).
Starting from a configuration γ in ΓB the set of configurations where there
are no erroneous message Algorithm 1 converges to a configuration γ1 P ΓDAG.
ΓDAG is the set of configurations where the variables Ordv for all v P V respect
Ordvrus “ 1 if pidu ą idvq, or Ordvrus “ 0 if pidu ă idvq. The convergence
and closure in configurations ΓDAG is given by Lemma 2. Finally, by Lemma 3,
we have proof that Algorithm 1 converges in Oplog nq rounds, and exchanges
Opk∆n log nq messages before convergence.

4 Vertex Coloring

We now present our self-stabilizing p∆`1q vertex coloring algorithm, its pseudo-
code is given in Algorithm 2. This algorithm is built on top of Algorithm 1,
namely we assume that each node v knows which neighbor has a lower identifier,
and which has a higher one using variables Ord of the Algorithm 1.

4.1 Description of the Vertex Coloring Algorithm

Each node v maintains a color variable, denoted by cv P t1, . . . , δpvq ` 1u. In
addition, v maintains an array with all the known colors of its neighbors denoted
cvrus P t1, . . . ,∆`1u for each port u. To do so, infinitely often, v sends its own
color to its neighbors by sending a message ă cv ą (see Lines 6, 8, 14, and 20
of Algorithm 2). If v has a neighbor u whose color is identical (in other words,
if v detects a conflict) but v’s identifier is greater, v changes its color to the
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minimum color not used by its neighbors, by executing function Conflictpvq

(see Lines 1-8 of Algorithm 2).
Note that, since the maximum degree of the graph is ∆, the size of cvrs is

bounded by ∆ log∆.

Algorithm 2: Vertex coloring

1 Function Conflict(v) is /* cvrus “ cv */

2 if
´

@w P Portspvq : pcvrws ‰ Kq^

3
`

cvrws “ cvq ñ pOrdvrws “ 0q
˘

¯

then

4 cv :“ mint1, . . . , δpvquztcvrws : w P Portspvqu

5 forall w P Portspvq

6 send ă cv ą to w

7 else
8 send ă cv ą to u

9 Upon receipt of ă c ą from port u
10 cvrus :“ c
11 if cvrus “ cv then
12 Conflictpvq

13 else
14 send ă cv ą to u

15 Do forever
16 forall u P Portspvq : Qpu, vq “ H

17 if cvrus “ cv then
18 Conflictpvq

19 else
20 send ă cv ą to u

4.2 Correctness of the Vertex Coloring Algorithm

Theorem 2. Algorithm 2 solves the vertex coloring problem in a self-stabilizing
manner in n-nodes graph with maximum degree ∆, assuming the message pass-
ing model and a spanning DAG. It uses Op∆ log∆q bits of memory per node,
Oplog∆q bits per message. Moreover, it converges after Opnq rounds and ex-
changes Op∆ k nq messages.

In the following proof, we assume that the oriented graph described by vari-
ables Ord is a spanning DAG. DAG construction is an independent block used by
the input vertex coloring algorithm. Consequently, the complexities computed
in this section depend solely on the vertex coloring algorithm.

Lemma 4. Every time process v executes a step, it sends ă cv ą to every
neighbor u P Npvq.

Proof. Each time v executes a step, for every neighbor u P Npvq, two cases can
occur:
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• v receives a message from u, so v executes Conflictpvq, or sends back
ă cv ą to u.

• v executes Do forever, so it calls Conflictpvq, or sends back ă cv ą to
u.

If v calls Conflictpvq, either v sends back ă cv ą to u, or v changes its color
and sends the new one to every neighbor.

Let α1 : Γ ˆ V Ñ N and α2 : Γ ˆ V Ñ N be the following functions:

α1pγ, vq “ |tu P Npvq : cu “ cvu| and α2pγ, vq “ |tu P Npvq : cvrus ‰ cuu|

Let µ : Γ ˆ V ˆ t1, . . . ,∆u Ñ N be the following function:

µpγ, v, cq “

"

1 if cv ‰ c
0 otherwise

Let α3 : Γ ˆ V Ñ N be the following function:

α3pγ, vq “
ÿ

uPNpvq

¨

˝

ÿ

ăcąPQpu,vq

µpγ, u, cq

˛

‚

Let A : Γ Ñ N be the following potential function:

Apγq “
ÿ

vPV

`

α1pγ, vq ` α2pγ, vq ` α3pγ, vq
˘

We define Γα “ tγ P Γ : Apγq “ 0u.

Lemma 5. Γ Ź Γα.

Proof. Let dspvq be the minimum distance from process v to a source of the
DAG (i.e., a process with only outgoing edges). First, we show that in finite
time, every process v stops changing its color by induction on dspvq.

• Base case: If dspvq “ 0, then v is a source of the DAG and @u P Npvq,
Ordvrus “ 1. Thus, v never changes its color cv (see Line 3).

• Induction step: If dspvq “ x` 1, then @u P Npvq, either Ordvrus “ 1, or
dspuq ă dspvq “ x ` 1. By induction hypothesis, in finite time, @u P Npvq

such that dspuq ď x, the value of cu eventually stops changing. Then, by
Lemma 4, u sends ă cu ą to v infinitely often, so eventually cvrus “ cu.
Now, either v never changes its color, or it gets a new color different
from cu. In the second case, v is no longer in conflict with any neighbor
u P Npvq such that dspuq ă dspvq. Node v can only be in conflict with
neighbors w P Npvq such that Ordvrws “ 1, and thus v does not change
its color anymore (see Line 3). Hence, v can change its color at most once.

Once every process stops changing its color forever, a process v cannot send
a color different from its own. Thus, there exists a configuration γa such that,
in every subsequent configuration γ, for every process v, v does not change its
color and α3pγ, vq “ 0. Moreover, in finite time, processes update their local
knowledge about their neighbors’ colors (see Lemma 4 and Line 10). Thus,
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there is a configuration γb after γa such that, in every configuration γ after γb,
for every process v, α2pγ, vq “ 0.

Finally, we show that in every configuration after γb, there is no color conflict.
Assume by contradiction that in some configuration γ after γb, there is a color
conflict. Let us consider the process v in conflict that has the greatest ID
among all such processes. For every u P Npvq such that cv “ cu, we have
cvrus “ cu “ cv and curvs “ cv “ cu. Moreover, by assumption, Ordvrus “ 0
and Ordurvs “ 1. Thus, in finite time, v calls the function Conflict, and changes
its color (see Line 3), a contradiction. So, in every configuration γ after γb, and
for every process v P V , α1pγ, vq “ 0. Hence, Apγq “ 0, and Γ Ź Γα.

Lemma 6. Γα is closed.

Proof. Let γ ÞÑ γ1 such that γ P Γα. Let v P V and u P Npvq.
First, in γ, cvrus “ cu ‰ cv. Moreover, every message in Qpu, vq contains

color cu ‰ cv. Thus, v does not change its color during step γ ÞÑ γ1. Hence,
α1pγ1, vq “ 0.

Since u and v do not change their color between γ and γ1, and since every
message in Qpu, vq in γ equals cu, then the value of cvrus does not change, and
remains equal to cu in γ1. Hence, α2pγ1, vq “ 0.

Finally, u does not change its color between γ and γ1, and every message
sent by u during step γ ÞÑ γ1 equals ă cu ą similarly to every other message in
Qpu, vq in γ that u did not process during step γ ÞÑ γ1. Thus, α3pγ1, vq “ 0.

Lemma 7. Algorithm 2 converges in Opnq rounds and exchanges Op∆kn2q

messages before convergence.

Proof. After one round, the system is purged of all possibly erroneous messages
(that is, messages that contain a color that does not match the color of the
sender node) contained in the initial configuration. Moreover, by Lemma 4, at
each round a process v sends its color ă cv ą to all its neighbors, and those
neighbors receive this message during the next round.

Now, consider a process v that changes its color during some round. The
last time v changes its color during the round, it knows the real colors of its
neighbors, i.e., @u P Npvq, cvrus “ cu. So by changing its color, v solves its
color conflicts with its neighbors having a lower identity and does not create
any new conflict with them. Since a process can change its color only if it is in
conflict with a node of lower identity, v will not change its color anymore after
this round. Hence, in the worst case, processes stop changing their colors after
Opnq rounds and there is no color conflict anymore.

In the worst case, at each round, a process replies to every message sent by its
neighbors during the previous round. Thus, Op∆kn2q messages are exchanged.

To avoid starvation of one of the algorithms, we compose them using a fair
composition [29], i.e., each process alternatively executes a step of Algorithm 1
and a step of Algorithm 2. As demonstrated in previous work [17], fair compo-
sition preserves the property of self-stabilization.
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5 Maximal Independent Set

As another direct application of Algorithm 1, we present in this section a max-
imal independent set algorithm. Its pseudo-code is given in Algorithm 3.

5.1 Description of the Maximal Independent Set Algo-
rithm

Similarly to self-stabilizing maximal independent set algorithms written for the
state model [27], the priority to join the maximal independent set is deduced
from the node identifiers. In our scheme, we assume that each node v knows
which neighbor has a lower identifier, and which has a higher one using variables
Ord of the Algorithm 1. Each node v maintains a membership variable, denoted
by mv P tFalse, Trueu. In addition, v maintains an array mvrs with all the
known membership status of its neighbors denoted mvrus P tFalse, Trueu, for
each port u. To do so, infinitely often, v sends its own membership status to
its neighbors by sending a message ă mv ą. If v has a lower identifier neighbor
u whose membership status is True, v’s membership becomes False. If none of
v’s lower identifier neighbors has membership equal to True, v’s membership
becomes True.

Note that, since the maximum degree of the graph is ∆, the size of mvrs is
upper bounded by ∆.

Algorithm 3: Maximal Independent Set

1 Function Update(v) is

2 if
´

@w P Portspvq : pOrdvrws “ 0q ñ mvrws “ Falseq

¯

then

3 mv :“ True
4 else

5 if
´

Dw P Portspvq : pOrdvrws “ 0q ^ mvrws “ Trueq

¯

then

6 mv :“ False

7 forall w P Portspvq

8 send ă mv ą to w

9 Upon receipt of ă m ą from port u
10 mvrus :“ m
11 Updatepvq

12 Do forever
13 Updatepvq

5.2 Correctness of the Maximal Independent Set Algo-
rithm

Theorem 3. Algorithm 3 solves the maximal independent set problem in a
self-stabilizing manner in n-nodes graph with maximum degree ∆, assuming the
message passing model and a spanning DAG. It uses Op∆q bits of memory per
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node, Op1q bits per message. Moreover, it converges after Opnq rounds and
exchanges Op∆ k n2q messages.

In the following proof, we assume that the oriented graph described by vari-
ables Ord is a spanning DAG. DAG construction is an independent block used by
the input vertex coloring algorithm. Consequently, the complexities computed
in this section depend solely on the maximal independent set algorithm.

Lemma 8. Every time process v executes a step, it sends ă cv ą to every
neighbor u P Npvq.

Proof. Each time v executes a step, for every neighbor u P Npvq, two cases can
occur:

• v receives a message from u, so v executes Updatepvq and sends a message
to every neighbor.

• v executes Do forever, so v executes Updatepvq, and sends a message to
every neighbor.

Let β0 : Γ ˆ V Ñ N, β1 : Γ ˆ V Ñ N and β2 : Γ ˆ V Ñ N be the following
functions:

β0pγ, vq “

"

1 if mv “ False ^ @tu P Npvq : u ă vumv “ False
0 otherwise

β1pγ, vq “ |tu P Npvq : mu “ mv “ Trueu|

β2pγ, vq “ |tu P Npvq : mvrus ‰ muu|

Let µ : Γ ˆ V ˆ tTrue,Falseu Ñ N be the following function:

µpγ, v,mq “

"

1 if mv ‰ m
0 otherwise

Let β3 : Γ ˆ V Ñ N be the following function:

β3pγ, vq “
ÿ

uPNpvq

¨

˝

ÿ

ămąPQpu,vq

µpγ, u,mq

˛

‚

Let A : Γ Ñ N be the following potential function:

Apγq “
ÿ

vPV

`

β0pγ, vq ` β1pγ, vq ` β2pγ, vq ` β3pγ, vq
˘

We define Γβ “ tγ P Γ : Apγq “ 0u.

Lemma 9. Γ Ź Γβ.

Proof. Let dspvq be the minimum distance from process v to a source of the
DAG (i.e., a process with only outgoing edges). First, we show that in finite
time, every process v stops changing its maximal independent set membership
by induction on dspvq.
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• Base case: If dspvq “ 0, then v is a source of the DAG and @u P Npvq,
Ordvrus “ 1. Thus, v changes its membership status at most once (see
Line 3).

• Induction step: If dspvq “ x` 1, then @u P Npvq, either Ordvrus “ 1, or
dspuq ă dspvq “ x ` 1. By induction hypothesis, in finite time, @u P Npvq

such that dspuq ď x, the value of mu eventually stops changing. Then, by
Lemma 8, u sends ă mu ą to v infinitely often, so eventually mvrus “ mu.
From this point, v changes its maximal independent set membership status
at most once, and if so is no longer in conflict with any of its predecessors
in the DAG.

Once every process stops changing its maximal independent set membership
status, it can only send its actual membership status. Thus, there exists a
configuration γa such that, in every subsequent configuration γ, for every process
v, v does not change its membership status, and β3pγ, vq “ 0. Moreover, in finite
time, processes update their local knowledge about their neighbors’ membership
status (see Lemma 8 and Line 10). Thus, there is a configuration γb after γa
such that, in every configuration γ after γb, for every process v, β2pγ, vq “ 0.

Then, we show that in every configuration after γb, there is no membership
status conflict. Assume by contradiction that in some configuration γc after γb,
there is a membership status conflict. Let us consider the process v in conflict
that has the greatest ID among all such processes. For every u P Npvq such
that mv “ mu “ True, we have mvrus “ mu “ mv, and murvs “ mv “ mu.
Moreover, by assumption, Ordvrus “ 0 and Ordurvs “ 1. Thus, in finite time,
v calls the function Update, and changes its membership status (see Line 6),
a contradiction. So, in every configuration γc after γb, and for every process
v P V , β1pγc, vq “ 0.

Finally, we show that in every configuration after γc, the membership status
True induces a maximal independent set of the graph. Assume for the purpose
of contradiction that in some configuration γ after γc, there is a node that could
join the maximal independent set but doesn’t. Let us consider the process
v that has the lowest ID among all such processes. Thus, in finite time, v
calls the function Update, and changes its membership status (see Line 3), a
contradiction. So, in every configuration γ after γc, and for every process v P V ,
β0pγc, vq “ 0.

Hence, Apγq “ 0, and Γ Ź Γα.

Lemma 10. Γα is closed.

Proof. Let γ ÞÑ γ1 such that γ P Γα. Let v P V and u P Npvq.
First, in γ, mvrus “ mu. Moreover, every message in Qpu, vq contains mem-

bership status mu. Thus, v does not change its membership status during step
γ ÞÑ γ1. Hence, β0pγ1, vq ` β1pγ1, vq “ 0.

Since u and v do not change their membership status between γ and γ1, and
since every message in Qpu, vq in γ equals mu, then the value of mvrus does not
change, and remains equal to mu in γ1. Hence, β2pγ1, vq “ 0.

Finally, u does not change its membership between γ and γ1, and every
message sent by u during step γ ÞÑ γ1 equals ă mu ą similarly to every other
message in Qpu, vq in γ that u did not process during step γ ÞÑ γ1. Thus,
β3pγ1, vq “ 0.
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Hence, the result.

Lemma 11. Algorithm 3 converges in Opnq rounds and exchanges Op∆kn2q

messages before convergence.

Proof. After one round, the system is purged of all possibly erroneous messages
(that is, messages whose membership status does not correspond to that of the
sender) contained in the initial configuration. Moreover, by Lemma 8, at each
round a process v sends its membership status ă mv ą to all its neighbors,
neighbors that will receive this message during the next round.

Now, consider a process v that changes its membership status during some
round. The last time v changes its membership status during the round, it knows
the real membership status of its neighbors, i.e., @u P Npvq, mvrus “ mu. So
by changing its membership status, v solves its membership conflicts with its
neighbors having a lower identity, and does not create any new conflict when
joining the maximal independent set. Hence, in the worst case, processes stop
changing their membership status after Opnq rounds. In the worst case, at
each round, a process replies to every message sent by its neighbors during the
previous round. Thus, Op∆kn2q messages are exchanged in total.

Again, to avoid starvation of one of the algorithms, we compose them using
a fair composition [29], i.e., each process alternatively executes a step of Algo-
rithm 1 and a step of Algorithm 3. As demonstrated in previous work [17], fair
composition preserves the property of self-stabilization.

6 Concluding Remarks

We presented the first deterministic self-stabilizing solution in asynchronous
message-passing networks with links of unbounded capacity with unknown num-
ber of initial messages that requires only sub-logarithmic memory and message
size (in n) bits, when ∆ is itself sub-logarithmic.

Our approach is constructive and modular. In particular, our DAG algo-
rithm layer solves a fundamental difficulty in many settings with respect to
self-stabilization: avoiding cyclic behavior. We believe this can be a valuable
asset when solving other problems in the same setting. We demonstrated the
versatility of our DAG layer by providing two direct application algorithms:
Vertex coloring and Maximal Independent Set construction.

Our Vertex coloring algorithm layer does not guarantee a locally minimal
coloring (if an initial configuration is a coloring that is not locally minimal, no
conflict is found and thus recoloring does not occurs). Nevertheless, a simple
modification of the protocol following the lines of our Maximal Independent
Set algorithm permits us to achieve this result: a node v that does not see
a conflict but would like a smaller color asks its lower identity neighbors for
authorization to take a new color c, any such neighbor u grants the authorization
unless it has color c (but v didn’t know it), or it itself wants to take a new color
and is waiting for authorization. This mechanism does not create new conflicts,
and any authorization chain length is bounded by the height of our constructed
DAG. As a result, a minimal coloring is obtained.

23



We believe that DAG, Vertex Coloring, and Maximal Independent
Set may prove useful for other local tasks, such as minimal dominating set,
link coloring, or maximal matching. It would also be interesting to study their
usefulness for solving global tasks (such as tree construction or leader election),
and to see if the resource efficiency remains in this setting.

We would also like to mention two interesting open questions:

1. One property we retained about communication links is their FIFO be-
havior. The lifting of this hypothesis in the context of unbounded capacity
links with unknown initial number of messages is likely to generate many
impossibility results, which are left for future work.

2. The time complexity of the algorithms based on the DAG, e.g. Vertex
Coloring, and Maximal Independent Set depends on the height of the
DAG induced by the unique identifiers of the nodes. A possible way to
reduce the DAG height it to use a self-stabilizing precoloring of the nodes
(at some constant distance) so that the height is upper bounded by a
constant. However, existing self-stabilizing solutions are randomized [28],
and deterministic solutions [33] are not self-stabilizing and use the LOCAL
model, where each node is capable of collecting all neighbors identifiers in
a single synchronous step. Providing such a deterministic precoloring in
our asynchronous model with constrained Oplog log nq bits messages while
preserving self-stabilization is a promising challenge for future research.
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