
Self-stabilizing Systems in Spite of High Dynamics⋆

Karine Altisen

Université Grenoble Alpes, VERIMAG

Stéphane Devismes

Université de Picardie Jules Verne, MIS

Anaïs Durand

Université de Clermont Auvergne, LIMOS

Colette Johnen

Université de Bordeaux, LaBRI

Franck Petit
Sorbonne Université, LIP6

Abstract

We initiate research on self-stabilization in highly dynamic identified message-

passing systems where dynamics is modeled using time-varying graphs (TVGs).

More precisely, we address the self-stabilizing leader election problem in three

wide classes of TVGs: the class T CB(∆) of TVGs with temporal diameter

bounded by ∆, the class T CQ(∆) of TVGs with temporal diameter quasi-

bounded by ∆, and the class T CR of TVGs with recurrent connectivity only,

where T CB(∆) ⊆ T CQ(∆) ⊆ T CR. We first study conditions under which

our problem can be solved. We introduce the notion of size-ambiguity to

show that the assumption on the knowledge of the number n of processes is

central. Our results reveal that, despite the existence of unique process identifiers,

any deterministic self-stabilizing leader election algorithm working on the class

T CQ(∆) or T CR cannot be size-ambiguous, justifying why our solutions for those

⋆This study has been partially supported by the French anr project ANR-22-CE25-0008-
01 (SkyData).

Preprint submitted to Theoretical Computer Science February 3, 2025

classes assume the exact knowledge of n. We then present three self-stabilizing

leader election algorithms for Classes T CB(∆), T CQ(∆), and T CR, respectively.

Our algorithm for T CB(∆) stabilizes in at most 3∆ rounds. However, we show

that stabilization time cannot be bounded for the leader election problem in

T CQ(∆) and T CR. Nevertheless, we circumvent this issue by showing that our

solutions are speculative in the sense that their stabilization time in T CB(∆)

(⊆ T CQ(∆) ⊆ T CR) is O(∆) rounds.

Keywords: self-stabilization, time-varying graphs, leader election, speculation

2010 MSC: 68W15, 68M15

1. Introduction

1.1. Context

Starting from an arbitrary configuration, a self-stabilizing algorithm [1] makes

a distributed system reach within finite time a configuration from which its

behavior is correct. Essentially, self-stabilizing algorithms tolerate transient5

failures, since by definition such failures last a finite time (as opposed to crash

failures, for example) and their frequency is low (as opposed to intermittent

failures). Indeed, the arbitrary initial configuration can be seen as the result of

a finite number of transient faults, and after those faults cease, we can expect a

sufficiently large time window without any fault so that the system recovers and10

then exhibits a correct behavior for a long time.

Even though self-stabilization is not inherently suited to handle other failure

patterns, a.k.a., intermittent and permanent failures, several works show that in

many cases self-stabilization can still be achieved despite such faults occur. In-

deed, strong forms of self-stabilization have been proposed to tolerate permanent15

failures, e.g., fault-tolerant self-stabilization [2, 3] to cope with process crashes,

and strict stabilization [4, 5] to withstand Byzantine failures. Furthermore,

several self-stabilizing algorithms [6, 7] withstand intermittent failures such as

frequent lost, duplication, or reordering of messages, meaning their convergence

is still effective despite such faults continue to often occur in the system. Hence,20

2

even if at the first glance guaranteeing a convergence property may seem to be

contradictory with a high failure rate, the literature shows that self-stabilization

may be a suitable answer even in such cases.

All these aforementioned works assume static communication networks. Nev-

ertheless, self-stabilizing algorithms dedicated to arbitrary network topologies25

tolerate, up to a certain extent, some topological changes (i.e., the addition or

the removal of communication links or nodes). Precisely, if topological changes

are eventually detected locally at involved processes and if the frequency of such

events is low enough, then they can be considered as transient faults. Actually, a

number of works, e.g., [8, 9, 10] (n.b., [8] deals with leader election), use this kind30

of argument to claim that they are suited for the dynamic context. Furthermore,

several approaches, like superstabilization [11] and gradual stabilization [12],

aims at additionally providing countermeasures to efficiently treat topological

changes when they are both spatially and timely sparse. However, all these

aforementioned approaches [8, 9, 11, 10, 12] become totally ineffective when35

the frequency of topological changes drastically increase, in other words when

topological changes are intermittent rather than transient. Actually, in the

intermittent case, the network dynamics should be no more considered as an

anomaly but rather as an integral part of the system nature.

Clearly, many of today’s networks are highly dynamic, e.g., MANET (Mobile40

Ad-Hoc Networks), VANET (Vehicular Ad-Hoc Networks), and DTN (Delay-

Tolerant Networks), to only quote a few. Several works aim at proposing a

general graph-based model to capture the network dynamics. In [13], the

network dynamics is represented as a sequence of digraphs called evolving graphs.

In [14], the topological evolution of the network is modeled by a Time-Varying45

Graph (TVG, for short) which basically consists of a (fixed) digraph and a

presence function. In the digraph, nodes represent participating processes and

the edges are communication links that may appear during the lifetime of the

network. Moreover, the presence function indicates whether or not a given arc of

the digraph exists at a given time. TVGs are typically gathered and ordered into50

classes according to the temporal characteristics of edge presence they satisfy [14].

3

The obtained taxonomy together with possibility/impossibility results allows to

compare them according to their expressive power, i.e., the power with respect

to the set of problems that can be solved.

In highly dynamic distributed systems, an expected property is self-adaptiveness,55

i.e., the ability of a system to accommodate to sudden and frequent changes of

its environment. By definition, achieving self-stabilization in highly dynamic

networks is a suitable answer to self-adaptiveness. There exist other approaches

for self-adaptiveness, e.g., the graceful degradation [15] and speculation [16].

Graceful degradation is a best effort approach which consists in designing an60

algorithm that solves a given problem under the highest possible dynamics

and, in the other way around, computes an approached (meaningful) solution

to the problem when considering a dynamic level higher enough to make the

original problem impossible to solve. Speculation [16] is another possible ap-

proach for self-adaptiveness. Roughly speaking, it guarantees that the system65

satisfies its requirements for all executions, but also exhibits significantly better

performances in a subset of more probable executions. The main idea behind

speculation is that worst possible scenarios are often rare (even unlikely) in

practice. So, a speculative algorithm is assumed to self-adapt its performances

w.r.t. the “quality” of the environment, i.e., the more favorable the environment70

is, the better the complexity of the algorithm should be. Interestingly, Dubois

and Guerraoui [17] have investigated speculation in self-stabilizing, yet static,

systems. They illustrate this property with a self-stabilizing mutual exclusion

algorithm whose stabilization time is significantly better when the execution is

synchronous.75

1.2. Contribution

We initiate research on self-stabilization in highly dynamic identified message-

passing systems where the dynamics is modeled using TVGs to obtain solutions

tolerating both transient faults and high dynamics. In our model, processes

can only communicate through local broadcast primitives: at each round, every80

process can send a common message to its unknown set of current neighbors (if

4

any).

We reformulate the definition of self-stabilization to accommodate TVGs,

and investigate the self-stabilizing leader election problem. This problem is

fundamental in distributed computing since it allows to synchronize and self-85

organize a network. Thus, leader election is a basic component in many protocols,

e.g., spanning tree constructions, broadcasts, and convergecasts.

We study self-stabilizing leader election in three wide classes of TVGs, respec-

tively denoted by T CB(∆), T CQ(∆), and T CR, where T CB(∆) ⊆ T CQ(∆) ⊆

T CR: T CB(∆) is the class of TVGs with temporal diameter bounded by ∆ [18],90

T CQ(∆) is the class of TVGs with temporal diameter quasi-bounded by ∆

(introduced here), and T CR is the class of TVGs with recurrent connectivity [14];

this latter class is the most general infinite TVG class introduced so far [14, 19].1

We first study conditions under which our problem can be solved. Actually,

our results show that the assumption on the knowledge of the number n of95

processes is central. To see this, we introduce the notion of size-ambiguity, which

formalizes the fact that some subsets of processes do not share enough initial

knowledge on n to detect that the system is not limited to themselves. In other

words, such an ambiguity comes from the fact that n is only partially known by

the processes (e.g., when processes only know an upper bound on n). Our results100

show that, despite the existence of unique process identifiers, any deterministic

self-stabilizing leader election algorithm working on the class T CQ(∆) or T CR

cannot be size-ambiguous. Hence, to make the problem solvable in those classes,

we will assume each process knows the exact value of n.

We then propose self-stabilizing leader election algorithms for the three105

considered classes. In more detail, we present a self-stabilizing leader election

algorithm for Class T CB(∆) with a stabilization time of at most 3∆ rounds,

assuming every process knows ∆, yet using no information on n. This in

1Considering finite TVGs, i.e., dynamic systems whose lifetime is limited, does not really

make sense in the self-stabilizing context, since commonly self-stabilizing algorithms do not

terminate [20, 21].

5

particular shows that our necessary condition is tight. Then, we propose a self-

stabilizing leader election algorithm for Class T CQ(∆) assuming every process110

knows ∆ and n. We show that, in general, stabilization time for the leader

election problem cannot be bounded in T CQ(∆); nevertheless we show that the

algorithm is speculative since its stabilization time in T CB(∆) is at most 2∆

rounds. Finally, we propose a self-stabilizing leader election algorithm for Class

T CR, where only n is known, yet requiring unbounded local memories. Finding115

a self-stabilizing solution in this class was rather challenging, since there is no

guarantee on message delivery timeliness at all (n.b., by definition of the class,

there is no bound on the temporal diameter). Again, we show that, in general,

stabilization time for the leader election problem cannot be bounded in T CR;

yet we establish that the algorithm is speculative since its stabilization time in120

T CB(∆) is at most ∆+ 1 rounds.

1.3. Related Work

Ensuring convergence in highly dynamic networks regardless of the initial

configuration may seem to be very challenging, even impossible in many cases [22].

However, there are a few works [23, 24, 25] that deal with this issue, yet in125

widely different models and assumptions than ours.

A recent work [23] deals with the self-stabilizing exploration of a highly

dynamic ring by a cohort of synchronous robots equipped with visibility sensors,

moving actuators, yet no communication capabilities. Note that, contrary to [23],

the three classes studied in the present paper never enforce the network to have130

a particular topology at a given time.

In [24], Cai et al. tackles the self-stabilizing leader election problem in

highly dynamic systems through the population protocol model. In this model,

communications are achieved by atomic rendezvous between pair of anonymous

processes, where ties are nondeterministically broken. The local broadcast135

primitive we use here is weaker. Moreover, authors assume global fairness,

meaning that every configuration infinitely often reachable is infinitely often

reached. We do not make such an assumption here. Actually, Cai et al. show that,

6

in their model, self-stabilizing leader election is deterministically solvable if and

only if the number of processes n is known, despite processes being anonymous.140

In our model, even with the knowledge of n, (deterministic) self-stabilizing leader

election cannot be solved if processes are anonymous.2 Moreover, our results

show that (maybe surprisingly) even with process identifiers, the knowledge of n

is necessary to solve self-stabilizing leader election in T CQ(∆) and T CR.

Finally, Dolev et al. [25] assume the system is equipped with a routing145

algorithm, which allows any two processes to communicate, providing that the

sender knows the identifier of the receiver. This blackbox protocol abstracts

the dynamics of the system: the dynamics makes it fair lossy, non-FIFO, and

duplication-prone. Moreover, the channel capacity is assumed to be bounded.

Based on this weak routing algorithm, they build a stronger routing protocol150

which is reliable, FIFO, and which prevents duplication. We should remark that

techniques used here can be reengineered to implement their input black box

routing protocol.

1.4. Roadmap

In Section 2, we define the computational model. In Section 3, we propose155

and justify our definition of self-stabilization for highly dynamic environments;

we then study the impact of the knowledge of n on the solvability of the

self-stabilizing leader election. In the three next sections, we present, prove,

and analyze our self-stabilizing algorithms. The last section is dedicated to

conclusions and perspectives.160

2. Preliminaries

2.1. Time-varying Graphs

A time-varying graph (TVG for short) [14] is a tuple G = (V,E, T , ρ) where

V is a (static) set of nodes, E is a (static) set of arcs between pairwise nodes, T

2Every static network is a very particular case of TVG, which belongs to all classes studied

here, so the impossibility result of Angluin [26] still applies.

7

is an interval over N∗ (the set of positive integers) called the lifetime of G, and165

ρ : E×T → {0, 1} is the presence function that indicates whether or not a given

arc exists at a given time. We denote by oT = min T the first instant in T .

From a global viewpoint, the evolution of G is described as a sequence of

digraphs, called snapshots: the snapshot of G at time t ∈ T is the digraph

Gt = (V, {e ∈ E : ρ(e, t) = 1}).170

Let [t, t′] ⊆ T . The temporal subgraph of G for the interval [t, t′], denoted

by G[t,t′], is the TVG (V,E, [t, t′], ρ′) where ρ′ is ρ restricted to [t, t′]. Roughly

speaking, G[t,t′] is itself a TVG that reproduces all the interactions present in

the original TVG G, yet for the time window [t, t′].

A journey J can be thought as a path over time from a source p1 to a175

destination qk, i.e., J is a sequence (e1, t1), (e2, t2), . . . , (ek, tk) where ∀i ∈

{1, . . . , k}, ei = (pi, qi) ∈ E satisfies ρ(ei, ti) = 1 and i < k ⇒ qi = pi+1 ∧ ti <

ti+1. We respectively denote by departure(J) and arrival(J) the starting time

t1 and the arrival time tk of J . A journey from p to q is a journey whose source

is p and destination is q. Let J (p, q) be the set of journeys in G from p to q.180

Let ⇝ be the binary relation over V such that p⇝ q if p = q or there exists a

journey from p to q in G.

The temporal length of a journey J is equal to arrival(J)−departure(J)+1.

Let t ≥ oT − 1. By extension, we define the temporal distance from p to q at t,

denoted by d̂p,t(q), as follows: d̂p,t(q) = 0, if p = q, d̂p,t(q) = min{arrival(J)−t :185

J ∈ J (p, q)∧ departure(J) > t} otherwise (by convention, we let min ∅ = +∞).

Roughly speaking, the temporal distance from p to q at time t gives the minimum

timespan for p to reach q after t. The temporal diameter at t is the maximum

temporal distance between any two nodes at t.

We define ITV G(G) to be the predicate that holds if T is a right-open190

interval, in which case G is said to be an infinite TVG; otherwise G is called a

finite TVG.

2.2. TVG Classes

Let G = (V,E, T , ρ) be a TVG. We consider the following four TVG classes.

8

Class T C (Connectivity over Time), also denoted by C3 in [14]: every node can195

reach all the others at least once through a journey. Formally, G ∈ T C if ∀p, q ∈

V, p⇝ q.

Class T CR (Recurrent Connectivity), denoted by C5 in [14]: at any point

in time, every node can reach all the others through a journey. Formally,

G ∈ T CR if ITV G(G) ∧ ∀t ∈ T , G[t,+∞) ∈ T C.200

Class T CB(∆) with ∆ ∈ N∗ (Bounded Temporal Diameter), denoted by

T C(∆) in [18]: at any point in time, every node is at temporal distance at most

∆ from all other nodes, i.e., the temporal diameter is bounded by ∆. Formally,

G ∈ T CB(∆) if ITV G(G) ∧ ∀t ∈ T ,G[t,t+∆) ∈ T C.

Class T CQ(∆) with ∆ ∈ N∗ (Quasi Bounded Temporal Diameter): every205

node is infinitely often at temporal distance at most ∆ from each other node.

Formally, G ∈ T CQ(∆) if ITV G(G) ∧ ∀p, q ∈ V,∀t ∈ T ,∃t′ ≥ t− 1, d̂p,t′(q) ≤ ∆.

Notice that, ∀∆ ∈ N∗, T CB(∆) ⊆ T CQ(∆) ⊆ T CR ⊆ T C, by definition.

Furthermore, we say that a TVG class R is recurring if R only contains infinite

TVGs and, for every G ∈ R and every t ≥ oT , G[t,+∞) ∈ R. In other words,210

every recurring TVG class is suffix-closed. The three classes we will consider

hereafter (i.e., T CR, T CB(∆), T CQ(∆)) are actually recurring.

2.3. Computational Model

We consider the computational model defined in [27, 28]. We assume a

distributed system made of a set of n processes, denoted by V . Each process has215

a local memory, a local sequential and deterministic algorithm, and message

exchange capabilities. By deterministic, we mean that each process step dictated

by the algorithm is uniquely determined by the local memory of the process and

the messages it received. We assume that each process p holds a unique identifier

(ID for short) in its local memory. The identifier of p is denoted by id(p) and220

taken in an arbitrary domain IDSET totally ordered by <. We assume that

each identifier is stored using B bits. In the sequel, we denote by ℓ the process of

minimum identifier. Processes are assumed to communicate by message-passing

through an interconnected network that evolves over the time. The topology of

9

the network is then conveniently modeled by an infinite TVG G = (V,E, T , ρ).225

Processes execute their local algorithms in synchronous rounds. For every i > 0,

the communication network at Round i is defined by GoT +i−1, i.e., the snapshot

of G after i− 1 instants elapse from the initial time oT . So, ∀p ∈ V , we denote

by N (p)i = {q ∈ V : ρ((p, q), oT + i− 1) = 1}, the set of p’s neighbors at Round

i. N (p)i is assumed to be unknown by process p, whatever the value of i is.230

A distributed algorithm A is a collection of n local algorithms A(p), one per

process p ∈ V (n.b., different processes may have different codes). At any round,

each process has a state. The state of each process p ∈ V in A is defined by the

values of its variables in A(p). We denote by SV
A (p) the non-empty set of p’s

possible local states in A. Some variables may be constants in which case their235

values are predefined. A configuration of A for V is a vector of n components

(s1, s2, . . . , sn), where s1 to sn represent the states of the processes in V . Let

CV
A be the set of all possible configurations of A for V .

Let γ0 be the initial configuration of A for V . For any (synchronous) round i ≥

1, the system moves from the current configuration γi−1 to some configuration240

γi, where γi−1 (resp. γi) is referred to as the configuration at the beginning of

Round i (resp. at the end of Round i). Such a move is atomically performed by

every process p ∈ V according to the following three steps, defined in its local

algorithm A(p):

1. p sends a message consisting of all or a part of its local state in γi−1 using245

the primitive SEND(),

2. using Primitive RECEIVE(), p receives all messages sent by processes in

N (p)i, and

3. p computes its state in γi.

An execution of a distributed algorithm A in the TVG G = (V,E, T , ρ) is250

an infinite sequence of configurations γ0, γ1, . . . of A for V such that ∀i > 0,

γi is obtained by executing a synchronous round of A on γi−1 based on the

communication network at Round i, i.e., the snapshot GoT +i−1.

10

3. Self-stabilization in Highly Dynamic Environments

3.1. Definition255

In the following, we define a specification as a predicate over configuration

sequences.

Self-stabilization has been originally defined for static networks. In the

reference book of Dolev [21], self-stabilization is defined as follows. An algorithm

is self-stabilizing for a specification SP if there exists a set of so-called legitimate260

configurations satisfying the following two properties: (1) every execution of the

algorithm in the considered system eventually reaches a legitimate configuration

(Convergence); and (2) every possible execution suffix starting from a legitimate

configuration satisfies SP (Correctness). Below, we accommodate this definition

to highly dynamic environments.265

Definition 1 (Self-stabilization). An algorithm A is self-stabilizing for the

specification SP on a class I of infinite TVGs if for every set of processes V , there

exists a subset of configurations L of A for V , called legitimate configurations,

such that:

1. for every G ∈ I with set of processes V and every configuration γ of A270

for V , every execution of A in G starting from γ contains a legitimate

configuration γ′ ∈ L (Convergence), and

2. for every G ∈ I with set of processes V , every t ≥ oT , every legitimate

configuration γ ∈ L, and every execution e in G[t,+∞) starting from γ,

SP (e) holds (Correctness).275

The length of the stabilization phase of an execution e is the length of its

maximum prefix containing no legitimate configuration. The stabilization time in

rounds is the maximum length of a stabilization phase over all possible executions.

Remark 1. In the case of a recurring class of TVG, the definition of self-

stabilization for an algorithm A and a specification SP can be slightly simplified.280

Indeed, the correctness property can be equivalently rewritten as follows: given a

11

set of processes V and a set of configurations L on V , for every G ∈ I with set

of processes V , every legitimate configuration γ ∈ L, and every execution e in G

starting from γ, SP (e) holds (Recurring-Correctness).

It is worth noting that Definition 1, as the one given in the reference book of285

Dolev [21], does not include the notion of closure: intuitively, a set of configu-

rations S is closed if every step of the algorithm starting in a configuration of

S leads to a configuration of S; see Definition 2 for a formal definition. Now,

when dealing with high-level models (such as the atomic-state model), closure

is most of the time present in definitions of self-stabilization. However, in the290

more practical message-passing model, closure is usually simply given up; see,

e.g., [29, 30, 31]. Even if this absence is never motivated, this may be explained

by the lack of functional significance of the closure property as compared to the

convergence and correctness properties. Closure is rather a nice property that

often helps to write elegant, and so simpler, proofs. Moreover, closure may be295

sometimes too restrictive, as we will show in Theorem 1 for example. Below, we

reformulate closure in the context of TVGs.

Definition 2 (Closure). Let A be a distributed algorithm, I be an infinite

TVG class, V be a set of processes, and S be a subset of configurations of A for

V . S is closed in I if for every G ∈ I with set of processes V , every t ≥ oT ,300

and every configuration γ ∈ S, every execution of A in G[t,+∞) starting from γ

only contains configurations of S.

Remark 2. Again, when the considered class of TVGs is recurring, the definition

of closure can be slightly simplified. If A is a distributed algorithm, R is a

recurring TVG class, V is a set of processes, and S is a subset of configurations305

of A for V , then S is closed in R if for every G ∈ R with set of processes V

and every configuration γ ∈ S, every execution of A in G starting from γ only

contains configurations of S.

12

3.2. Self-stabilizing Leader Election

The leader election problem consists in distinguishing a single process in310

the system. In identified networks, the election usually consists in making the

processes agree on one of the identifiers held by processes. The identifier of the

elected process is then stored at each process p in an output variable, denoted

here by lid(p).

We call fake ID any value v ∈ IDSET (recall that IDSET is the definition315

domain of the identifiers) such that v is not assigned as a process identifier

in the system, i.e., there is no process p ∈ V such that id(p) = v. In the

self-stabilizing context, the output variables lid may be initially corrupted; in

particular some of them may be initially assigned to fake IDs. Despite such fake

IDs, the goal of a self-stabilizing algorithm is to make the system converge to a320

(legitimate) configuration γ from which a unique process is forever adopted as

leader by all processes whatever be the execution suffix, i.e., ∃p ∈ V such that

∀q ∈ V, lid(q) = id(p) forever in all possible execution suffixes starting from γ.

Hence, the leader election specification SPLE can be formulated as follows: a

sequence of configurations γ0, γ1, . . . satisfies SPLE if and only if ∃p ∈ V such325

that ∀i ≥ 0, ∀q ∈ V , the value of lid(q) in configuration γi is id(p).

In the sequel, we say that an algorithm is a self-stabilizing leader election

algorithm for the class of infinite TVG I if it is self-stabilizing for SPLE on I.

3.3. Knowledge of n and Closure in T CB(∆)

We now advocate that closure of legitimate configurations may be cumbersome330

in T CB(∆) since to achieve it, any (deterministic) self-stabilizing leader election

algorithm somehow requires the exact knowledge of n (the number of processes),

i.e., even partial knowledge such as an upper bound on n is not sufficient; see

Theorem 1. To that goal, we need to first define what we mean by not exactly

knowing n.335

When an algorithm A uses the number of its processes, this means that

this information is given as an input in the local state of each process. So, the

definition of the set of possible local states of each process is adjusted according

13

to the size of the system it belongs to. Conversely, if an algorithm A does

not know its exact size, this means that there are sizes of systems that cannot340

be distinguished by part of its processes using their local inputs (and so their

possible local states). More precisely, for a given set of processes V executing A,

there should exist a size k < |V | for which the processes of any k-subset U of

V do not share enough initial information to distinguish whether the system is

made of the process-set V or U . Below, we formalize this intuitive idea by the345

notion of size-ambiguity.

Definition 3 (Size-Ambiguity). Let V be a set of processes and k ∈ N. A

distributed algorithm A (in particular) defined for V is (k, V)-ambiguous if

0 < k < |V | and for every U ⊂ V such that |U | = k, CU
A is well-defined and for

every p ∈ U , SU
A(p) = SV

A (p). We simply say that A is size-ambiguous if there350

exists V and k such that A is (k, V)-ambiguous.

Consider now a few examples. First, if each process has a constant input

whose value is the number n of processes in the system (i.e., each process "exactly

knows n"), then from our definition, the algorithm is not size-ambiguous since,

in this case, the set of possible local states of any process differs from one size of355

system to another, at least because of the input storing n. Conversely, if the

processes do not know the exact number of processes but its parity, then we

can choose any set V of at least three processes and any positive value k < |V |

with same parity as |V |: for every subset U of V such that |U | = k, the constant

input giving the parity will be the same at each process of U whether running360

its algorithm in a TVG with process-set V or U . Consequently, every process

p ∈ U will have the same set of possible local states in both TVGs; hence the

size-ambiguity. Similarly, an algorithm is size-ambiguous if each process p only

knows an upper bound Np ≥ 2 on the number of processes in the TVG (n.b.,

processes may not know the same bound) since the property can be achieved365

with any set V of at least two processes and any value k such that 0 < k < |V |.

Theorem 1. Let A be a deterministic self-stabilizing leader election algorithm

for T CB(∆) with ∆ ≥ 2, V be a set of processes, L be a set of legitimate

14

configurations of A for V , and k ∈ N. L is not closed in T CB(∆) if A is

(k,V)-ambiguous.370

Proof: Let n = |V | and V = {p0, . . . , pn−1}. Assume, by the contradiction, that

A is (k,V)-ambiguous, but L is closed in T CB(∆). Let G = (V,E, T , ρ) be an

infinite TVG such that

1. E = {(pi, pj) : pi, pj ∈ V ∧ i ̸= j}

2. ∀t ≥ oT , ∀(pi, pj) ∈ E, ρ((pi, pj), t) = 1 if and only if either t is odd, or375

i /∈ { t
2 mod n, . . . , (t2 +n− k− 1) mod n} and j /∈ { t

2 mod n, . . . , (t2 +n−

k − 1) mod n}.

Notice first that, ∀t ≥ oT , the snapshot Gt of G is fully connected when t is odd.

Consequently, G belongs to T CB(∆), with ∆ ≥ 2. Then, by definition, we have:

Claim 1: For every x ∈ {0, . . . , n− 1} and every i ≥ 0, in the snapshot Gtx,i of380

G at time tx,i = 2((i+ oT).n+ x), the set V \ {px, . . . , p(x+n−k−1) mod n}

is fully connected and the set {px, . . . , p(x+n−k−1) mod n} is independent.

Let γ ∈ L and pℓ ∈ V be the elected process in γ. ∀i ≥ 0, we inductively

define Configuration γi as follows. γ0 = γ. ∀i > 0, γi is the configuration at

the end of the first round of the execution of A in G[tℓ,i,+∞) starting from γi−1.385

Since T CB(∆) is recurring, we can use the closure of L to show by induction

Claim 2 below (n.b., Claim 2 is the only result of the proof where closure of L is

used).

Claim 2: ∀i ≥ 0, γi is legitimate and ∀pj ∈ V , lid(pj) = pℓ in γi.

Proof of the claim: By induction on i. The induction is trivial for i = 0.390

Consider now the case where i > 0. By induction hypothesis, γi−1 is

legitimate and ∀pj ∈ V , lid(pj) = pℓ. By definition, G[tℓ,i,+∞) ∈ T CB(∆)

since T CB(∆) is recurring. So, since L is closed in T CB(∆), γi is legitimate.

Moreover, by applying the correctness property to the execution of A in

G[tℓ,i,+∞) starting from γi−1, we deduce that ∀pj ∈ V , lid(pj) = pℓ in γi;395

see the definition of SPLE .

15

Let V − = V \ {pℓ, . . . , p(ℓ+n−k−1) mod n} and E− = {(pi, pj) : pi, pj ∈ V − ∧

i ̸= j}. Let G− = (V −, E−, T , ρ−) be the infinite TVG having k processes such

that ∀t ≥ oT , ∀(pi, pj) ∈ E−, we have ρ((pi, pj), t) = 1. In other word, G− is

a static fully connected network. Consequently, G− in particular belongs to400

T CB(∆) with ∆ ≥ 2 (actually, it also belongs to T CB(∆) with ∆ = 1). Let γ−
0

be the configuration of A for V − where each process has the same state as in the

configuration γ0 (such a configuration exists by definition of (k,V)-ambiguity).

We now consider the execution e = γ−
0 , . . . , γ−

i , . . . of A in G− starting from the

configuration γ−
0 .405

Claim 3: ∀i ≥ 0, the state of each process in V − in γ−
i is the same as in γi.

Proof of Claim 3: By induction on i. The base case i = 0 is trivial. Consider

now the case where i > 0. γ−
i−1 is the configuration at the beginning of

Round i in e. By induction hypothesis, the state of each process in V − in

γ−
i−1 is the same as in γi−1. By Claim 1, each process of V − has the same410

neighborhood in G−
i−1 and in Gtℓ,i . Hence, during Round i they receive the

same set of messages as during the first round of A in G[tℓ,i,+∞) starting

from γi−1. So, since A is deterministic, each process of V − behaves exactly

as in the first round of A in G[tℓ,i,+∞) starting from γi−1. Thus, in γ−
i at

the end of Round i, the state of each process of V − is the same as in γi.415

By Claims 2 and 3, for every process pj in V −, in every configuration γ−
i ,

we have lid(pj) = pℓ /∈ V −, i.e., lid(pj) is a fake ID (for V −). Hence, no suffix

of e satisfies SPLE . As a consequence, A is not a self-stabilizing leader election

algorithm for T CB(∆) (with ∆ ≥ 2), a contradiction. □

Remark 3. The condition ∆ ≥ 2 is necessary in Theorem 1, indeed if ∆ =420

1, there is a trivial deterministic self-stabilizing leader election algorithm for

T CB(∆) that does not need information on n and has a closed set of legitimate

configurations: it simply consists of all processes sending their own IDs at each

round; since ∆ = 1, all processes learn the exact set of all IDs present in the

network at each round and just have to choose, e.g., the smallest one, id(ℓ).425

16

The legitimate configurations are then all configurations where every process p

satisfies lid(p) = id(ℓ).

According to Theorem 1, the set of legitimate configurations of our solution

for T CB(∆) (Algorithm 1) is not closed, since by making no assumption on n,

this algorithm is size-ambiguous. The contrapositive of Theorem 1 is given in430

Corollary 1. This latter justify the need of the exact knowledge of the number

of processes to obtain a closed set of legitimate configurations in a deterministic

self-stabilizing leader election algorithm for T CB(∆), with ∆ ≥ 2.

Corollary 1. Let A be a deterministic self-stabilizing leader election algorithm

for T CB(∆) (with ∆ ≥ 2), V be a set of processes, and L be a set of legitimate435

configurations of A for V . If L is closed in T CB(∆), then A should not be

size-ambiguous.

Remark 4. The scheme used in the proof of Theorem 1 can be adapted to

handle other problems consisting in computing a constant output whose value

depends on the set of processes. For example, one can show that no deterministic440

self-stabilizing size-ambiguous algorithm for T CB(∆) can both compute the exact

number of processes and achieve the closure of its legitimate configurations.

3.4. Knowledge of n and Closure in T CQ(∆)

We now show that every execution of a self-stabilizing algorithm for a so-called

recurring specification (see Definition 4 below) in T CQ(∆) necessarily converges445

to a closed set of legitimate configurations; see Theorem 2. Consequently, no

deterministic self-stabilization leader election algorithm for T CQ(∆) can be

size-ambiguous since SPLE is recurring (Theorem 3 and Corollary 3); justifying

why algorithms in Sections 5 and 6 assume the exact knowledge of n.

Informally, a specification is recurring if whenever an execution satisfies it,450

all its suffixes also satisfy it.

Definition 4. [Recurring Specification] We say that a specification SP is recur-

ring if for every sequence of configurations γ0, γ1, . . ., SP (γ0, γ1, . . .) ⇒ (∀i ≥ 0,

SP (γi, γi+1, . . .)).

17

SPLE (as most of specifications used in self-stabilization) is a recurring455

specification.

Definition 5 (Sequential Composition). Let G = (V,E, T , ρ) be an infinite

TVG and G′ = (V ′, E′, [a, b], ρ′) be a finite TVG. The sequential composition of

G′ and G, denoted by G′ ▷ G, is the infinite TVG G′′ = (V ′′, E′′, T ′′, ρ′′) such

that V ′′ = V ∪ V ′, E′′ = E ∪ E′, T ′′ = [a,+∞), and ∀e ∈ E′′,460

• ∀t ∈ [a, b], ρ′′(e, t) = 1 if and only if e ∈ E′ ∧ ρ′(e, t) = 1, and

• ∀t > b, ρ′′(e, t) = 1 if and only if e ∈ E ∧ ρ(e, oT + t− b− 1) = 1.

Property 1. Let G = (V,E, T , ρ) ∈ T CQ(∆) and G′ = (V ′, E′, T ′, ρ′) be a

finite TVG. If V ′ ⊆ V , G′ ▷ G ∈ T CQ(∆).

Theorem 2. Let SP be a recurring specification, A be a self-stabilizing algorithm465

for SP on T CQ(∆), and V be a set of processes. There exists a set of legitimate

configurations of A for V which is closed in T CQ(∆).

Proof: Assume, by the contradiction, that every set of legitimate configurations

of A for V is not closed in T CQ(∆). Let L be the set of legitimate configurations

of A for V defined as follows: for every configuration γ of A for V , γ ∈ L if and470

only if for every G ∈ T CQ(∆) with set of processes V and every execution e of

A in G starting from γ, SP (e) holds. Since L is not closed in T CQ(∆), there

exists γ0 ∈ L, G = (V,E, T , ρ) ∈ T CQ(∆) with V as set of processes, and an

execution γ0, . . . , γi, . . . in G starting from γ0 which contains a configuration

γi /∈ L. By definition of L, there exists G′ ∈ T CQ(∆) with set of processes V and475

an execution e′ in G′ starting from γi such that ¬SP (e′) (otherwise γi should

be in L). Now, G[oT ,oT +i−1] ▷ G′ ∈ T CQ(∆), by Property 1. Consequently,

γ0, . . . , γi−1, e
′ is an execution of A in T CQ(∆) that starts from γ0 and violates

SP since ¬SP (e′) and SP is recurring. By the correctness property of the

self-stabilizing definition (see Remark 1), γ0 cannot be a legitimate configuration,480

a contradiction. □

18

Corollary 2. Let A be any self-stabilizing leader election algorithm for T CQ(∆)

and V be a set of processes. There exists a set of legitimate configurations of A

for V which is closed in T CQ(∆).

Since T CB(∆) ⊆ T CQ(∆), from Corollaries 1 and 2, we deduce Theorem 3485

and Corollary 3:

Theorem 3. No deterministic self-stabilizing leader election algorithm for T CQ(∆),

with ∆ ≥ 2, can be size-ambiguous.

Corollary 3. No deterministic self-stabilizing leader election algorithm for T CR

can be size-ambiguous.490

Remark 5. Like in Remark 4, one can show, for example, that no deterministic

self-stabilizing size-ambiguous algorithm for T CQ(∆) (resp. T CR) can compute

the exact number of processes.

4. Class T CB(∆) with ∆ known

The code of our self-stabilizing algorithm for T CB(∆) is given in Algorithm 1.495

4.1. Overview of Algorithm 1

Each process p maintains two variables: the output lid(p) will eventually

contain the ID of the leader; ttl(p) represents the degree of suspicion of p in

lid(p) and allows to eliminate messages containing fake IDs. At each round, if p

receives some messages, the value of ttl(p) is updated according to the received500

messages; otherwise, ttl(p) is incremented if lid(p) ̸= id(p). The value of ttl(p)

can increase up to 2∆ − 1. Process p never increments ttl(p) from 2∆ − 1 to

2∆; instead it locally resets and declares itself as the leader: lid(p) := id(p) and

ttl(p) := 0; see Lines u1-u3.

At each round i, p first sends its leader ID together with its degree of suspicion;505

see Line 2. Then, the behavior of p depends on whether or not it receives some

messages in the current round.

19

Assume first that p receives no message. In this case, p increments ttl(p) if

lid(p) ̸= id(p); see Line 5.

Assume now that p receives some messages. First, p selects the received510

message ⟨lid, ttl⟩ which is minimum according to the lexicographic order (i.e.,

the message the lowest ID and with the lowest ttl to break ties); see Line 7. Then,

if lid is smaller than lid(p), p adopts lid as leader; see Lines 8-9. If lid = lid(p),

it updates the ttl(p) by taking the smallest value between ttl(p) and ttl (in this

way, p may decrease its suspicion in lid(p)); see Line 11-12. Finally, in all cases,515

ttl(p) is incremented if lid(p) ̸= id(p); see Lines 10, 12, and 14.

Recall that if an increment makes ttl(p) bypass 2∆, p systematically resets;

see Function updateTTL(v), Lines u1-u3.

Finally, if lid(p) ≥ id(p), p systematically resets; see Line 15-17. So, if p

believes to be the leader at the end of Round i (i.e., lid(p) = id(p)), then it520

sends its own ID together with a degree of suspicion 0 at the beginning of the

next round, i+ 1.

The reset mechanism allows to remove all fake IDs within at most 2∆ rounds.

From that time, the lower ID process, ℓ, satisfies (lid(ℓ), ttl(ℓ)) = (id(ℓ), 0)

forever (Corollary 4). So, after 2∆ rounds, ℓ sends ⟨id(ℓ), 0⟩ at each round and525

all processes will receive messages ⟨id(ℓ), d⟩, with d ≤ ∆ < 2∆ (since ∆ ∈ N∗), at

least every ∆ rounds since the temporal diameter is upper bounded by ∆. Thus,

within at most ∆ additional rounds, they will all adopt ℓ as leader and never

more reset, ensuring that ℓ will remain the leader forever (Lemma 3). Hence,

Algorithm 1 is a self-stabilizing leader election for T CB(∆) and its stabilization530

time is at most 3∆ rounds (Corollary 5).

4.2. Self-stabilization and Complexity

First, by definition of the algorithm, the next remark follows.

Remark 6. Since the end of the first round, ∀p ∈ V , we have lid(p) ≤ id(p) ∧

(lid(p) = id(p) ⇒ ttl(p) = 0).535

20

Algorithm 1: Self-stabilizing leader election for T CB(∆), for each process p.
Inputs:
∆ ∈ N∗ : upper bound on the temporal diameter

id(p) ∈ IDSET : ID of p

Local Variables:
lid(p) ∈ IDSET : ID of the leader

ttl(p) ∈ {0, . . . , 2∆− 1} : degree of suspicion in lid(p)

Macros:

updateTTL(v):

u1: if v ≥ 2∆ then // Reset

u2: lid(p) := id(p)

u3: ttl(p) := 0

u4: else if lid(p) ̸= id(p) then ttl(p) := v

1: Repeat Forever

2: SEND(⟨lid(p), ttl(p)⟩)

3: mailbox := RECEIVE()

4: if mailbox = ∅ then

5: updateTTL(ttl(p) + 1)

6: else

7: ⟨lid, ttl⟩ := min{messages in mailbox}

8: if lid < lid(p) then

9: lid(p) := lid

10: updateTTL(ttl + 1)

11: else if lid = lid(p) then

12: updateTTL(min(ttl(p), ttl) + 1)

13: else

14: updateTTL(ttl(p) + 1)

15: if lid(p) ≥ id(p) then // Reset

16: lid(p) := id(p)

17: ttl(p) := 0

Lemma 1. Let f be a fake ID. For every i ≥ 1, at the beginning of Round i,

∀p ∈ V, lid(p) = f ⇒ ttl(p) ≥ i− 1.

Proof: By induction on i: the base case, i = 1 is trivial since by definition

21

ttl(p) ≥ 0. For the induction step, if i > 1, by induction hypothesis, ∀p ∈

V, lid(p) = f ⇒ ttl(p) ≥ i − 2 at the beginning of Round i − 1. Notice that540

a process p can only change the value of lid(p) to f if p receives a message

containing f . Moreover, from the code of the algorithm, we know that for every

process p, if ttl(p) = 0 at the beginning of Round i, then lid(p) = id(p) ̸= f .

So, (*) if lid(p) = f at beginning of Round i, then p did not reset during Round

i− 1.545

Let p ∈ V such that lid(p) = f at beginning of Round i. There are two cases

to consider.

1. If lid(p) = f at the beginning of the Round i− 1, then ttl(p) ≥ i− 2 at the

beginning of the Round i− 1 and either p increments the value of ttl(p)

during Round i− 1 (Line 5, 12, or 14) or p sets ttl(p) to t+ 1 such that p550

received a message m = ⟨f, t⟩ from a neighbor q at Round i− 1 (Line 12).

In the latter case, lid(q) = f and so ttl(q) = t ≥ i − 2 at the beginning

of Round i − 1. Hence, in both cases, ttl(p) ≥ i − 1 at the beginning of

Round i by (*).

2. If lid(p) ̸= f at the beginning of Round i−1, p receives a message m = ⟨f, t⟩555

from some neighbor q and p sets ttl(p) to t+1 during Round i−1 (Line 10).

Now, lid(q) = f and so ttl(q) = t ≥ i− 2 at the beginning of Round i− 1.

Thus, ttl(p) ≥ i− 1 at the beginning of Round i by (*).

□

Lemma 1 implies that for every i > 0 and every fake ID f , ∀p ∈ V, lid(p) =560

f ⇒ ttl(p) ≥ i at the end of Round i. We define a quasi-legitimate configuration

of Algorithm 1 as any configuration where lid(ℓ) = id(ℓ) and ttl(ℓ) = 0 and

there is no fake ID in the system (i.e., ∀p ∈ V , lid(p) is not a fake ID). So, from

Lemma 1 and thanks to the reset mechanism of Algorithm 1, we deduce the

following corollary.565

Corollary 4. At the end of Round 2∆, the configuration is quasi-legitimate.

Proof: By Lemma 1 and since the maximum value of ttl is 2∆ − 1, we have

22

∀p ∈ V , lid(p) is not a fake ID at the beginning of Round 2∆ + 1 and so at the

end of Round 2∆. Moreover, by definition, id(ℓ) is the smallest non-fake ID. So,

∀p ∈ V , lid(p) ≥ id(ℓ) at the end of Round 2∆. This is in particular true for570

process ℓ: lid(l) ≥ id(ℓ) at the end of Round 2∆. By Remark 6, we conclude

that lid(ℓ) = id(ℓ) and ttl(ℓ) = 0 at the end of Round 2∆ (n.b., 2∆ > 1 since

∆ ∈ N∗). □

The proof of the next lemma consists in showing that for every set of processes

V , the set of quasi-legitimate configurations of Algorithm 1 for V is closed in575

T CB(∆).

Lemma 2. Let e be an execution of Algorithm 1 in an arbitrary TVG that starts

from a quasi-legitimate configuration. The configuration reached at the end of

every round of e is quasi-legitimate.

Proof: Consider any step from γ to γ′ such that γ is quasi-legitimate. First,580

since γ contains no fake ID, no message containing a fake ID can be sent in the

step from γ to γ′, and γ′ contains no fake ID too. Moreover, id(ℓ) is the smallest

non-fake ID. So, ∀p ∈ V , lid(p) ≥ id(ℓ) in γ′. Finally, by Remark 6, we conclude

that lid(ℓ) = id(ℓ) and ttl(ℓ) = 0 in γ′. Hence, γ′ is quasi-legitimate. □

A process p has a legitimate state if and only if lid(p) = id(ℓ), ttl(p) ≤ ∆,585

and p = ℓ ⇒ ttl(p) = 0. We define a legitimate configuration of Algorithm 1

as any configuration where every process has a legitimate state. By definition,

every legitimate configuration is also quasi-legitimate.

Lemma 3. Let G be a TVG of Class T CB(∆), t ≥ oT , and e be an execution

of Algorithm 1 in G[t,+∞) starting in a quasi-legitimate configuration. For every590

r ≥ ∆, the configuration at the end of Round r in e is legitimate.

Proof: First, remark that for every j > 0, the communication network at Round

j in e is Gt+j−1. Then, the proof of the lemma is based on the claim below.

Claim (*): for every i ≥ 0, d ≥ 0, every process p such that d̂ℓ,t+i−1(p) ≤ d

satisfies: ∀j ∈ {1, . . . ,∆ − d̂ℓ,t+i−1(p) + 1}, lid(p) = id(ℓ) and ttl(p) ≤595

23

d̂ℓ,t+i−1(p) + j − 1 at the beginning of Round
(
i+ j + d̂ℓ,t+i−1(p)

)
of e.

Proof of Claim (*): By induction on d.

Base Case: If d = 0 and some p ∈ V satisfies d̂ℓ,t+i−1(p) = d, then p = ℓ.

Then, it is immediate since the initial configuration is quasi-legitimate

(by hypothesis) and every subsequent configuration is quasi-legitimate600

too (by Lemma 2).

Induction step: consider any process p such that d̂ℓ,t+i−1(p) ≤ d with

d > 0. If d̂ℓ,t+i−1(p) < d, the property is direct from the induction

hypothesis. Consider now the case where d̂ℓ,t+i−1(p) = d. There

is a journey J ∈ J (ℓ, p) such that departure(J) > t + i − 1 and605

arrival(J) = d + t + i − 1. We denote J by {(e0, t0), (e1, t1), . . . ,

(ek, tk)} where tk = d + t + i − 1. Let q be the process such that

ek = (q, p). By definition, d̂ℓ,t+i−1(q) < d̂ℓ,t+i−1(p) = d. Hence,

by induction hypothesis, ∀j ∈ {1, . . . ,∆− d̂ℓ,t+i−1(q) + 1}, lid(q) =

id(ℓ) and ttl(q) ≤ d̂ℓ,t+i−1(q) + j − 1 at the beginning of Round610

i + j + d̂ℓ,t+i−1(q). Let j′ = d̂ℓ,t+i−1(p) − d̂ℓ,t+i−1(q). Since j′ ∈

{1, . . . ,∆− d̂ℓ,t+i−1(q)+1},3 we can instantiate the previous property

with j′. We obtain lid(q) = id(ℓ) and ttl(q) ≤ d̂ℓ,t+i−1(q) + j′ − 1 =

d̂ℓ,t+i−1(p)−1 = d−1 at the beginning of Round i+j′+ d̂ℓ,t+i−1(q) =

i+ d̂ℓ,t+i−1(p) = i+d. Now, since ρ(ek, tk) = 1 and tk = d+t+i−1, q615

sends a message ⟨id(ℓ), ttlq⟩ to p during Round i+d with ttlq ≤ d− 1,

where ttlq is the value of ttl(q) at the beginning of Round i+ d.

By definition of id(ℓ) and since there is no fake IDs (Lemma 2)

the minimum message received by p in Round i + d is ⟨id(ℓ), ttl⟩

with ttl ≤ ttlq ≤ d − 1. From the algorithm, lid(p) = id(ℓ) and620

ttl(p) = ttl+1 ≤ d at the end of Round i+d, and so at the beginning

of Round i+d+1. Then, by induction on j ∈ {1, . . . ,∆−d+1}, ttl(p) ≤

d+ j − 1 ≤ ∆ ≤ 2∆− 1 at the beginning of Round i+ d̂ℓ,t+i−1(p) + j

3More precisely, we have j′ ∈ {1, . . . ,∆− d̂ℓ,t+i−1(q)}.

24

since ttl(p) is at most incremented by one during the previous round

and p does not reset. So, lid(p) remains equal to id(ℓ) at the beginning625

of Round i+ d̂ℓ,t+i−1(p) + j.

Let r ≥ ∆ ∈ N∗. We now apply Claim (*) to d = ∆ so that every process p

is taken into account by the claim: with i = r −∆, j = ∆− d̂ℓ,t+i−1(p) + 1, we

obtain that lid(p) = id(ℓ) and ttl(p) ≤ ∆ at the beginning of Round r + 1; in

addition, ttl(ℓ) = 0 at the beginning of Round r + 1, by Remark 6. Hence, the630

configuration at the end of Round r is legitimate. □

As a direct consequence of Corollary 4 and Lemma 3, we obtain the conver-

gence.

Corollary 5. Let G be a TVG of T CB(∆). For every i ≥ 3∆, at the end of

Round i of any execution of Algorithm 1 in G, the configuration is legitimate.635

Lemma 4. Let G be a TVG of T CB(∆), t ≥ oT , and e be an execution of

Algorithm 1 for G[t,+∞) starting in a legitimate configuration. For every r ∈

{1, ...,∆ − 1}, the configuration e has reached at the end of Round r satisfies

lid(p) = id(ℓ) and ttl(p) ≤ ∆+ r, for every process p.

Proof: First, the lemma trivially holds for ∆ ≤ 1. So, we now show by induction640

on r that the lemma holds in the case where ∆ > 1.

Base case: At the beginning of Round 1, ∀p ∈ V , lid(p) = id(ℓ) and ttl(p) ≤ ∆

as the first configuration of e is legitimate. According to the algorithm, at

the end of Round 1, ∀p ∈ V , lid(p) = id(ℓ) and ttl(p) ≤ ∆+1 < 2∆ (since

∆ > 1).645

Induction step: let r ∈ {2, ...,∆− 1}. At the end of Round r− 1, hence at the

beginning of Round r, ∀p ∈ V , lid(p) = id(ℓ) and ttl(p) ≤ ∆+r−1 < 2∆−1,

by induction hypothesis. According to the algorithm, and since ∆+r < 2∆,

no process can reset. Hence, at the end of Round r, ∀p ∈ V , lid(p) = id(ℓ)

and ttl(p) ≤ ∆+ r, and we are done.650

25

□

Theorem 4 below is a direct consequence of Lemmas 3 and 4.

Theorem 4. For every G = (V,E, T , ρ) ∈ T CB(∆), for every legitimate config-

uration γ of Algorithm 1 for V , the execution of Algorithm 1 in G starting from

γ satisfies SPLE.655

Proof: Let e = γ0...γi... be an execution of Algorithm 1 in G such that γ0 is

legitimate. First, as γ0 is legitimate, we have lid(p) = id(ℓ), for every process p

(by definition). Then, by Lemma 4, for every r ∈ {1, ...,∆− 1}, at the end of

Round r, i.e., in Configuration γr, we have lid(p) = id(ℓ), for every process p.

Finally, since γ0 is quasi-legitimate (by definition, every legitimate configuration660

is also quasi-legitimate), Lemma 3 applies: for every r ≥ ∆, the configuration γr

at the end of Round r is legitimate, so for every process p, lid(p) = id(ℓ) in γr.

Hence, SPLE(e) holds. □

By Corollary 5 and Theorem 4, we have the next corollary.

Corollary 6. Algorithm 1 is a self-stabilizing leader election algorithm for665

T CB(∆). Its stabilization time is at most 3∆ rounds. It requires O(B + log∆)

bits per process and messages of size O(B + log∆) bits, where B is the number

of bits used to store an ID.

5. Class T CQ(∆) with ∆ and n known

The code of our self-stabilizing algorithm for T CQ(∆) is given in Algorithm 2.670

5.1. Overview of Algorithm 2

Each process p collects IDs in its variable members(p). Actually, members(p)

is a (FIFO) queue containing at most n pairs ⟨id, t⟩, where id is an identifier and t

is a timestamp, i.e., an integer value less than or equal to ∆. In the following, we

denote by members(p)[id] the timestamp associated to the identifier id belonging675

to members(p).

26

At each round i, p sends all pairs ⟨id, t⟩ of members(p) such that t < ∆ at

the end of Round i− 1 (Line 2). (The timestamps allow to eventually remove

all fake IDs.) Then, p updates members(p) by calling Function insert(p, ⟨id, t⟩)

for each received pair ⟨id, t⟩ such that id ̸= id(p) (Lines 4-5).680

Each call to insertion function, insert(p, ⟨id, t⟩), works as follows. If id

already appears in members(p), then the old pair ⟨id, t′⟩ is removed first from

the queue (Lines i1-i2) and then ⟨id,min(t, t′)⟩ is appended at the tail of the

queue (Lines i3). Otherwise, ⟨id, t⟩ is appended at the tail of the queue (Lines i6).

However, since the size of members(p) is limited, if the queue is full, its head is685

removed beforehand to make room for the new value (Line i5). Using this FIFO

mechanism, initial spurious values eventually vanish from members(p).

After all received pairs have been managed, the timestamps of all pairs in the

queue are incremented (Line 6) and ⟨id(p), 0⟩ is systematically inserted at the

tail of the queue (Line 7). This mechanism ensures two main properties. First,690

every timestamp associated to a fake ID in a variable members is eventually

forever greater than or equal to ∆ (Lemma 5); and consequently, eventually

no message containing fake IDs is sent (Corollary 7). Second, by definition of

T CQ(∆), for every two distinct processes p and q, there are journeys of length

at most ∆ infinitely often, so each process p receives infinitely often messages695

containing id(q) with timestamps smaller than ∆. Thus, eventually members(p)

exactly contains all IDs of the networks (Lemma 7). Now, at the end of each

round, p updates its leader variable with the smallest ID in members(p) (Line 8).

Hence, the process of lowest ID, ℓ, is eventually elected.

5.2. Self-stabilization700

Lemma 5. Let f be a fake ID. For every i ≥ 1, at the beginning of Round i, the

following property holds: ∀p ∈ V if f is in members(p), then members(p)[f] ≥

min(∆, i− 1).

Proof: By induction on i ≥ 1. The base case, i = 1, is trivial since members(p)[f]

is a natural integer and ∆ ≥ 1. For the induction step, assume that i > 1.705

27

Algorithm 2: Self-stabilizing leader election for T CQ(∆) for each process p.
Inputs:
n ∈ N : number of processes

∆ ∈ N∗ : recurrent bound on the temporal distance between processes

id(p) ∈ IDSET : ID of p

Local Variables:
members(p) : queue of at most n elements

contain pairs ⟨id, t⟩ ∈ IDSET × {0, . . . ,∆}

lid(p) ∈ IDSET : ID of the leader

Macros:

insert(p, ⟨id, t⟩):

i1: if ∃t′, ⟨id, t′⟩ ∈ members(p) then

i2: remove ⟨id, t′⟩ from members(p)

i3: push ⟨id,min(t, t′)⟩ at the tail of members(p)

i4: else

i5: if |members(p)| = n then remove the head of members(p)

i6: push ⟨id, t⟩ at the tail of members(p)

1: Repeat Forever

2: SEND({⟨id, t⟩ ∈ members(p) : t < ∆})

3: mailbox := RECEIVE()

4: forall pair ⟨id, t⟩ in a message of mailbox do

5: if id ̸= id(p) then insert(p, ⟨id, t⟩)

6: forall ⟨id, t⟩ ∈ members(p) : t < ∆ do members(p)[id] + +

7: insert(p, ⟨id(p), 0⟩)

8: lid(p) := min{id : ⟨id,_⟩ ∈ members(p)}

By induction hypothesis, we have: (*) ∀p ∈ V , if f is in members(p), then

members(p)[f] ≥ min(∆, i− 2) at the beginning of Round i− 1. Let p ∈ V such

that f is in members(p) at the beginning of Round i. There are two cases to

consider.

1. Assume that f /∈ members(p) at the beginning of Round i − 1. So, p710

received some pairs ⟨f, t⟩ during Round i− 1. Each of those pairs satisfies

t ≥ min(∆, i−2) (by (*) and from the code of the algorithm) and is inserted

into members(p). Let ⟨f, tmin⟩ be the message received by p at Round

28

i− 1 with the smallest timestamp tmin. By executing Line i3 or i6 for each

received pair, we can deduce that members(p)[f] = tmin ≥ min(∆, i− 2)715

right after the insertions at Round i − 1. Hence, after executing Line 6,

members(p)[f] ≥ min(∆, i− 1), and so is at the beginning of Round i.

2. Assume that f is in members(p) at the beginning of Round i− 1. Let tα

be the value of members(p)[f] at the beginning of Round i− 1. By (*),

tα ≥ min(∆, i− 2). There are two cases:720

(i) p does not receive any pair ⟨f,_⟩ during Round i− 1.

After executing Line 6, members(p)[f] = min(∆, tα+1) ≥ min(∆, i−

1), and so is at the beginning of Round i.

(ii) p receives some pairs ⟨f, t⟩ during Round i− 1. Each of those pairs

satisfies t ≥ min(∆, i− 2) (by (*) and from the code of the algorithm)725

and is inserted into members(p). Let ⟨f, tmin⟩ be the message received

by p at Round i− 1 with the smallest timestamp tmin.

By executing Line i3 or i6 for each received pair, we can deduce that

members(p)[f] = min(tα, tmin) ≥ min(∆, i− 2) right after the inser-

tions at Round i−1. Hence, after executing Line 6, members(p)[f] ≥730

min(∆, i− 1), and so is at the beginning of Round i.

□

Since a process p does not send a pair ⟨id, t⟩ of members(p) with t ≥ ∆, we

have:

Corollary 7. In any round ∆ + i with i ≥ 1, no process receives a message735

containing fake IDs.

Lemma 6. ∀p, q ∈ V , if id(q) is inserted into members(p) during Round ∆+ i

with i ≥ 1, id(q) remains into members(p) forever.

Proof: If an ID id is in members(p), it can only be removed from members(p) if

function insert(p, ⟨id′, t⟩) is called and one of the following two situations occurs:740

29

• Line i2: if id = id′ but in this case id is immediately added at the tail of

members(p),

• Line i5: if id ̸= id′, id is the head of the queue, and the size of members(p)

is already n.

So, after id is inserted (at tail) into members(p), it requires the insertion of n745

distinct IDs that are not into members(p) different from id in order to get id at

the head of the queue and remove it. If id is inserted during Round ∆+ i, it is

not a fake ID and the only other IDs that can be inserted into members(p) are

IDs of processes in V since p will not receive any fake ID (Corollary 7). Thus,

at most n− 1 distinct IDs different from id can be inserted after the insertion of750

id. Hence, id cannot be removed from members(p). □

By definition of class T CQ(∆), for every pair of processes p and q, there

exists t ≥ ∆ such that d̂q,oT +t−1(p) ≤ ∆. We denote by t(q, p) the minimum

value t that satisfies the above property, namely t(q, p) represents the first date

after ∆+oT −1 (i.e., after ∆ rounds) from which q can broadcast an information755

to p in no more than ∆ rounds.

Lemma 7. ∀p, q ∈ V , by the end of Round t(q, p) + ∆, id(q) is in members(p)

forever.

Proof: Let q ∈ V . Remark, first, that id(q) ∈ members(q) ∧members(q)[q] = 0

by the end of Round 1, by definition of Algorithm 2; see Line 7.760

Let p ∈ V . If q = p then using the remark above and since t(q, p) + ∆ ≥ 1,

we are done. We now assume q ̸= p. As d̂q,oT +t(q,p)−1(p) ≤ ∆, there exists a

journey J = {(e1, t1), ..., (ek, tk)} and a sequence of processes p0, . . . , pk such that

t1 > oT +t(q, p)−1, tk = t(q, p)+ d̂q,oT +t(q,p)−1(p)+oT −1 ≤ t(q, p)+∆+oT −1

and for every i ∈ {1, ..., k}, ei = (pi−1, pi) with p0 = q and pk = p. To simplify765

the notations, let τi = ti − oT + 1 for every i in {1, ..., k} such that the edge

ei = (pi−1, pi) is present during Round τi. We have τ1 > t(q, p), τk ≤ t(q, p)+∆,

and τi − τ1 < ∆.

30

We prove by induction on i that for all i ∈ {1, ..., k}, (1) id(q) is forever in

members(pi) by the end of Round τi and (2) members(pi)[q] ≤ τi − τ1 + 1 at770

the end of Round τi.

Base case: for i = 1, the edge (q, p1) exists at Round τ1. Using the first remark

in the proof, at the beginning of Round τ1, since τ1 > t(q, p) ≥ ∆ ≥ 1,

we have id(q) ∈ members(q) ∧ members(q)[q] = 0. Hence, at Round

τ1, q sends ⟨id(q), 0⟩ in its message to p1. Following the algorithm, p1775

inserts id(q) in members(p1) during Round τ1 > ∆. So, id(q) is forever in

members(p1) by the end of Round τ1; see Lemma 6. Still following the

algorithm, members(p1)[q] = 1 at the end of Round τ1.

Induction Step: Let i > 1. We assume the result holds for i−1: id(q) is forever

in members(pi−1) by the end of Round τi−1 and members(pi−1)[q] ≤780

τi−1 − τ1 + 1 at the end of Round τi−1. Hence, at the beginning of Round

τi (and so, at the end of Round τi − 1), we have: id(q) in members(pi−1)

and as the timestamps are at most incremented by one at the end of each

round, members(pi−1)[q] ≤ τi−1 − τ1 + 1 + τi − 1− τi−1 = τi − τ1 < ∆.

During Round τi, the edge ei = (pi−1, pi) is present and pi−1 sends in its785

message to pi a pair ⟨id(q), tq⟩ such that tq ≤ τi−τ1 since τi−τ1 < ∆. As pi

receives it, it inserts id(q) in members(pi) in Round τi. Since τi > τ1 > ∆,

Lemma 6 ensures that id(q) remains forever in members(pi) by the end of

Round τi. Moreover, following the algorithm, at the end of Round τi, we

have members(pi)[q] ≤ τi − τ1 + 1.790

With i = k, id(q) is forever in members(p) by the end Round τk ≤ t(q, p)+∆.

□

Let V be a set of processes. We define a legitimate configuration of Algorithm 2

for V as any configuration of Algorithm 2 for V where for every process p, we

have lid(p) = id(ℓ) and {id : ⟨id,_⟩ ∈ members(p)} = {id(q) : q ∈ V }.795

Remark that the set of legitimate configurations of Algorithm 2 for V is closed

in T CQ(∆). Indeed, by definition of the algorithm, no message containing a fake

31

ID can be sent from such a configuration. Hence, the set members(p) of every

process p remains constant, min{id : ⟨id,_⟩ ∈ members(p)} = id(ℓ) forever,

and the next lemma follows.800

Lemma 8. Any execution of Algorithm 2 that starts from a legitimate configu-

ration in an arbitrary TVG satisfies SPLE.

The next lemma is a direct consequence of Corollary 7 and Lemma 7.

Lemma 9. ∃t ≥ ∆ such that the configuration reached at the end of Round

t+∆ is legitimate.805

Proof: Corollary 7 ensures that for every i > ∆ and p ∈ V , no fake ID is inserted

in members(p) at Round i. We let T = max{t(q, p) : q, p ∈ V }. By definition,

T ≥ ∆. By Lemma 7, we have that for every p, q ∈ V , members(p) contains

id(q) at the end of Round T + ∆. Let p ∈ V . As the size of members(p) is

bounded by the number n of processes, members(p) is exactly the set of IDs of810

every process and, by Line 8, we also have lid(p) = id(ℓ). □

By Lemmas 8-9, follows.

Theorem 5. Algorithm 2 is a self-stabilizing leader election algorithm for

T CQ(∆). It requires O(n(B + log∆)) bits per process and messages of size

O(n(B + log∆)) bits.815

5.3. Time Complexity

As for Algorithm 1, we would like to exhibit a bound on the stabilization time

of Algorithm 2. However, we will show below that it is impossible. Actually, we

will even establish a stronger result since we will show that in T CQ(∆), we cannot

bound the time before any pseudo-stabilizing leader election algorithm definitely820

elects a leader. Pseudo-stabilization is a weak variant of self-stabilization initially

introduced by Burns et al. [32] in the context of static networks. Intuitively,

an algorithm is pseudo-stabilizing if all its executions (starting from arbitrary

configurations) have a suffix satisfying the intended specification. In [33], we

have accommodated this concept to the highly dynamic context as follows.825

32

Definition 6 (Pseudo-stabilization). An algorithm A is pseudo-stabilizing

for the specification SP on a class I of infinite TVGs if for every set of processes

V , every G ∈ I with set of processes V , and every configuration γ of A for V ,

every execution of A in G starting from γ contains a suffix satisfying SP .

The length of the pseudo-stabilization phase of an execution γ0, γ1, . . . is the830

minimum index i such that SP (γi, γi+1, . . .) holds. The pseudo-stabilization time

in rounds is the maximum length of a pseudo-stabilization phase over all possible

executions.

Remark 7. By definition, if an algorithm A is self-stabilizing for SP on a

class I of infinite TVGs, then A is also pseudo-stabilizing for SP on I (but the835

reverse is not necessarily true [32]).

Moreover, the length of the pseudo-stabilization phase is less than or equal

to that of the stabilization phase in a given execution of A; and so are its the

pseudo-stabilization and stabilization time.

The idea behind the next impossibility result is that if we consider any840

infinite TVG G of T CQ(∆), then we can construct another infinite TVG by

prefixing it with a finite TVG only constituted of independent sets, i.e., graphs

only constituted of isolated nodes without any link. By definition, the obtained

infinite TVG still belongs to T CQ(∆). Now, the length of the finite prefix made

of independent sets is unbounded and during this prefix no process receive any845

message, by definition. Hence, they cannot coordinate together to elect a leader.

Theorem 6. Let ∆ ∈ N∗ and n ≥ 2. Let A be a deterministic pseudo-stabilizing

leader election algorithm for T CQ(∆). There exists no function f : N∗×N∗ → N

such that ∀G ∈ T CQ(∆) with a vertex set of n processes, the length of the pseudo-

stabilization phase of every execution of A in G is less than or equal to f(n,∆).850

Proof: Assume by the contradiction that such a function f exists. Let G =

(V,E, T , ρ) ∈ T CQ(∆) such that |V | = n and whose prefix of length f(n,∆) is

only constituted of independent sets (no edge), i.e., ∀i ∈ {1, ..., f(n,∆)}, the

33

snapshot GoT +i−1 = (V,EoT +i−1) is an independent set, i.e., EoT +i−1 = ∅.

Such a TVG exists in T CQ(∆), by definition.855

Let e = γ0, γ1, ... be any execution of A in G. By hypothesis, there exists a

unique leader from Configuration γf(n,∆). Let pℓ ∈ V be that leader process.

Let v be any process such that v /∈ V (in particular, id(v) ̸= id(p),∀p ∈ V).

Let V ′ = V \ {pℓ} ∪ {v}. Let γ′
0 be any configuration of A for V ′ such that

1. v has any local state in γ′
0, and860

2. ∀p ∈ V ′ \ {v}, the local state of p is the same in γ′
0 and γ0.

The only difference between γ1 and γ′
1 is that pℓ has been replaced by v (with

an arbitrary local state). We now consider the execution e′ = γ′
0, γ

′
1, ... of A in

the infinite TVG G′ which is identical to G except that pℓ has been replaced

by v. Let G′ = (V ′, E′, T , ρ′), where E′ = {(p, q) ∈ E : p ≠ pℓ ∧ q ̸= pℓ} and865

∀(p, q) ∈ E′,∀i ∈ T

• if p = v, then ρ′(p, q, i) = ρ(pℓ, q, i),

• else if q = v, then ρ′(p, q, i) = ρ(p, pℓ, i),

• else ρ′(p, q, i) = ρ(p, q, i).

Of course, G′ ∈ T CQ(∆) since G ∈ T CQ(∆).870

Claim (*): ∀p ∈ V ′ \ {v}, ∀i ∈ {0, ..., f(n,∆)}, the local state of p is the same

in γ′
i and γi.

Proof of the claim: By induction on i. The base case i = 0 is trivial, by

construction of γ′
0. Let i ∈ {0, ..., f(n,∆)− 1}. By induction hypothesis,

∀p ∈ V ′ \ {v}, the local state of p is the same in γ′
i and γi. Let q be any875

process in V ′ \ {v}. By construction, the in-neighborhood of q is empty at

the beginning of Round i+ 1 both in e and e′. So, q receives no message

and takes the same state in Round i+1 of e and e′, since A is deterministic.

Hence, the local state of q is the same in γ′
i+1 and γi+1.

By Claim (*), ∀q ∈ V ′ \ {v}, lid(q) = id(pℓ) at the end of Round f(n,∆) in880

e′. Now, pℓ /∈ V ′ (in other words, id(pℓ) is a fake ID for V ′). So, the suffix of

34

e′ starting from γ′
f(n,∆) does not satisfy SPLE , i.e., the length of the pseudo-

stabilizing phase of the execution e′ in the infinite TVG G′ ∈ T CQ(∆) is greater

than f(n,∆), a contradiction. □

From Remark 7, we have the following corollary.885

Corollary 8. Let ∆ ∈ N∗ and n ≥ 2. Let A be a deterministic self-stabilizing

leader election algorithm for T CQ(∆). There exists no function f : N∗×N∗ → N

such that ∀G ∈ T CQ(∆) with a vertex set of n processes, the length of the

stabilization phase of every execution of A in G is less than or equal to f(n,∆).

From the previous corollary, we know that the stabilization time of Algo-890

rithm 2 cannot be bounded in general. However, there are relevant favorable

cases where it can be; in other words Algorithm 2 is speculative. To see this, we

now show that the stabilization time of Algorithm 2 is at most 2∆ rounds in

T CB(∆) ⊆ T CQ(∆). Remark first that the proof of self-stabilization given in

Subsection 5.2 holds for T CB(∆) since T CB(∆) ⊆ T CQ(∆). Furthermore, for895

every processes p and q, t(q, p) is exactly ∆ in T CB(∆). Hence in the proof of

Lemma 9, we have T = max{t(q, p) : q, p ∈ V } = ∆; ensuring that in T CB(∆),

the configuration reached at the end of Round 2∆ is legitimate. Hence, follows.

Theorem 7. The stabilization time of Algorithm 2 in Class T CB(∆) is at most

2∆ rounds.900

6. Class T CR with n known

The code of our self-stabilizing algorithm for T CR is given in Algorithm 3.

6.1. Overview of Algorithm 3

Contrary to T CQ(∆), we have no timing guarantee at all for journeys in

T CR. Consequently and in contrast to Algorithm 2, we cannot use any bound905

on timestamps to stop forwarding fake IDs. Thus, contrary to Algorithm 2, Al-

gorithm 3 will require an unbounded memory: it will use unbounded timestamps

and each process will only store up to n IDs, those timestamped with the smallest

35

values. Finally, notice that using this latter policy, we do no more need any

FIFO mechanism to remove fake IDs: the regular growth of their timestamps will910

ensure that they will be eventually replaced by real IDs in the memory storage

of all processes. Hence, similarly to Algorithm 2, each process p uses a variable

members(p) to collect IDs. However, this time, members(p) is a map that can

contain up to n IDs, each of them being associated with a timestamp (we denote

by members(p)[id] the timestamp associated to the identifier id belonging to915

members(p)).

At each round i, p sends the content of members(p) (Line 2). Then, p

updates members(p) by calling Function insert on each received pair ⟨id, t⟩

such that id ≠ id(p) (Lines 4-5). The function insert works as follows: if id

already appears in members(p), then the associated timestamp is updated by920

keeping the smallest value (Line i1). Otherwise, p tries to insert ⟨id, t⟩ in the

map. Actually, ⟨id, t⟩ is inserted in the map if the map is not full (Line i2) or

t is smaller than the greatest timestamp tM in the map (Lines i3-i7). In this

latter case, ⟨id, t⟩ overwrites any value having this timestamp in members(p)

(Line i6-i7). This overwriting mechanism allows to eventually remove all fake925

IDs from members(p), since their timestamps will regularly increase. After

members(p) has been updated, all timestamps of members(p) are incremented

(Line 6) and then, ⟨id(0), 0⟩ is systematically inserted in the map (Line 7).

Actually, Algorithm 3 guarantees two main properties. First, at the beginning

of any round i, any timestamp associated to a fake ID is greater than or equal to930

i− 1; see Lemma 10. Second, by definition of T CR, at any point in time, every

process can reach all the others through a journey. The key property is then to

show that if some broadcast initiated by process p reaches a process q at Round

i, then the value of the timestamp in the message is small enough to ensure the

insertion of id(p) into members(q); see Lemma 11. These two properties ensure935

that eventually members(p) exactly contains all IDs of the network. Now, at

the end of each round, p updates its leader variable with the smallest ID in

members(p) (Line 8). Hence, the process of lowest ID, ℓ, is eventually elected.

36

Algorithm 3: Self-stabilizing leader election for T CR, for each process p.
Inputs:
n ∈ N : number of processes

id(p) ∈ IDSET : ID of p

Local Variables:
members(p) : map of size at most n, contain pairs ⟨id, t⟩ ∈ IDSET ×N

lid(p) ∈ IDSET : ID of the leader

Macros:

max(p):

m1: if |members(p)| < n then return ⊥

m2: else return ⟨id, t⟩ ∈ members(p) with maximum timestamp t

insert(p, ⟨id, t⟩):

i1: if ⟨id,_⟩ ∈ members(p) then members(p)[id] := min(t,members(p)[id])

i2: else if max(p) = ⊥ then add ⟨id, t⟩ in members(p)

i3: else

i4: ⟨idM, tM⟩ := max(p)

i5: if t < tM then

i6: remove ⟨idM, tM⟩ from members(p);

i7: add ⟨id, t⟩ in members(p)

1: Repeat Forever

2: SEND(⟨members(p)⟩)

3: mailbox := RECEIVE()

4: forall pair ⟨id, t⟩ in a message of mailbox do

5: if id ̸= id(p) then insert(p, ⟨id, t⟩)

6: forall id : ⟨id,_⟩ ∈ members(p) do members(p)[id] + +

7: insert(p, ⟨id(p), 0⟩)

8: lid(p) := min{id : ⟨id,_⟩ ∈ members(p)}

6.2. Self-stabilization

The lemma below can be shown using an induction similar to the one used940

in the proof of Lemma 5, page 27.

Lemma 10. Let f be a fake ID. For every i ≥ 1, at the beginning of Round i,

the following holds: ∀p ∈ V , if f is in members(p), then members(p)[f] ≥ i− 1.

37

Lemma 11. For every i ≥ 1, at the end of Round i, the following property holds:

∀p, q ∈ V , if d̂p,oT (q) ≤ i−1, then id(p) is in members(q) and members(q)[p] ≤945

i− 1.

Proof: By induction on i ≥ 1.

Base case: In Round 1, p tries to insert ⟨p, 0⟩ in members(p) (Line 7). Since

the timestamp associated with every other ID in members(p) has been

incremented beforehand (line 6), ⟨p, 0⟩ ∈ members(p) by the end of the950

first round.

Induction step: Assume that i > 1. By induction, at the end of Round

i − 1, we have, for every p, q ∈ V such that d̂p,oT (q) ≤ i − 2, that id(p)

is in members(q) and members(q)[p] ≤ i − 2. Let p, q ∈ V such that

d̂p,oT (q) ≤ i− 1. There are two cases to consider.955

1. If d̂p,oT (q) ≤ i− 2 then, by induction hypothesis, at the end of Round

i − 1, id(p) is in members(q) and members(q)[p] ≤ i − 2. During

Round i, id(p) cannot be removed from members(q). Indeed, by

Lemma 10, the timestamps associated to fake IDs are greater than

or equal to i− 1. Now, timestamps are incremented during Round i960

(Line 6), thus members(q)[p] ≤ i− 1 at the end of Round i.

2. If d̂p,oT (q) = i−1 then this means that the arrival of the journey from

p to q which provides d̂p,oT (q) occurs at time oT +d̂p,oT (q) = oT +i−1.

So, ∃r ∈ V such that d̂p,oT (r) ≤ i− 2 and edge (r, p) exists at instant

oT + i − 1. Hence, (r, q) is present at the beginning of Round i965

and so q receives a message from r during Round i. By induction

hypothesis, at the end of Round i − 1, id(p) is in members(r) and

members(r)[p] ≤ i − 2. Hence, q receives the pair ⟨p, tM⟩ with

tM ≤ i− 2 during Round i. For the same reasons as in Case (1), this

pair is not rejected but inserted into members(q). Then, timestamps970

are incremented (Line 6), hence members(q)[p] ≤ i− 1 at the end of

Round i.

38

□

Let V be a set of processes. We define a legitimate configuration of Algorithm 3

for V as any configuration of Algorithm 3 for V where lid(p) = id(ℓ) and975

{id : ⟨id,_⟩ ∈ members(p)} = {id(q) : q ∈ V }, for every process p. By

definition of the algorithm, no message containing a fake ID can be sent from

such a configuration. So, from any legitimate configuration, the set members(p)

of every process p is constant and min{id : ⟨id,_⟩ ∈ members(p)} = id(ℓ)

forever. Thus, the set of legitimate configurations of Algorithm 3 for V is closed980

in T CR and we have:

Lemma 12. Any execution of Algorithm 3 that starts from a legitimate configu-

ration in an arbitrary TVG satisfies SPLE.

Theorem 8 below is a direct consequence of Lemmas 11 and 12.

Theorem 8. Algorithm 3 is a self-stabilizing leader election algorithm for T CR.985

Proof: Let p ∈ V . By definition of T CR, ∀q ∈ V , ∃J ∈ J (p, q) such that

departure(J) > oT . The temporal length of J is finite. Thus, ∃ δ(p) ∈ N such

that ∀q ∈ V , d̂p,oT (q) ≤ δ(p). Thus, at the end of Round δ(p) + 1, ∀q ∈ V ,

id(p) is forever in members(q) by Lemma 11. Since members(q) contains at

most n entries, after maxp∈V δ(p) + 1 rounds, members(q) contains the ID of990

every process and no fake ID. So q chooses id(ℓ) as leader at the end of Round

maxp∈V δ(p) + 1. Hence, the system is in a legitimate configuration at the end

of this round and, by Lemma 12, we are done. □

6.3. Time Complexity

Similarly to T CQ(∆), stabilization time of leader election algorithms cannot995

be bounded in T CR, as shown below.

Lemma 13. Let n ≥ 2. Let A be a deterministic pseudo-stabilizing leader

election algorithm for T CR. There exists no function g : N∗ → N such that

∀G ∈ T CR with a vertex set of n processes, the length of the pseudo-stabilization

phase of every execution of A in G is less than or equal to g(n).1000

39

Proof: Assume, by the contradiction, that the lemma is false. Then, there exists

a function g : N∗ → N such that ∀G ∈ T CR with a vertex set of n processes, the

length of the pseudo-stabilization phase of every execution of A in G is less than

or equal to g(n). For every ∆ ∈ N∗, since T CQ(∆) ⊆ T CR, this claim also holds

for T CQ(∆). Let f(n,∆) = g(n). We have then ∀G ∈ T CQ(∆) with a vertex set1005

of n processes, the length of the pseudo-stabilization phase of every execution of

A in G is less than or equal to f(n,∆), contradicting Corollary 8. □

From Remark 7, we have the following corollary.

Corollary 9. Let n ≥ 2. Let A be a deterministic self-stabilizing leader election

algorithm for T CR. There exists no function f : N∗ → N such that ∀G ∈ T CR
1010

with a vertex set of n processes, the length of the stabilization phase of every

execution of A in G is less than or equal to f(n).

Similarly to Algorithm 2, we now show that Algorithm 3 is speculative in

the sense that we cannot bound its stabilization time in T CR, but in a more

favorable case, precisely in T CB(∆) ⊆ T CR, its stabilization time is at most1015

∆ + 1 rounds, despite ∆ is unknown. The proof of the theorem below is the

same as the one of Theorem 8 but as we consider a TVG in T CB(∆), for every

p ∈ V , δ(p) ≤ ∆. Hence the system reaches a legitimate configuration at the

end of Round maxp∈V δ(p) + 1 = ∆+ 1.

Theorem 9. The stabilization time of Algorithm 3 in T CB(∆) is at most ∆+11020

rounds.

7. Conclusion

We have addressed self-stabilization in highly dynamic identified message-

passing systems by proposing self-stabilizing leader election algorithms for three

major classes of time-varying graphs: T CB(∆), T CQ(∆), and T CR.1025

It is worth noting that the impossibility result of Braud-Santoni et al. [22]

applies to the class of always connected over the time TVGs of n processes which

40

is actually included and so stronger than T CR, as well as T CB(∆) and T CQ(∆)

for every ∆ ≥ max(1, n− 1). Precisely, this result forbids the existence of silent

self-stabilizing solutions for most of non-trivial static problems and is due to the1030

impossibility to distinguish in the considered class an edge appearing infinitely

often from an edge appearing only a finite number of times. Actually, silent

self-stabilization additionally requires all processes to eventually keep their local

state constant [34]. Now, leader election is a static problem. We have chosen

to avoid this issue by proposing non-silent, a.k.a., talkative [35] solutions, i.e.,1035

in our algorithms, a small part of the local state of each process (namely, the

timestamps) is modified infinitely often.

Beyond extending our results to other particular problems, further research

could focus on studying expressiveness of self-stabilization in TVGs. To that

goal, broadcast problems should be investigated, again in very general TVG1040

classes. Indeed, coupled with our leader election solutions, they should allow

to build generic transformers, following, for example, the approaches proposed

in [36, 37].

References

[1] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control,1045

Commun. ACM 17 (11) (1974) 643–644. doi:10.1145/361179.361202.

URL https://doi.org/10.1145/361179.361202

[2] J. Beauquier, S. Kekkonen-Moneta, On ftss-solvable distributed problems,

in: J. E. Burns, H. Attiya (Eds.), Proceedings of the Sixteenth Annual

ACM Symposium on Principles of Distributed Computing, Santa Barbara,1050

California, USA, August 21-24, 1997, ACM, 1997, p. 290. doi:10.1145/

259380.259515.

URL https://doi.org/10.1145/259380.259515

[3] C. Delporte-Gallet, S. Devismes, H. Fauconnier, Stabilizing leader election

in partial synchronous systems with crash failures, J. Parallel Distributed1055

41

https://doi.org/10.1145/361179.361202
http://dx.doi.org/10.1145/361179.361202
https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/259380.259515
http://dx.doi.org/10.1145/259380.259515
http://dx.doi.org/10.1145/259380.259515
http://dx.doi.org/10.1145/259380.259515
https://doi.org/10.1145/259380.259515
https://doi.org/10.1016/j.jpdc.2009.09.004
https://doi.org/10.1016/j.jpdc.2009.09.004
https://doi.org/10.1016/j.jpdc.2009.09.004

Comput. 70 (1) (2010) 45–58. doi:10.1016/j.jpdc.2009.09.004.

URL https://doi.org/10.1016/j.jpdc.2009.09.004

[4] M. Nesterenko, A. Arora, Dining philosophers that tolerate malicious crashes,

in: Proceedings of the 22nd International Conference on Distributed Comput-

ing Systems (ICDCS’02), Vienna, Austria, July 2-5, 2002, IEEE Computer1060

Society, 2002, pp. 191–198. doi:10.1109/ICDCS.2002.1022256.

URL https://doi.org/10.1109/ICDCS.2002.1022256

[5] S. Dubois, T. Masuzawa, S. Tixeuil, Maximum metric spanning tree made

byzantine tolerant, Algorithmica 73 (1) (2015) 166–201. doi:10.1007/

s00453-014-9913-5.1065

URL https://doi.org/10.1007/s00453-014-9913-5

[6] S. Delaët, B. Ducourthial, S. Tixeuil, Self-stabilization with r-operators

revisited, J. Aerosp. Comput. Inf. Commun. 3 (10) (2006) 498–514. doi:

10.2514/1.19848.

URL https://doi.org/10.2514/1.198481070

[7] A. K. Datta, S. Devismes, L. L. Larmore, V. Villain, Self-stabilizing

weak leader election in anonymous trees using constant memory per

edge, Parallel Process. Lett. 27 (2) (2017) 1750002:1–1750002:18. doi:

10.1142/S0129626417500025.

URL https://doi.org/10.1142/S01296264175000251075

[8] A. K. Datta, L. L. Larmore, Self-stabilizing leader election in dynamic

networks, Theory Comput. Syst. 62 (5) (2018) 977–1047. doi:10.1007/

s00224-017-9758-9.

URL https://doi.org/10.1007/s00224-017-9758-9

[9] S. Dolev, Optimal time self-stabilization in uniform dynamic systems, Par-1080

allel Process. Lett. 8 (1) (1998) 7–18. doi:10.1142/S0129626498000043.

URL https://doi.org/10.1142/S0129626498000043

42

http://dx.doi.org/10.1016/j.jpdc.2009.09.004
https://doi.org/10.1016/j.jpdc.2009.09.004
https://doi.org/10.1109/ICDCS.2002.1022256
http://dx.doi.org/10.1109/ICDCS.2002.1022256
https://doi.org/10.1109/ICDCS.2002.1022256
https://doi.org/10.1007/s00453-014-9913-5
https://doi.org/10.1007/s00453-014-9913-5
https://doi.org/10.1007/s00453-014-9913-5
http://dx.doi.org/10.1007/s00453-014-9913-5
http://dx.doi.org/10.1007/s00453-014-9913-5
http://dx.doi.org/10.1007/s00453-014-9913-5
https://doi.org/10.1007/s00453-014-9913-5
https://doi.org/10.2514/1.19848
https://doi.org/10.2514/1.19848
https://doi.org/10.2514/1.19848
http://dx.doi.org/10.2514/1.19848
http://dx.doi.org/10.2514/1.19848
http://dx.doi.org/10.2514/1.19848
https://doi.org/10.2514/1.19848
https://doi.org/10.1142/S0129626417500025
https://doi.org/10.1142/S0129626417500025
https://doi.org/10.1142/S0129626417500025
https://doi.org/10.1142/S0129626417500025
https://doi.org/10.1142/S0129626417500025
http://dx.doi.org/10.1142/S0129626417500025
http://dx.doi.org/10.1142/S0129626417500025
http://dx.doi.org/10.1142/S0129626417500025
https://doi.org/10.1142/S0129626417500025
https://doi.org/10.1007/s00224-017-9758-9
https://doi.org/10.1007/s00224-017-9758-9
https://doi.org/10.1007/s00224-017-9758-9
http://dx.doi.org/10.1007/s00224-017-9758-9
http://dx.doi.org/10.1007/s00224-017-9758-9
http://dx.doi.org/10.1007/s00224-017-9758-9
https://doi.org/10.1007/s00224-017-9758-9
https://doi.org/10.1142/S0129626498000043
http://dx.doi.org/10.1142/S0129626498000043
https://doi.org/10.1142/S0129626498000043

[10] S. Dolev, A. Israeli, S. Moran, Self-stabilization of dynamic systems assuming

only read/write atomicity, Distributed Comput. 7 (1) (1993) 3–16. doi:

10.1007/BF02278851.1085

URL https://doi.org/10.1007/BF02278851

[11] S. Dolev, T. Herman, Superstabilizing protocols for dynamic distributed

systems, Chic. J. Theor. Comput. Sci. 1997.

URL http://cjtcs.cs.uchicago.edu/articles/1997/4/contents.

html1090

[12] K. Altisen, S. Devismes, A. Durand, F. Petit, Gradual stabilization, J.

Parallel Distributed Comput. 123 (2019) 26–45. doi:10.1016/j.jpdc.

2018.09.002.

URL https://doi.org/10.1016/j.jpdc.2018.09.002

[13] B. Bui-Xuan, A. Ferreira, A. Jarry, Computing shortest, fastest, and fore-1095

most journeys in dynamic networks, Int. J. Found. Comput. Sci. 14 (2)

(2003) 267–285. doi:10.1142/S0129054103001728.

URL https://doi.org/10.1142/S0129054103001728

[14] A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-varying

graphs and dynamic networks, Int. J. Parallel Emergent Distributed Syst.1100

27 (5) (2012) 387–408. doi:10.1080/17445760.2012.668546.

URL https://doi.org/10.1080/17445760.2012.668546

[15] M. Biely, P. Robinson, U. Schmid, M. Schwarz, K. Winkler, Gracefully

degrading consensus and k -set agreement in directed dynamic networks,

Theor. Comput. Sci. 726 (2018) 41–77. doi:10.1016/j.tcs.2018.02.019.1105

URL https://doi.org/10.1016/j.tcs.2018.02.019

[16] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, E. L. Wong, Zyzzyva: Specu-

lative byzantine fault tolerance, ACM Trans. Comput. Syst. 27 (4) (2009)

7:1–7:39. doi:10.1145/1658357.1658358.

URL https://doi.org/10.1145/1658357.16583581110

43

https://doi.org/10.1007/BF02278851
https://doi.org/10.1007/BF02278851
https://doi.org/10.1007/BF02278851
http://dx.doi.org/10.1007/BF02278851
http://dx.doi.org/10.1007/BF02278851
http://dx.doi.org/10.1007/BF02278851
https://doi.org/10.1007/BF02278851
http://cjtcs.cs.uchicago.edu/articles/1997/4/contents.html
http://cjtcs.cs.uchicago.edu/articles/1997/4/contents.html
http://cjtcs.cs.uchicago.edu/articles/1997/4/contents.html
http://cjtcs.cs.uchicago.edu/articles/1997/4/contents.html
http://cjtcs.cs.uchicago.edu/articles/1997/4/contents.html
http://cjtcs.cs.uchicago.edu/articles/1997/4/contents.html
https://doi.org/10.1016/j.jpdc.2018.09.002
http://dx.doi.org/10.1016/j.jpdc.2018.09.002
http://dx.doi.org/10.1016/j.jpdc.2018.09.002
http://dx.doi.org/10.1016/j.jpdc.2018.09.002
https://doi.org/10.1016/j.jpdc.2018.09.002
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1142/S0129054103001728
http://dx.doi.org/10.1142/S0129054103001728
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1080/17445760.2012.668546
http://dx.doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1016/j.tcs.2018.02.019
https://doi.org/10.1016/j.tcs.2018.02.019
https://doi.org/10.1016/j.tcs.2018.02.019
http://dx.doi.org/10.1016/j.tcs.2018.02.019
https://doi.org/10.1016/j.tcs.2018.02.019
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
http://dx.doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358

[17] S. Dubois, R. Guerraoui, Introducing speculation in self-stabilization: an

application to mutual exclusion, in: P. Fatourou, G. Taubenfeld (Eds.),

ACM Symposium on Principles of Distributed Computing, PODC ’13,

Montreal, QC, Canada, July 22-24, 2013, ACM, 2013, pp. 290–298. doi:

10.1145/2484239.2484246.1115

URL https://doi.org/10.1145/2484239.2484246

[18] C. Gómez-Calzado, A. Casteigts, A. Lafuente, M. Larrea, A connectiv-

ity model for agreement in dynamic systems, in: J. L. Träff, S. Hunold,

F. Versaci (Eds.), Euro-Par 2015: Parallel Processing - 21st International

Conference on Parallel and Distributed Computing, Vienna, Austria, August1120

24-28, 2015, Proceedings, Vol. 9233 of Lecture Notes in Computer Science,

Springer, 2015, pp. 333–345. doi:10.1007/978-3-662-48096-0_26.

URL https://doi.org/10.1007/978-3-662-48096-0_26

[19] A. Casteigts, A Journey through Dynamic Networks (with Excursions),

2018.1125

URL https://tel.archives-ouvertes.fr/tel-01883384

[20] K. Altisen, S. Devismes, S. Dubois, F. Petit, Introduction to Dis-

tributed Self-Stabilizing Algorithms, Synthesis Lectures on Distributed

Computing Theory, Morgan & Claypool Publishers, 2019. doi:10.2200/

S00908ED1V01Y201903DCT015.1130

URL https://doi.org/10.2200/S00908ED1V01Y201903DCT015

[21] S. Dolev, Self-Stabilization, MIT Press, 2000.

URL http://www.cs.bgu.ac.il/%7Edolev/book/book.html

[22] N. Braud-Santoni, S. Dubois, M. Kaaouachi, F. Petit, The next 700 impos-

sibility results in time-varying graphs, Int. J. Netw. Comput. 6 (1) (2016)1135

27–41.

URL http://www.ijnc.org/index.php/ijnc/article/view/116

[23] M. Bournat, A. K. Datta, S. Dubois, Self-stabilizing robots in highly dynamic

environments, Theor. Comput. Sci. 772 (2019) 88–110. doi:10.1016/j.

44

https://doi.org/10.1145/2484239.2484246
https://doi.org/10.1145/2484239.2484246
https://doi.org/10.1145/2484239.2484246
http://dx.doi.org/10.1145/2484239.2484246
http://dx.doi.org/10.1145/2484239.2484246
http://dx.doi.org/10.1145/2484239.2484246
https://doi.org/10.1145/2484239.2484246
https://doi.org/10.1007/978-3-662-48096-0_26
https://doi.org/10.1007/978-3-662-48096-0_26
https://doi.org/10.1007/978-3-662-48096-0_26
http://dx.doi.org/10.1007/978-3-662-48096-0_26
https://doi.org/10.1007/978-3-662-48096-0_26
https://tel.archives-ouvertes.fr/tel-01883384
https://tel.archives-ouvertes.fr/tel-01883384
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
http://dx.doi.org/10.2200/S00908ED1V01Y201903DCT015
http://dx.doi.org/10.2200/S00908ED1V01Y201903DCT015
http://dx.doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
http://www.cs.bgu.ac.il/%7Edolev/book/book.html
http://www.cs.bgu.ac.il/%7Edolev/book/book.html
http://www.ijnc.org/index.php/ijnc/article/view/116
http://www.ijnc.org/index.php/ijnc/article/view/116
http://www.ijnc.org/index.php/ijnc/article/view/116
http://www.ijnc.org/index.php/ijnc/article/view/116
https://doi.org/10.1016/j.tcs.2018.11.026
https://doi.org/10.1016/j.tcs.2018.11.026
https://doi.org/10.1016/j.tcs.2018.11.026
http://dx.doi.org/10.1016/j.tcs.2018.11.026
http://dx.doi.org/10.1016/j.tcs.2018.11.026
http://dx.doi.org/10.1016/j.tcs.2018.11.026

tcs.2018.11.026.1140

URL https://doi.org/10.1016/j.tcs.2018.11.026

[24] S. Cai, T. Izumi, K. Wada, How to prove impossibility under global fairness:

On space complexity of self-stabilizing leader election on a population

protocol model, Theory Comput. Syst. 50 (3) (2012) 433–445. doi:10.

1007/s00224-011-9313-z.1145

URL https://doi.org/10.1007/s00224-011-9313-z

[25] S. Dolev, A. Hanemann, E. M. Schiller, S. Sharma, Self-stabilizing end-to-

end communication in (bounded capacity, omitting, duplicating and non-fifo)

dynamic networks - (extended abstract), in: A. W. Richa, C. Scheideler

(Eds.), Stabilization, Safety, and Security of Distributed Systems - 14th1150

International Symposium, SSS 2012, Toronto, Canada, October 1-4, 2012.

Proceedings, Vol. 7596 of Lecture Notes in Computer Science, Springer,

2012, pp. 133–147. doi:10.1007/978-3-642-33536-5_14.

URL https://doi.org/10.1007/978-3-642-33536-5_14

[26] D. Angluin, Local and global properties in networks of processors (extended1155

abstract), in: R. E. Miller, S. Ginsburg, W. A. Burkhard, R. J. Lipton

(Eds.), Proceedings of the 12th Annual ACM Symposium on Theory of

Computing, April 28-30, 1980, Los Angeles, California, USA, ACM, 1980,

pp. 82–93. doi:10.1145/800141.804655.

URL https://doi.org/10.1145/800141.8046551160

[27] M. Barjon, A. Casteigts, S. Chaumette, C. Johnen, Y. M. Neggaz, Main-

taining a distributed spanning forest in highly dynamic networks, Comput.

J. 62 (2) (2019) 231–246. doi:10.1093/comjnl/bxy069.

URL https://doi.org/10.1093/comjnl/bxy069

[28] B. Charron-Bost, S. Moran, The firing squad problem revisited, Theor.1165

Comput. Sci. 793 (2019) 100–112. doi:10.1016/j.tcs.2019.07.023.

URL https://doi.org/10.1016/j.tcs.2019.07.023

45

http://dx.doi.org/10.1016/j.tcs.2018.11.026
http://dx.doi.org/10.1016/j.tcs.2018.11.026
https://doi.org/10.1016/j.tcs.2018.11.026
https://doi.org/10.1007/s00224-011-9313-z
https://doi.org/10.1007/s00224-011-9313-z
https://doi.org/10.1007/s00224-011-9313-z
https://doi.org/10.1007/s00224-011-9313-z
https://doi.org/10.1007/s00224-011-9313-z
http://dx.doi.org/10.1007/s00224-011-9313-z
http://dx.doi.org/10.1007/s00224-011-9313-z
http://dx.doi.org/10.1007/s00224-011-9313-z
https://doi.org/10.1007/s00224-011-9313-z
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/978-3-642-33536-5_14
http://dx.doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1145/800141.804655
https://doi.org/10.1145/800141.804655
https://doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
https://doi.org/10.1145/800141.804655
https://doi.org/10.1093/comjnl/bxy069
https://doi.org/10.1093/comjnl/bxy069
https://doi.org/10.1093/comjnl/bxy069
http://dx.doi.org/10.1093/comjnl/bxy069
https://doi.org/10.1093/comjnl/bxy069
https://doi.org/10.1016/j.tcs.2019.07.023
http://dx.doi.org/10.1016/j.tcs.2019.07.023
https://doi.org/10.1016/j.tcs.2019.07.023

[29] B. Awerbuch, B. Patt-Shamir, G. Varghese, S. Dolev, Self-stabilization by

local checking and global reset (extended abstract), in: G. Tel, P. M. B.

Vitányi (Eds.), Distributed Algorithms, 8th International Workshop, WDAG1170

’94, Terschelling, The Netherlands, September 29 - October 1, 1994, Pro-

ceedings, Vol. 857 of Lecture Notes in Computer Science, Springer, 1994,

pp. 326–339. doi:10.1007/BFb0020443.

URL https://doi.org/10.1007/BFb0020443

[30] S. Dolev, A. Israeli, S. Moran, Resource bounds for self-stabilizing message-1175

driven protocols, SIAM J. Comput. 26 (1) (1997) 273–290. doi:10.1137/

S0097539792235074.

URL https://doi.org/10.1137/S0097539792235074

[31] G. Varghese, Self-stabilization by counter flushing, SIAM J. Comput. 30 (2)

(2000) 486–510. doi:10.1137/S009753979732760X.1180

URL https://doi.org/10.1137/S009753979732760X

[32] J. E. Burns, M. G. Gouda, R. E. Miller, Stabilization and pseudo-

stabilization, Distributed Comput. 7 (1) (1993) 35–42. doi:10.1007/

BF02278854.

URL https://doi.org/10.1007/BF022788541185

[33] K. Altisen, S. Devismes, A. Durand, C. Johnen, F. Petit, On Implementing

Stabilizing Leader Election with Weak Assumptions on Network Dynamics,

Research report, Université Grenoble Alpes, VERIMAG, UMR 5104, France

; LIMOS, Université Clermont Auvergne, CNRS, UMR 6158, France ;

Université de Bordeaux, LaBRI, UMR 5800, France ; Sorbonne Université,1190

Paris, LIP6, UMR 7606, France, to appear in PODC’21, ACM Symposium

on Principles of Distributed Computing (October 2020).

URL https://hal.archives-ouvertes.fr/hal-02979166

[34] S. Dolev, M. G. Gouda, M. Schneider, Memory requirements for silent

stabilization, Acta Informatica 36 (6) (1999) 447–462. doi:10.1007/1195

46

https://doi.org/10.1007/BFb0020443
https://doi.org/10.1007/BFb0020443
https://doi.org/10.1007/BFb0020443
http://dx.doi.org/10.1007/BFb0020443
https://doi.org/10.1007/BFb0020443
https://doi.org/10.1137/S0097539792235074
https://doi.org/10.1137/S0097539792235074
https://doi.org/10.1137/S0097539792235074
http://dx.doi.org/10.1137/S0097539792235074
http://dx.doi.org/10.1137/S0097539792235074
http://dx.doi.org/10.1137/S0097539792235074
https://doi.org/10.1137/S0097539792235074
https://doi.org/10.1137/S009753979732760X
http://dx.doi.org/10.1137/S009753979732760X
https://doi.org/10.1137/S009753979732760X
https://doi.org/10.1007/BF02278854
https://doi.org/10.1007/BF02278854
https://doi.org/10.1007/BF02278854
http://dx.doi.org/10.1007/BF02278854
http://dx.doi.org/10.1007/BF02278854
http://dx.doi.org/10.1007/BF02278854
https://doi.org/10.1007/BF02278854
https://hal.archives-ouvertes.fr/hal-02979166
https://hal.archives-ouvertes.fr/hal-02979166
https://hal.archives-ouvertes.fr/hal-02979166
https://hal.archives-ouvertes.fr/hal-02979166
https://doi.org/10.1007/s002360050180
https://doi.org/10.1007/s002360050180
https://doi.org/10.1007/s002360050180
http://dx.doi.org/10.1007/s002360050180
http://dx.doi.org/10.1007/s002360050180
http://dx.doi.org/10.1007/s002360050180

s002360050180.

URL https://doi.org/10.1007/s002360050180

[35] L. Blin, S. Tixeuil, Compact deterministic self-stabilizing leader election on

a ring: the exponential advantage of being talkative, Distributed Comput.

31 (2) (2018) 139–166. doi:10.1007/s00446-017-0294-2.1200

URL https://doi.org/10.1007/s00446-017-0294-2

[36] A. Cournier, A. K. Datta, S. Devismes, F. Petit, V. Villain, The expressive

power of snap-stabilization, Theor. Comput. Sci. 626 (2016) 40–66. doi:

10.1016/j.tcs.2016.01.036.

URL https://doi.org/10.1016/j.tcs.2016.01.0361205

[37] S. Katz, K. J. Perry, Self-stabilizing extensions for message-passing systems,

Distributed Comput. 7 (1) (1993) 17–26. doi:10.1007/BF02278852.

URL https://doi.org/10.1007/BF02278852

47

http://dx.doi.org/10.1007/s002360050180
http://dx.doi.org/10.1007/s002360050180
https://doi.org/10.1007/s002360050180
https://doi.org/10.1007/s00446-017-0294-2
https://doi.org/10.1007/s00446-017-0294-2
https://doi.org/10.1007/s00446-017-0294-2
http://dx.doi.org/10.1007/s00446-017-0294-2
https://doi.org/10.1007/s00446-017-0294-2
https://doi.org/10.1016/j.tcs.2016.01.036
https://doi.org/10.1016/j.tcs.2016.01.036
https://doi.org/10.1016/j.tcs.2016.01.036
http://dx.doi.org/10.1016/j.tcs.2016.01.036
http://dx.doi.org/10.1016/j.tcs.2016.01.036
http://dx.doi.org/10.1016/j.tcs.2016.01.036
https://doi.org/10.1016/j.tcs.2016.01.036
https://doi.org/10.1007/BF02278852
http://dx.doi.org/10.1007/BF02278852
https://doi.org/10.1007/BF02278852

	Introduction
	Context
	Contribution
	Related Work
	Roadmap

	Preliminaries
	Time-varying Graphs
	TVG Classes
	Computational Model

	Self-stabilization in Highly Dynamic Environments
	Definition
	Self-stabilizing Leader Election
	Knowledge of n and Closure in TCB()
	Knowledge of n and Closure in TCQ()

	Class TCB() with known
	Overview of Algorithm 1
	Self-stabilization and Complexity

	Class TCQ() with and n known
	Overview of Algorithm 2
	Self-stabilization
	Time Complexity

	Class TCR with n known
	Overview of Algorithm 3
	Self-stabilization
	Time Complexity

	Conclusion

