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Abstract

We study perpetual torus exploration for swarms of autonomous, anonymous, uniform,
and luminous robots. We consider robots with only few capabilities. They have a finite
limited vision (myopic), they can only see robots at distance one or two. We show that
the problem is impossible with only two luminous robots and also with three oblivious
robots (without light). We then address the problem assuming luminous robots (resp.
oblivious) with visibility range one (resp. two). We design optimal solutions with
respect to both the number of robots and colors when robots share a common chirality
and have, respectively, vision one and two. We also present an optimal solution with
respect to the number of robots when they are endowed with vision one and share
no common chirality. Finally, we propose a solution for the case in which robots are
oblivious, have vision two, and no common chirality that uses one additional robot.

Keywords: Perpetual Exploration, Luminous robots, Torus-shaped network.

1. Introduction1

In the last decade, swarm robotics has drawn a lot of attention. Inspired by natural2

systems, a lot of investigations focused on how to reproduce autonomous behaviors3

observed in nature within artificial systems. Given a collection of autonomous mobile4

entities called robots, the main focus is to determine the minimum hypothesis in order5

for the robots to solve a given task. Robots can evolve either on a continuous 2D6

plane on which they can freely move or on a discrete universe, generally represented7

by a graph, where nodes indicate possible locations of the robots and the edges the8

possibility for the robots to move from one node to another.9

In this paper, we assume that the mobile robots are autonomous (i.e., there is no10

central authority to coordinate their move), anonymous (i.e., they have no identity),11
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uniform (i.e., they all execute the same algorithm), and luminous (i.e., they are en-12

dowed with lights of different colors). Moreover, they cannot communicate directly but13

are endowed with visibility sensors allowing them to sense their environment within a14

certain distance called visibility range. We assume myopic robots that can only sense15

at small distances. Robots operate in the well-known LCM model. That is, they op-16

erate in cycles that comprise three phases: Look, Compute, and Move. During the17

first phase (Look), robots take a snapshot of their environment using their visibility18

sensors. In the second phase (Compute), based on the taken snapshot, they first de-19

cide whether to move or remain idle and then whether they change their color. If they20

decide to move, they compute a neighboring destination. Similarly, they compute a21

new color if they decide to change it. Finally, in the last phase (Move), they move22

to the computed destination (if any) and change their color (if they decided to). We23

consider the fully synchronous model (FSYNC) in which all robots execute the LCM24

cycle synchronously and atomically.25

In the following, we investigate the case in which the robots have to solve the26

perpetual exploration problem. In this problem, robots evolve in a discrete universe and27

have to ensure that each location (node) is visited by at least one robot infinitely often.28

We are interested in torus-shaped networks and focus on optimal exclusive solutions29

with respect to both the visibility range and the number of robots. Exclusiveness adds30

an additional constraint on robots’ behavior as they can neither occupy the same node31

simultaneously nor traverse the same edge at the same time.32

2. Related work33

The exploration problem is considered one of the benchmarking tasks when it34

comes to robots evolving on graphs. Various topologies have been considered: lines35

[15], rings [1, 10, 13, 16, 17], tori [12], grids [2, 4, 5, 11], cuboids [3], and trees36

[14]. Two variants of the problem have been investigated: (i) the perpetual explo-37

ration problem [1, 2, 3, 18], considered in this paper, which requires the robots to visit38

each node of the graph infinitely often and (ii) the terminating exploration problem39

[14, 15, 16, 13, 10, 12, 11] which requires the robots to visit each node of the graph at40

least once and then stop moving.41

Most of the investigations consider robots with unlimited visibility range allowing42

them to observe every node of the system [14, 1, 2, 15, 16, 13, 12, 11]. Robots are in43

this case oblivious (i.e., they cannot remember past actions) and have to solve the termi-44

nating exploration problem. Myopic robots have also been considered in both variants45

of the problem [17, 10, 4, 6, 9]. When it comes to the perpetual exploration problem,46

an additional assumption has an impact on the feasibility of the task and the optimality47

of the proposed solutions. This assumption endows the robots with a common chirality.48

In fact, chirality is usually assumed when robots evolve in the continuous 2D Euclidean49

plan but some investigations have also considered it recently in the discrete universe.50

On finite grids, it has been shown that two (resp. three) synchronous robots with three51

colors (resp. one color) are sufficient to solve the problem when robots have visibility52

one and share a common chirality [6]. The case in which robots have no common chi-53

rality was investigated in [18]. It was proven that the problem is not solvable with only54

two robots having a finite number of colors and a finite visibility range. An optimal55
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Finite grid
Chirality Visibility # Robots # Colors Algorithm

yes finite 1 finite Impossible [6]
yes finite 2 1 Impossible [6]
no 1 2 finite Impossible [18]
yes 1 2 3 [6]
yes 2 2 2 [6]
yes 2 3 1 [6]
no 1 3 3 [18]
no 2 5 1 [18]

Infinite grid
no 1 finite 1 Impossible [4]

Table 1: Summary of previous results in the finite grid and an impossibility result in the infinite grid that can
be extended to the torus case.

solution is also presented using only three robots having a visibility range one, using56

only three colors. The case in which robots are oblivious and have a visibility range 257

was solved using five robots. Table 1 summaries the previous results on finite grids.58

In the case of infinite grids, assuming robots with visibility range one and few59

colors (O(1)), five (resp. six) synchronous robots are necessary and sufficient to solve60

the problem with (resp. without) the common chirality assumption [4, 5]. In particular,61

it has been shown that it is impossible for a finite number of robots having a single62

light color and a visibility range 1 to travel an arbitrary distance [4], which directly63

implies the same impossibility results in our model (see Table 1). Finally, in the case64

of cuboids, it has been shown in [3] that three synchronous robots with a common65

chirality endowed with five colors are necessary and sufficient to solve the perpetual66

exploration problem.67

Contributions. We first present two impossibility results in the torus: we start by show-68

ing that the perpetual torus exploration problem is not solvable with only two robots69

if the number of colors is finite and their visibility range is limited. This impossibility70

result has some similarity with the impossibility results in infinite grids, however, the71

main challenge was to account for the possibility for robots to explore the entire torus72

by always moving in the same direction. The impossibility comes from the fact that73

this direction follows a vector with integer values, which is shown not to be sufficient74

in tori whose size is a multiple of the vector component. We then show that three obliv-75

ious robots (i.e., robots with a single light color) are not sufficient to solve the perpetual76

exploration problem (PTE), using the previous results and the fact that two oblivious77

robots cannot travel an arbitrary distance.78

Next, we focus on the case in which robots have visibility range one and propose79

two solutions: A1 which is optimal with respect to both the number of robots and80

the number of colors when robots share a common chirality and A2 which remains81

optimal with respect to the number of robots for the case in which robots are completely82

disoriented (they do not share a common chirality). These algorithms explore the torus83
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Chirality Visibility # Robots # Colors Algorithm
yes finite 2 finite Impossible (Thm. 1)
yes finite 3 1 Impossible (Thm. 2)
yes 1 3 2 Algorithm A1

no 1 3 3 Algorithm A2

yes 2 4 1 Algorithm A3

no 2 5 1 Algorithm A4

Table 2: Summary of our results.

row by row, in a way that is similar to the ones used in [6] for the case of finite grids.84

However, the lack of boundary makes the solutions different: A1 requires one more85

robot compared to the best-known algorithm in finite grids and A2 works with the86

same number of robots but using a different technic.87

Then, we address the case in which robots have visibility range two and propose88

again two solutions: A3 which is optimal with respect to both the number of robots89

and the number of colors when robots share a common chirality and A4 for the case in90

which robots are completely disoriented. Table 2 summarizes our contribution. This91

paper is an extension of the conference paper [7], where we have only considered the92

case with a common chirality. In this paper, we have new algorithms where the robots93

do not share a common chirality.94

3. Model95

We consider a set of n > 0 robots located on a torus. A graph G = (V,E) is a96

(C,R)-torus (or torus for short) if |V | = C × R and for any v(i,j) ∈ V ; i ∈ [0, C − 1],97

j ∈ [0,R− 1]:98

• {v(i,j), v((i+1) mod C,j)} ∈ E, and99

• {v(i,j), v(i,(j+1) mod R)} ∈ E.100

The order of the nodes of G forms a coordinate system. For example, node v(i,j) is101

at coordinate (i, j), or, the node is at column i and row j. For simplicity, we note node102

(i, j) instead of v(i,j). This order/coordinate is used for the analysis only, i.e., robots103

cannot access it.104

At each time instant called a round, the robots synchronously perform a Look-105

Compute-Move cycle. In the Look phase, a robot gets a snapshot of the subgraph106

induced by the nodes within distance Φ ∈ N∗ from its position. Φ is called the visibil-107

ity range of the robots. The snapshot is not oriented in any way as the robots do not108

agree on a common North. However, it is implicitly ego-centered since the robot that109

performs a Look phase is located at the center of the subgraph in the obtained snapshot.110

Robots agree on a common chirality. Then, each robot computes a destination (either111

Up, Left, Down, Right or Idle) based only on the snapshot it received. Finally, it moves112

towards its computed destination. We also assume that robots are opaque, i.e., they ob-113

struct visibility in such a way that if three robots are aligned, the two extremities cannot114
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see each other. We forbid any two robots to occupy the same node simultaneously. A115

node is occupied when a robot is located at this node, otherwise it is empty.116

Robots may have lights with different colors that can be seen by robots within117

distance Φ from them. We denote by Cl the set of all possible colors. For simplicity,118

we assume that all tore has dimensions C ×R where C,R ≥ nΦ+ 1.119

The state of a node is either the color of the light of the robot located at this node,120

if it is occupied, or ⊥ otherwise. In the Look phase, the snapshot includes the state of121

the nodes (within distance Φ, including its current node). During the Compute phase,122

a robot may decide to change the color of its light.123

In all our algorithms, we also prevent any two robots from traversing the same edge124

simultaneously. Since we already forbid them to occupy the same position simultane-125

ously, this means that we additionally prevent robots from swapping their position.126

Algorithms verifying this property are said to be exclusive. However, to be as general127

as possible, we do not make this additional assumption in our impossibility results.128

In the following, we borrow some of the definitions already presented in [18].129

Configurations130

A configuration C in a torus G(V,E) is a set of pairs (p, c), where p ∈ V is an131

occupied node and c ∈ Cl is the color of the robot located at p. A node p is empty if132

and only if ∀c, (p, c) /∈ C. We sometimes just write the set of occupied nodes when133

the colors are clear from the context.134

Views135

We denote by Gr the globally oriented view centered at the robot r, i.e., the subset136

of the configuration containing the states of the nodes at distance at most Φ from r,137

translated so that the coordinates of r is (0, 0). We use this globally-oriented view in138

our analysis to describe the movements of the robots: when we say “the robot moves139

Up”, it is according to the globally oriented view. However, since robots do not agree140

on a common North, they have no access to the globally oriented view. When a robot141

looks at its surroundings, it instead obtains a snapshot. To model this, we assume that142

the local view acquired by a robot r in the Look phase is the result of an arbitrary indis-143

tinguishable transformation on Gr. The set IT of indistinguishable transformations144

contains the rotations of angle 0 (to have the identity), π/2, π and 3π/2, centered at145

r. If the robots do not agree on a common chirality, then IT also contains a reflection146

and its combinations with the rotations. Moreover, since robots may obstruct visibil-147

ity, the function that removes the state of a node u if there is another robot between u148

and r is systematically applied to obtain the local view. Finally, we assume that robots149

are self-inconsistent, meaning that different transformations may be applied at differ-150

ent rounds. In more detail, the adversary can choose a different transformation at each151

round as opposed to self-consistent robots where the transformation applied for a given152

robot does not change during the execution.153

It is important to note that when a robot r computes a destination d, it is relative to154

its local view f(Gr), which is the globally oriented view transformed by some f ∈ IT .155

So, the actual movement of the robot in the globally oriented view is f−1(d). For156

example, if d = Up but the robot sees the torus upside-down (f is the π-rotation),157
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then the robot moves Down = f−1(Up). In a configuration C, VC(i, j) denotes the158

globally oriented view of a robot located at (i, j).159

Algorithm160

An algorithm A is a tuple (Cl , Init , T ) where Cl is the set of possible colors, Init is161

a mapping from any considered torus to a non-empty set of initial configurations in that162

torus, and T is the transition function V iews → {Idle,Up,Left , Down , Right}×Cl ,163

where V iews is the set of local views. When the robots are in Configuration C, a164

configuration C ′ obtained after one round satisfies: for all ((i, j), c) ∈ C ′, there exists165

a robot in C with color c′ ∈ Cl and a transformation f ∈ IT such that one of the166

following conditions holds:167

• ((i, j), c′) ∈ C and f−1(T (f(VC(i, j)))) = (Idle, c),168

• (((i−1) mod C, j), c′) ∈ C and f−1(T (f(VC((i−1) mod C, j)))) = (Right, c),169

• (((i+1) mod C, j), c′) ∈ C and f−1(T (f(VC((i+1) mod C, j)))) = (Left, c),170

• ((i, (j−1) mod R), c′) ∈ C and f−1(T (f(VC(i, (j−1) mod R)))) = (Up, c),171

or172

• ((i, (j+1) mod R), c′) ∈ C and f−1(T (f(VC(i, (j+1) mod R)))) = (Down, c).173

We denote by C 7→ C ′ the fact that C ′ can be reached in one round from C (n.b., 7→174

is then a binary relation over configurations). An execution of Algorithm A in a torus175

G is then a sequence (Ci)i∈N of configurations such that C0 ∈ Init(G) and ∀i ≥ 0,176

Ci 7→ Ci+1.177

Definition 1 (Perpetual Torus Exploration). An algorithm A solves the Perpetual Torus178

Exploration (PTE) problem if in any execution (Ci)i∈N of A and for any node (i, j) ∈179

V of the torus and any time t, there exists t′ > t such that (i, j) is occupied in Ct′ .180

Notations. t⃗(i,j)(C) denotes the translation of the configuration C of vector (i, j).181

4. Impossibility results182

Lemma 1. Let A be an algorithm using a set of n > 0 robots. If A solves the ex-183

ploration problem for any torus then, there exists a torus such that for any execution184

(Ci)i∈N of A on this torus, there is a configuration Ci such that the distance between185

the two farthest robots is at least 2Φ + 3.186

Proof. We proceed by contradiction. Assume, there is an algorithm A that solves the187

PTE problem and let 0 < B be the farthest any of the robots will be from each other, in188

any torus. Let (Ci)i∈N be the execution of A on a very large torus C,R ≫ B. When189

all robots are at distance at most B, then the occupied positions are included in a square190

sub-grid of size B×B. Since the number of possible configurations included in a sub-191

grid of size B×B is finite, there must be two indices t1 and t2, when the positions and192

colors of the robots in the corresponding sub-grids are the same, formally, such that193

Ct2 = t⃗(i,j)(Ct1) and t1 < t2 for a given translation t⃗(i,j). By making the adversary194

choose the same rotation, the movements done by the robots in configurations Ct1 and195

Ct2 are the same as each robot has the same globally oriented view in both configu-196

rations, only their positions on the torus change. Thus Ct2+1 = t⃗(i,j)(Ct1+1) and so197
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on so forth, so that ∀x, Ct2+x = t⃗(i,j)(Ct1+x). We obtain that the configurations are198

periodic with period p = t2 − t1, up to translation.199

Assume that the torus being explored is of dimensions C × R such that C =200

3np3 max(|i|, 1) and R = 3np3 max(|j|, 1). The dimensions of the torus are propor-201

tional to the non-null scalar components of translation t⃗(i,j) i.e., i3np3 ≡ 0 mod C202

and j3np3 ≡ 0 mod R. This means that,203

(⃗t(i,j))
3np3

(Ct1) = t⃗(i3np3,j3np3)(Ct1) = t⃗(0,0)(Ct1) = Ct1 .

Since translation t⃗(i,j) is performed in p rounds, after p × 3np3 = 3np4 rounds, all204

robots will retake their initial positions, so the whole configuration is periodic with205

period 3np4. In this setting, a node is visited infinitely often if and only if it is visited206

between round t1 and t1 + 3np4. Now we have to prove that some nodes are left207

unvisited between round t1 and t1 + 3np4.208

Between time t1 and t1 +3np4, each robot visits at most 3np4 nodes, hence all the209

robots visit at most n×3np4 nodes after t1. However, there are at least 9n2p6 ≤ C×R210

nodes in the torus. Hence, there exist some nodes which are not visited infinitely often,211

which is a contradiction.212

Note that we only proved there are some nodes that are not perpetually visited.213

Nevertheless, observe that at most nt1 nodes are visited before t1 and we can increase214

arbitrarily the chosen period p by a factor f ∈ N∗ without changing the result (in215

particular t1 does not depend on f ). By taking f ≥ 1 such that 9n2(fp)6−3n2(fp)4 >216

nt1, we have that the number of visited nodes (before or after t1) is nt1 + 3n2(fp)4217

and is smaller than the number of nodes in the torus (9n2(fp)6), hence there is at218

least one node that is never visited. This implies that the impossibility also holds for219

non-perpetual algorithms as well (where each node must be visited at most once).220

We restate the following lemma proven in [5].221

Lemma 2. A robot with a self-inconsistent compass that sees no other robot, either222

stays idle or the adversary can make it alternatively move between two chosen adjacent223

nodes.224

Theorem 1. In a torus, it is impossible to solve the exploration problem with two225

myopic robots equipped with self-inconsistent compasses that agree on a common chi-226

rality.227

Proof. By Lemma 1, there is a torus and a configuration where the two robots are at228

distance 2Φ + 3 from each other. In this case, the two robots are isolated. By Lemma229

2, the two robots will remain idle or the adversary can make them alternatively move230

between two nodes, never being in vision from each other and never visiting another231

node.232

Theorem 2. In a torus, it is impossible to solve the exploration problem with three233

anonymous, oblivious, and myopic robots equipped with self-inconsistent compasses234

that agree on a common chirality.235
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Proof. By Lemma 1, there is a torus and a configuration where the distance between236

the two farthest robots is 2Φ + 3 from each other. We have one of the two following237

possibilities, (i) there are three isolated robots, or (ii) there is an isolated robot and two238

robots in vision from each other.239

In the first case, it is easy to see that the three isolated robots cannot explore the240

torus because, by Lemma 2, they have to stay idle or the adversary can make them241

alternatively move between two nodes, never being in vision from each other and never242

visiting another node.243

In the second case, the two robots that see each other cannot travel together in a244

direction (because they have the same view). All they can do is get either closer to245

each other or further from each other. Formally, there is a point P at the middle of the246

two robots and, if they stay in vision, they will always be at the same distance from that247

point. The two robots can explore a subgrid Φ × Φ centered at a given middle point.248

This point is at distance at least 3Φ
2 + 2 from the isolated robots.249

If the two robots in vision get isolated from one another, they will be at distance250

Φ
2 + 1 from the middle point. In this case, the closest robot to the originally isolated251

robot will be at distance Φ + 1. Now the three robots are isolated, and, as in the first252

case, they cannot explore the torus.253

5. A generic proof for our algorithms254

Proving that our algorithms are correct is at the same time very intuitive when255

looking at the provided animations [8] and sometimes very tricky, especially when256

it involves algorithms using ambiguous moves, since the adversary could choose a257

problematic execution that is not easy to construct by hand. To help the reader, we258

provide in this section a generic proof that we use to prove the correctness of our259

algorithms.260

In the theorem, we consider that the rows of the torus (i.e., the set of nodes having261

the same y-coordinate) are indexed from 0 to R−1, and we consider the index modulo262

R so that index i and i + R refers to the same row. Observe that in the following263

theorem, the value of tx can be arbitrary. Since a torus is invariant by translation, we264

can index the rows so that the bottom-most robot is on the row with index 0.265

Theorem 3. Let A be an algorithm, ty ∈ Z and i a row index. If, in any execution, after266

a finite number of rounds, the configuration is the same as the initial configuration, but267

translated by a vector (tx, ty) (for some tx ∈ Z), and the |ty| consecutive rows from268

index i to index i+ |ty| − 1 have been visited, then A solves the PTE problem.269

Proof. Take an arbitrary execution of A. By assumption, after a finite number of270

rounds, say t, the configuration is the (tx, ty)-translation of the initial configuration271

and rows with indexes i, . . . i + |ty| have been visited. Since the topology is a torus,272

the same property is true from round t. So after a finite number of rounds, say t′, the273

configuration is the same as in round t but translated by (t′x, ty) (observe that t′ and274

t′x are not necessarily equal to t and tx, respectively, but ty is fixed regardless of the275

execution). Also, the rows with indexes i + |ty|, . . . , i + 2|ty| have been visited since276

the index i does not depend on the execution by assumption, but only on the initial277
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row i

row i+ 1 visited between
round 0 and t

row i+ 2

row i+ 3 visited between
round t and t+ t′

C(0)

C(t)

C(t+ t′)

(tx, 2)

(t′x, 2)

Figure 1: Illustration of the exploration using our generic theorem. C(t) is the same configuration as C(0)
but translated by (tx, 2). An execution starting from configuration C(t) is the same as an execution starting
from configuration C(0), but translated by (tx, 2). Hence, if rows i, i+ 1 are visited between round 0 and
t, then rows i+ 2, i+ 3 are visited between round t and t′. Observe that t′ and t′x are not necessarily equal
to t and tx, respectively.

configuration. Hence, if the initial configuration is translated by (tx, ty), then the rows278

that are visited are also translated by (t′x, ty) (for some t′x ∈ Z, but since we consider279

the entire rows, so only the y-coordinate is important). Figure 1 illustrates this process.280

So the configuration at round t + t′ is the (tx + t′x, 2ty)-translation of the initial281

configuration and 2|ty| consecutive rows have been visited from index i to index 2|ty|.282

By repeating the same process
⌈

R
|ty|

⌉
times, after a finite number of rounds, the entire283

torus is visited, and the same process continues. This means that the algorithm solves284

the PTE problem.285

Clearly, the same theorem is true if we swap rows and columns i.e., if after t rounds286

the configuration is the (ty, tx)-translation of the initial configuration and |ty| consec-287

utive columns have been visited, then A solves the PTE problem.288

6. Visibility range one289

We address in this subsection the case in which robots have visibility range one. We290

propose two algorithms; A1 which takes advantage of chirality and A2 which guaran-291

tees perpetual exploration even without chirality with a single additional color with292

respect to A1.293

6.1. The case with chirality294

295

We present an algorithm, denoted by A1, which assumes a visibility range one and296

uses three robots and two colors. By Theorem 1, A1 is optimal w.r.t. the number of297

robots, and by Theorem 2, A1 is also optimal w.r.t. the number of colors. Animations298

are made available online [8] to help the reader visualize the algorithm.299

The idea of the algorithm is to make the robots alternate between exploring a row300

and exploring a column. To explore the whole torus, robots move so that all the301
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F L F L

Figure 2: Rules for moving straight.

nodes of the torus are explored infinitely often. More precisely, after exploring row302

ri and column cj , the robots will proceed at exploring row ri−1 mod R and then col-303

umn cj−1 mod C and so on. Observe that, to apply our generic Theorem 3, we only need304

to show that we visit an entire row when we reach the same configuration translated by305

a vector (tx, 1).306

Initially, the robots are co-linear with respectively color L, F , F , 1 as shown in307

the first configuration in Figure 4. The line of the torus on which they are located308

is considered as a row. The robot with color F , which does not sense the robot of309

color L, moves up changing its color to L while the two other robots move along their310

current row in the following manner: the robot initially with color L moves away from311

the one with color F and the remaining robot just follows it. This initial sequence of312

configurations is presented in Figure 4.313

To explore a row (resp. column), one robot stays idle while the two others travel in314

a straight line along the nodes of the row (resp. column) being explored until they reach315

the idle robot. The idle robot is located on a neighboring row (resp. column). The idle316

robot has color L and is called the landmark. The two robots traveling together in a317

straight line have different colors. One robot, called the follower, has color F and the318

other robot, called the leader, has color L. To explore a row (resp. column), the two319

robots have to be next to each other on that row (resp. column). The follower always320

follows the leader and the leader always moves away from the follower. This is done321

by executing the rules presented in Figure 2.2322

The tricky part of this algorithm is how robots switch from exploring a column to323

exploring a row and vice versa. Initially, the traveling group visits a row and leaves324

behind a robot (aka the landmark). When they reach the landmark again (after C − 2325

rounds), the landmark is on the left side (from their perspective). By executing the rules326

presented in Figure 3, the robots make a turn and a new traveling group is formed. The327

corresponding sequence of configurations is presented in Figure 5. The previous leader328

becomes the new landmark.329

The robots proceed to explore the column and after R− 1 more rounds, the leader330

reaches the landmark. By executing the rules presented in Figure 7, the robots make331

a turn and a new traveling group is formed. The corresponding sequence of configu-332

rations is presented in Figure 6. At the end of the sequence, the whole configuration333

is the same as the initial configuration, but translated by vector (−1,−1), so the same334

1Note that any reachable configuration can be an initial configuration
2In all figures, colored letters inside nodes indicate the color of the robots occupying the nodes. Moreover,

when a colored letter is given next to a node, it indicates which color the robot will take in the next round.
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L L

F

F
F F

L
F F L

Figure 3: Rules for switching from visiting a row to visiting a column.

process continues forever.335

F F L
L

L

F L

Figure 4: Sequence of configurations executed from the initial configuration. The gray nodes show the
visited nodes of the row with index 0, the row where the robots are initially located

L

F L

F

L

F F

L

F

L

Figure 5: Sequence of configurations when moving from exploring a row to exploring a column. The gray
nodes show the visited nodes of the row with index 0, the row where the robots are initially located

L

F L
F

F F
L

L

F F

Figure 7: Rules for switching from visiting a column to visiting a row.

It is important to note that every node on a column/row is visited during the ex-336

ploration of that column/row. Also, the landmark moves two nodes to the left and one337

node up when going from exploring a column to exploring a row. And, it moves one338
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L

L

F

L L

F

F
F F L

L

Figure 6: Sequence of configurations when robots move from exploring a column to exploring a row. The
gray nodes show the visited nodes of the row with index 0, the row where the robots are initially located.
The red dashed arrow highlights the movement of the landmark since the initial configuration.

node to the right and two nodes downward when going from exploring a row to explor-339

ing a column. This means that between two consecutive columns (rows) exploration,340

the landmark moves one node to the left and one node downward.341

Theorem 4. A1 solves the PTE problem with three robots and two colors.342

Proof. As we saw, starting from an initial configuration, the traveling group always343

visits the entire row they started from and reaches the landmark again after C−2 rounds.344

Indeed, this is true regardless of the size of the torus as the traveling group moves in345

straight line until it reaches the landmark. After a turn (Fig. 5), the traveling group346

visit a column and, after R rounds, the robots reach the same initial configuration,347

translated by (−1,−1). Since, in finite number of rounds, the robots have explored348

the row they started on (i.e., the row with index 0, shown in gray in the figures) and349

reached a configuration that is the (−1,−1)-translation of the initial configuration, by350

Theorem 3, A1 solves the PTE problem in a torus of size C ×R, with C,R ≥ 4.351

6.2. The case without chirality352

We present an algorithm, denoted by A2, which assumes a visibility range one and353

uses three robots and three colors. By Theorem 1, A2 is optimal w.r.t. the number354

of robots. Animations are made available online [8] to help the reader visualize the355

algorithm.356

Initially, robots are co-linear with, respectively, color F , F , B3. The row of the357

torus on which the three robots are co-located initially is considered as a column, as in358

the first configuration in Figure 10. Let ℓ1, ℓ2, ℓ3, . . . , ℓR be the sequence of consecu-359

tive rows in the initial configuration such that R is the number of rows, ℓ1 is the row360

which hosts the robot with color F having a unique adjacent node and ℓR−1 (resp. ℓR)361

is the row on which the robot with color B (resp. the second robot with color F ) is362

located.363

The idea of A2 is to explore the torus row by row from ℓ1 to ℓn infinitely often.364

This is achieved by repeating infinitely often two consecutive phases: row-change and365

row-exploration described below:366

3recall that any reachable configuration can be an initial configuration
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1. Phase row-change. This phase starts when robots are co-linear on a column with367

respectively F , F , B (as in the initial configuration). The three robots execute368

the rules shown in Figure 8. That is, after one round, two robots are located in369

the same row. The row-exploration phase is then started.370

F

F
L L

B

F

F
L

B

F

Figure 8: Rules for switching rows.

2. Phase row-exploration. This phase follows Phase row-change. The two robots371

on the same row simply explore all the nodes of the row by executing the rules372

of Figure 9 while the third robot, referred to as a landmark, remains idle. When373

the robot with color L meets the landmark, it moves to the next row followed by374

the robot with color F . Phase row-change is then initiated.375

(a)

L L
L

(b)

B

L L
F

(c)

B

L (d)

L F

(e)

L F

(f)

B

L F
F

Figure 9: Rules for exploring a row.

Figure 10 presents the sequence of configurations during both the row-change and376

row-exploration phases.377

Theorem 5. A2 solves the PTE problem with three robots and three colors.378

Proof. Starting from an initial configuration, we saw that, after two rounds, the travel-379

ing group starts exploring a row (the row indexed 0, i.e., where the bottom-most robot380

was located initially). After R−2 more rounds, the leader sees the landmark, and after381

one more round the configuration is the same as the initial configuration, but translated382

by vector (0,−1) (see Fig. 10). Since one row has been visited, by Theorem 3, A2383

solves the PTE problem.384

7. Visibility range two385

7.1. The case with chirality386

We present an algorithm, denoted by A3, which assumes a visibility range two and387

uses four oblivious robots. A3 is optimal w.r.t. the number of colors. By Theorem 2,388
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B

F

F
L

L

L

B

L L
F

B

L F

B

L F

B

L F
F

B

F

F
L

L

L

Figure 10: A2: Sequence of configurations when moving along a row, reaching the same configuration than
the initial one, but translated. The gray nodes show the visited nodes of the row with index 0, the row of the
initial bottom-most robot.

A3 is optimal w.r.t. the number of robots, for oblivious robots. Animations are made389

available online [8] to help the reader visualize the algorithm.390

The idea of the algorithm is again to make the robots explore the torus row by391

row in a given direction. This is achieved as follows: three robots, referred to as the392

traveling group, move to explore three adjacent rows at the same time, and one robot393

is left behind to be used as their landmark. When the traveling group reaches the394

landmark, all four robots perform a three rounds sequence to move to the next rows to395

be explored.396

Initially, the robots are placed in the configuration shown in Figure 11. The three397

robots on the right form a > shape and are the traveling group. That is, two robots are398

located on the same column separated by one empty node. The goal of the traveling399

group is to explore the whole row by executing the rules defined in Figure 12.400

R R

R

R

Figure 11: Initial configuration of Algorithm A3
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R

R

R

R

R

R

R

R

R

Figure 12: Rules for three robots moving straight.

The landmark is left behind so that the traveling group knows when they are done401

exploring the current rows and they have to move to the next one. Note that the land-402

mark is on the same row as the topmost robot. When that robot is one node away from403

the landmark it goes down. The same is done by the landmark. The bottom robot keeps404

going right because it does not see the landmark, and the center robot stays idle. The405

rules executed by the robots are presented in Figure 13. After one round, the robots406

form a T-shape.407

R R

R

R

R R

R

R

R

R

Figure 13: Rules executed when robots initiate rows change, the last two are the same rules are previously,
but are shown here with another orientation to help the reader.

From the T-shape, the robots move to create a reverse L shape i.e., the two robots in408

the center of the T-shape move down while the robot on the right goes left. Figure 14409

presents the rules executed during this process.410

R R R

R

R R

R

R R R

R

Figure 14: Rules for the creation of the reverse L shape.

Within the reverse L shape, three robots are co-linear (the ones located on the long411

side). Among these robots, the one in the middle moves to the right to recreate the >412

shape while all the other robots remain idle. Refer to the rule presented Figure 15. That413

is, after three rounds the robots change rows and the > shape is built again.414
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R R

R

R

Figure 15: Rule for restoring the > shape.

Now the three robots on the right form the new traveling group. The robots repeat415

the same behavior and hence start moving right until they reach the landmark once416

more. There are two more rules to tell the topmost robot in the traveling group to keep417

following the group even if it sees the landmark at the back. These rules are presented418

in Figure 16.419

R R

R

R

R R

R

R

Figure 16: Rules for the topmost robot to keep traveling with the group.

It is important to note that the landmark changes its position to two nodes to the420

right and one node down. The fact that it moves down makes the robots always explore421

a new row. Figure 17 presents the sequence of configuration during this process.422

Theorem 6. A3 solves the PTE problem with four oblivious robots.423

Proof. Starting from an initial configuration, the traveling group moves right until it424

reaches the landmark. Hence, regardless of the size of the torus, after R − 4 rounds,425

the traveling group reaches the landmark, after visiting one row (the row with index426

0, shown in gray in the figure, assuming the bottom-most robot is initially located on427

the row with index 0). After four more rounds (see Figure 17), the obtained configu-428

ration is the same as the initial configuration, but translated by a vector (−2,−1). By429

Theorem 3, the algorithm solves the PTE problem.430

7.2. The case without chirality431

We present an algorithm, denoted by A4, which assumes a visibility range two and432

uses five oblivious robots. Animations are made available online [8] to help the reader433

visualize the algorithm.434

The idea of the algorithm is to make the robots alternate between exploring rows435

and then columns in such a way that they explore infinitely often all the nodes of the436

16



R R

R

R

R R

R

R

R R R

R

R R

R

R

R R

R

R

R R

R

R

Figure 17: A3: Sequence of configurations when changing rows. The gray nodes show the visited nodes of
the row with index 0, the row of the initial bottom-most robot (the first gray node is where the bottom-most
robot was located initially). The red dashed arrow highlights the movement of the landmark.

torus. After visiting three consecutive columns and three consecutive rows, the config-437

uration is translated diagonally. By doing so infinitely often, perpetual exploration is438

performed.439

For this purpose, robots are divided into two teams throughout the execution of A4:440

the explorers and the landmark. The explorer team consists of four robots placed in a441

perfect T shape and are in charge of the exploration while the landmark is just a single442

robot used to guide the explorers so that they can keep track of the exploring direction.443

Note that during the execution of A4, some robots may change their respective role.444

Initially, robots are placed so that the explorers are ready to explore three columns4.445

More precisely, four robots form a T shape, and the landmark is located diagonally446

above (refer to Figure 18). The explorer team executes the rules presented in Figure 19447

in order to move in a straight line. Initially, they visit the three columns simultaneously448

and reach the landmark from above. When reaching the landmark, they perform a right449

turn (from their perspective i.e., they were going down and are now heading left), using450

the additional rule presented in Figure 20. The corresponding sequence of configura-451

tions is shown in the first 5 configurations of Figure 21. After the turn, the isolated452

robot in the reached configuration is the landmark while the four other robots are in the453

explorer team.454

The explorers now move in a straight line and visit the three rows simultaneously.455

After that; they reach the landmark again but this time the landmark is on the other side456

so the same sequence as before is performed but in a mirrored way i.e., they perform a457

left turn (again from their perspective, from going left to going down). The sequence of458

configurations during this process is presented in the last 5 configurations of Figure 21,459

which is the same as the first right turn but in a mirrored way. After visiting these three460

4Again, we recall that every reachable configuration can be initial.

17



rows (gray nodes in the figures), the configuration is similar to the initial configuration461

but translated diagonally (3 nodes to the East and 3 nodes to the North). By repeating462

the same process the robots will explore infinitely often all the nodes of the torus.463

R

R R R

R

Figure 18: Instance of an initial configuration of Algorithm A4

(a)

R R R

R

(b)

R R R

R

(c)

R R

R

Figure 19: Rules to move in a straight line when forming a T shape.

(d)

R R R

R

Figure 20: Rules for performing a U-turn.
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R R R

R

R

R R R

R R

R

R R R R

R

R R R

R

R

R R

R

R

R

R R

R

R

R

R R

R

R

R

R

R R

R

R

R

R R

R

R

R R R

R

Figure 21: A4: Sequence of configurations, after visiting three columns, the robots make a turn, visit three
consecutive rows (shown in gray), make a turn, and reach the same configuration as the initial one but
translated by a vector (3, 3). The red dashed arrow highlights the movement of the landmark

(e)

R R R

R R

Figure 22: Rules for performing a U-turn.
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Theorem 7. A4 solves the PTE problem with five oblivious robots.464

Proof. Assuming initially the bottom-most robot is on the row with index 0, then the465

landmark is on the row with index 3 (see the initial configuration in Figure 18). After466

R−2 rounds (while visiting three columns), the traveling group reaches the landmark.467

From there, they perform a turn and start exploring three consecutive rows located468

above the landmark (see the first 5 configurations in Figure 21), having index 4, 5, and469

6. After C + 1 more rounds, the robots reach again the landmark and start performing470

another turn (see the last 5 configurations of Figure 21). After three more rounds, the471

configuration is the same as the initial configuration, but translated by a vector (3, 3).472

Since they have visited three consecutive rows with index 4, 5, and 6, by Theorem 3,473

A4 solves the PTE problem.474

8. Conclusion475

We presented two optimal solutions for the PTE problem with respect to both the476

number of robots and the number of colors when robots share a common chirality477

and have visibility one and two respectively. Indeed, we have shown that three robots478

endowed with two colors are necessary and sufficient to solve the problem when robots479

have visibility one and four oblivious robots are necessary and sufficient to solve the480

problem when robots have visibility two.481

We also addressed the case in which robots are completely disoriented i.e., robots482

do not share a common chirality. We proposed two algorithms to solve the PTE prob-483

lem one which is optimal with respect to the number of robots in the case of visibility484

range one and another one for the case in which robots have visibility range two.485

A direct extension to this work would be to show the optimality of the proposed486

solutions when robots are disoriented. Indeed, we conjuncture that three colors are487

necessary when robots have a visibility range one and that five robots are necessary488

with oblivious robots when the visibility range is two.489

Another interesting extension would be to consider (C,R)-tori such that C,R <490

nΦ + 1. Ad-hoc solutions might be needed in this case as robots might observe the491

same robots on different sides of the torus.492

Finally, it would be interesting to see how the proposed solutions could be adapted493

to solve the terminating exploration problem.494
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