
Optimal Asynchronous Perpetual Grid Exploration⋆

Quentin Bramas1, Stéphane Devismes2, Anaı̈s Durand3, Pascal Lafourcade3, and
Anissa Lamani1

1 University of Strasbourg, ICUBE, CNRS
2 Université de Picardie Jules Verne, MIS UR 4290, Amiens

3 Université Clermont Auvergne, Clermont Auvergne INP, CNRS, LIMOS

Abstract. We address the perpetual grid exploration by a swarm of autonomous,
asynchronous, myopic, and luminous robots. We first show that it is impossible
for the robots to explore the grid regardless of their number and the number of
colors they can take if their visibility range is one. We also show that PGE is
impossible with three oblivious robots that have a visibility range of two hops. We
then present three optimal algorithms solving the problem. The first algorithm uses
four oblivious robots with a visibility range of two, but assumes they agree on a
common chirality. For the two other algorithms, no common chirality is assumed.
The former uses three robots that have a visibility range of two and a two-color
light. The latter uses three oblivious robots under visibility range three.

Keywords: Asynchronous Myopic Robots · Grids · Perpetual Exploration

1 Introduction
Swarm robotics has drawn a lot of attention in the past decade. Inspired by natural
systems, a lot of investigations focus on how to reproduce with artificial systems au-
tonomous behaviors observed in nature. Given a collection of autonomous mobile entities
called robots, the main goal is to determine the minimum hypotheses allowing the robots
to solve a given task.

In this paper, we consider mobile robots that are autonomous (i.e., there is no central
authority to coordinate their move) and luminous (i.e., they are endowed with lights
that can take a finite number of different colors). Moreover, they are deaf-mute (i.e.,
they have no direct means of communication) but they are endowed by visibility sensors
allowing them to perceive their environment within a given distance called visibility
range. Our robots are said to be myopic since can only sense at constant (typically small)
distance. Robots operate in the well-known Look-Compute-Move (LCM) model. That is,
they operate in cycles which comprise three phases: Look, Compute, and Move. During
the first phase (Look), robots take a snapshot of their environment using their visibility
sensors. In the second phase (Compute) and based on the previous snapshot, they decide
a destination in their surrounding and update their color. Finally, in the last phase (Move),
they move to the computed destination, if the destination is different from their current
location. We consider the (fully) asynchronous model (ASYNC), meaning that the time
between each Look, Compute, and Move phases is finite yet arbitrary long.

⋆ This study has been partially supported by the French ANR project SKYDATA (ANR-22-CE25-
0008).

2 Bramas et al.

We study the case in which the robots have to solve the perpetual exploration problem.
In this problem, robots evolve in a discrete universe and have to ensure that each location
(node) is visited by at least one robot infinitely often. We consider here the universe is a
finite grid, hence the problem will be referred to as the perpetual grid exploration (PGE).
We focus on optimal exclusive solutions with respect to both the visibility range and the
number of robots. Exclusiveness adds a constraint on robots behavior: they can neither
occupy the same node simultaneously nor traverse the same edge at the same time.

Related Work. The exploration problem is one of the benchmark tasks when it comes
to robots evolving on graphs. Various topologies have been studied: lines [13], rings
[1, 7, 11, 14, 17], tori [10], grids [2, 4, 5, 9], cuboids [3], and trees [12]. Two variants of
the problem have been investigated: (i) the perpetual exploration problem [1–3, 6, 18],
considered in this paper, which requires the robots to visit each node of the graph
infinitely often and (ii) the terminating exploration problem [7, 9–14, 16] which requires
the robots to visit each node of the graph at least once and then stop moving.

Most of the investigations consider robots with unlimited visibility range allowing
them to observe every node of the system [1, 2, 9–14]. Robots are in this case oblivious
(i.e., they cannot remember past actions) and have to solve the terminating exploration
problem. Myopic robots have also been considered in both variants of the problem [4, 6–
8, 17]. When it comes to the perpetual exploration problem, an additional assumption
has an impact on the feasibility of the task and the optimality of the proposed solutions.
This assumption endows the robots with a common chirality. In fact, chirality is usually
assumed when robots evolve in the continuous 2D Euclidean plan but some investigations
have also recently considered it in the discrete universe [5, 6].

On finite and infinite grids, the exploration problem by myopic robots has been
investigated almost exclusively assuming the robots are synchronous i.e., they all wake
up at the same time look at their surroundings and perform their actions simultaneously.
On finite grids, it has been shown that two (resp. three) synchronous robots with three
colors (resp. one color) are sufficient to solve the problem when robots have visibility one
and share a common chirality [6]. The case in which robots have no common chirality
was investigated in [18]. It was proven that the problem is not solvable with only two
robots having a finite number of colors and a finite visibility range. An optimal solution
is also presented using only three robots having visibility range one, using only three
colors. The case in which robots are oblivious and visibility range 2 was solved using
five robots. In the case of infinite grids, assuming robots with visibility range one and few
colors (O(1)), five (resp. six) synchronous robots are necessary and sufficient to solve
the problem with (resp. without) the common chirality assumption [4, 5]. Finally, in the
case of cuboids, it has been shown in [3] that three synchronous robots with a common
chirality endowed with five colors are necessary and sufficient to solve the perpetual
exploration problem. Asynchronous myopic robots have been considered in the context
of the terminating exploration problem on finite grids [16] assuming robots can start from
distinct positions but allowing them to occupy the same location simultaneously during
the execution (i.e., they are not exclusive). Now, in such a setting, storing at a given
instant several robots at the same location can be used to remember some past actions
and so may help solve the problem using fewer colors, a smaller number of robots,
and/or a smaller visibility range. In the same setting as ours (perpetual exploration with

Optimal Asynchronous Perpetual Grid Exploration 3

Chirality Visibility # Robots # Colors Algorithm
Yes 1 finite finite Impossible (Theorem 2)
Yes 2 3 1 Impossible (Theorem 3)
Yes 2 3 2 [6]
Yes 2 4 1 A1

No 2 3 2 A2

No 3 3 1 A3

Table 1: Summary of our results.

exclusive, myopic robots), the case of asynchronous robots has only been considered
in [6] by showing that a modified version of a synchronous algorithm also works in the
asynchronous setting. This algorithm is mentioned in our summary table for comparison.

Asynchronous robots with colors and limited visibility range have been considered
to solve the maximum independent set problem on grids [15]. This model is slightly
different from ours as robots can cross the same link and occupy the same location at the
same time. They also enter the grid initially one by one from the same location.

Contribution. We first present two impossibility results: the first one shows that per-
petually exploring any finite grid is not solvable with asynchronous robots having a
visibility range of one regardless of the number of robots and the number of colors for
their lights. Next, we show that the problem is also unsolvable with three asynchronous
robots without colored lights (i.e., with oblivious robots) and a visibility range of two.

We then present three optimal algorithms solving the problem. The first algorithm
assumes a common chirality and requires four oblivious robots having visibility range
two. The second algorithm uses three robots without common chirality but endowed
with a light of two colors and having visibility range two. The third algorithm uses three
oblivious robots without common chirality and having visibility range three. Table 1
below summarizes our contribution.

2 Model
We consider a set of n > 0 robots located on a finite grid made of L ≥ n lines and
C ≥ n columns, i.e., robots evolve in an undirected graph G(V,E) where V = {(i, j) :
i ∈ [0, C − 1], j ∈ [0,L − 1]} and E = {{(i, j), (k, l)} : (i, j) ∈ V ∧ (k, l) ∈
V ∧ |i− k|+ |j − l| = 1}. The size of the grid is then L× C. Grid coordinates are used
for the analysis only, i.e., robots cannot access them.

Robots can move from a node to one of its neighbors in the grid but, in our algorithms,
we prevent any two robots from being located at the same node simultaneously. In other
words, any algorithm allowing such a behavior is considered as not well-defined. A
node is occupied when a robot is located at this node, otherwise it is empty. Robots are
luminous, i.e., they have lights of different colors that can be seen by robots in their
surrounding. We denote by Cl the set of all possible colors. The state of a node is then
the color of the light of the robot located at this node if it is occupied, ⊥ otherwise.

The robots operates by executing infinitely many asynchronous Look-Compute-Move
cycles, i.e., each robot performs its own cycles in sequence, however the time between
each Look, Compute, and Move phases is finite yet unbounded and decided by an
adversary. The only constraint is that both Move and Look are instantaneous (each

4 Bramas et al.

compute phase may be arbitrarily long, yet finite). In the Look phase, a robot r gets a
snapshot of the subgraph induced by the nodes within distance Φ ∈ N∗ from its position.
Φ is called the visibility range of the robots. In the snapshot, nodes are labeled with their
state. The snapshot is not oriented in any way as the robots do not agree on a common
North. However, it is implicitly ego-centered since the robot that performs a Look phase
is located at the center of the subgraph in the obtained snapshot. Notice that, since moves
are instantaneous, robots are always located at nodes in a snapshot. Then, during the
Compute phase, the robot selects a destination (either Up, Left, Down, Right, or Idle) and
can change its color based only on the snapshot it received. Finally, it moves towards its
computed destination. We say that a move is pending when a robot has decided to move
(during its Compute phase) but has not moved yet. Note that light colors are both the
only permanent memory of a robot and an indirect communication mean. The particular
case where |Cl | = 1 corresponds to the oblivious assumption.

In all our algorithms, we also prevent any two robots from traversing the same edge
simultaneously. Since we already forbid them to occupy the same position simultaneously,
this means that we should additionally prevent robots from swapping their position.
Algorithms verifying this property are said to be exclusive. However, to be as general as
possible, we do not make this additional assumption in our impossibility results.

Configurations. A configuration C in a grid G(V,E) is a set of pairs (p, c), where
p ∈ V is an occupied node and c ∈ Cl is the color of the robot located at p. A node p is
empty if and only if ∀c, (p, c) /∈ C. We sometimes just write the set of occupied nodes
when the colors are clear from the context.

Views. We denote by Gr the globally oriented view centered at the robot r, i.e., the
subset of the configuration containing the states of the nodes at distance at most Φ from
r, translated so that the coordinates of r is (0, 0). We use this globally oriented view in
our analysis to describe the movements of the robots (see, for example, Fig. 1): when we
say “the robot moves Up”, it is according to the globally oriented view. However, since
robots do not agree on a common North, they have no access to the globally oriented
view. When a robot looks at its surroundings, it instead obtains a snapshot. To model
this, we assume that the local view acquired by a robot r in the Look phase is the result
of an arbitrary indistinguishable transformation on Gr. The set IT of indistinguishable
transformations depends on the assumption we make on the chirality. IT always contains
the rotations of angle 0 (to have the identity), π/2, π and 3π/2, centered at r. When we
do not assume robots agree on a common chirality, we add the mirroring (robots cannot
distinguish between clockwise and counterclockwise orientations) and any combination
of aforementioned rotations and mirroring. Finally, we assume self-inconsistent robots,
meaning that different transformations may be applied at different rounds.

It is important to note that when a robot r computes a destination d, it is relative to its
local view f(Gr), which is the globally oriented view transformed by some f ∈ IT . So,
the actual movement of the robot in the globally oriented view is f−1(d). For example,
if d = Up but the robot sees the grid upside-down (f is the π-rotation), then the robot
moves Down = f−1(Up). In a configuration C, VC(i, j) denotes the globally oriented
view of a robot located at (i, j).

Algorithm. An algorithm A is a tuple (Cl , Init , T) where Cl is the set of possible
colors, Init is a mapping from any considered grid to a non-empty set of initial configu-

Optimal Asynchronous Perpetual Grid Exploration 5

rations in that grid, and T is the transition function V iews→ {Idle,Up,Left , Down ,
Right} × Cl , where V iews is the set of possible local views.

Scheduler and Execution. During an execution, the robots perform their Look-
Compute-Move cycles independently and asynchronously. However, without the loss of
generality, we assume that each phase of a cycle is atomic. Indeed, recall that Look and
Move are already assumed to be instantaneous, moreover, we can assume each compute
phase is atomic since it is only based on the previous snapshot. An adversarial scheduler
selects when a robot performs the phases of its cycle. Again, without loss of generality,
we assume that at most one robot performs a phase of its cycle at each time instant.
Indeed, if two robots perform a phase of their cycle at the same time, we can assume that
one of them performs its phase strictly before the other as the resulting configuration is
the same if the order is carefully chosen.

Hence, we can consider that the time is discretized in time instants, w.l.o.g. with
non-negative integers 0, 1, 2, . . ., that represents the instants at which one robot performs
one phase of its cycle. It is easy to see that the exact values of the times are not important
in our context, only the order of the events is. Hence, we define a schedule S = (Si)i≥0

as a sequence actions describing the order in which the robots perform their phases:
Si = (ri, Look|Compute|Move) means that at time i, the robot ri performs the phase
Look, Compute, or Move. A schedule is well-defined if, by considering the sequence
of actions associated with a single robot, the order of the actions is periodic and alternates
between Look, Compute, and Move starting from a Look. A schedule is fair if every
robot is selected infinitely often. In the remainder of the paper, we assume that all the
schedules are fair and well-defined.

An execution of A in the grid G is then an infinite sequence of configurations
(Ci)i∈N determined by its initial configuration C0 and a schedule S = (Si)i≥0. Precisely,
C0 ∈ Init(G) and ∀i ∈ N, Ci+1 is obtained by applying Si = (ri, ai) on Ci as follows:

– If ai = Look, then Ci+1 = Ci.
Otherwise, let j the maximum integer satisfying j < i and Sj = (ri, Look); let
fj ∈ IT be the transformation applied on the view of ri in Cj ; and let p = (x, y) and c
respectively be the node occupied by and the color of ri in Ci.

– If ai = Compute, then Ci+1 = Ci \ {(p, c)} ∪ {(p, c′)}, where T (fj(VCj
(p))) =

(, c′), i.e., c′ is the new color of ri (maybe c = c′) computed by ri from the view it
obtained in Cj .

– If ai = Move, then Ci+1 = Ci \ {(p, c)} ∪ {(p′, c)}, where
• p′ = p if f−1

j (T (fj(VCj (p)))) = (Idle,);
• p′ = (x+ 1, y) if f−1

j (T (fj(VCj
(p)))) = (Right,);

• p′ = (x− 1, y) if f−1
j (T (fj(VCj

(p)))) = (Left,);
• p′ = (x, y + 1) if f−1

j (T (fj(VCj (p)))) = (Up,); and
• p′ = (x, y − 1) if f−1

j (T (fj(VCj
(p)))) = (Down,).

Given C0 ∈ Init(G) and a scheduler S, we obtain an execution e = (Ci)i∈N of A.
For 0 ≤ i ≤ j, we write Ci

e7−→ Cj the fact that Cj is reached from Ci in e.
Let r0, . . . , rn−1 be n robots and Sync3n = (Synci)i∈[0,3n−1] such that for all

i ∈ [0, n − 1], Synci = (ri, Look), Synci+n = (ri, Compute), and Synci+2n =

6 Bramas et al.

(ri,Move). The synchronous scheduler is then Sync = (Sync3n)ω. We denote by

C
Sync3n7−−−−−→ C ′ the fact that C ′ is reached from C under the synchronous scheduler.

Perpetual Finite Grid Exploration. An execution (Ci)i∈N of A = (Cl , Init , T) in
a grid G = (V,E) achieves the Perpetual (Finite) Grid Exploration (PGE) if for every
node u ∈ V and for every time t, there exists a time t′ ≥ t such that u is occupied in
Ct′ . An algorithm A that uses n robots solves (resp., synchronously solves) the Perpetual
Finite Grid Exploration (PGE) problem if for every finite grid G = (V,E) with at least
n lines and n columns and every initial configuration C0 ∈ Init(G), we have every
execution (resp. every execution under the synchronous scheduler) of A in G starting
from C0 that achieves the PGE.

Well-defined Algorithms. Recall that robots are assumed to be self-inconsistent.
In this context, we say that an algorithm (Cl , Init , T) is well-defined if the global
destination computed by a robot does not depend on the applied indistinguishable
transformation f , i.e., for every globally oriented view V , and every transformation f ∈
IT , we have T (V) = f−1(T (f(V))). All our algorithms are well-defined. However, to
be as general as possible, we do not make this assumption in our impossibility results.

An Algorithm as a Set of Rules. We write an algorithm as a set of rules, where a
rule is a triplet (V, d, c) ∈ V iews× {Idle,Up,Left , Down , Right} × Cl . We say that
an algorithm (Cl , Init , T) includes the rule (V, d, c), if T (V) = (d, c). By extension,
the same rule applies to indistinguishable views, i.e., ∀f ∈ IT , T (f(V)) = (f(d), c).
Consequently, we forbid an algorithm to contain two rules (V, d, c) and (V ′, d′, c′) such
that V ′ = f(V) for some f ∈ IT . Hence, an algorithm corresponds to a set of rules if
each destination is the result of applying one of its rules.

As an illustrative example, consider the rule R1 given in Fig. 1. This rule is defined
for robots having a visibility range of two. This rule means that, when a blue robot B
sees three robots with color R, one on top at distance 2, one on the left, and one in
diagonal, then the blue robot is dictated to move Up. By extension, the same rule applies
if the view is rotated by π, but in that case, the destination would be Down.

R1 R

R

R B

R2 R

R

R B

R3 R

R

R B

Fig. 1: Examples of rules.

In the same figure, R2 is a rule
where the three black nodes repre-
sent a part of the outer boundary
of the grid, that we call a wall in
the remaining of the paper. In our
algorithms, we often define simi-
lar rule that apply regardless of the
presence of a wall in some part of the view. Thus, to avoid defining several time rules
with very similar views, we propose a notation to express several rules in just one picture.
For example, R3 in Fig. 1 has three nodes hatched with vertical lines, which means that
the rule applies regardless of the presence of a wall located at those nodes. In practice,
every rule that contains such vertical (resp. horizontal) hatched lines, represents a set of
rules obtained by replacing each of those lines either by walls or by empty nodes. For
example, R3 in Fig. 1 is a concise representation of R1 and R2.

Algorithms having locally-defined initial configurations. In a given grid, the set of
possible initial configurations of an algorithm can be reduced to a singleton. In such a

Optimal Asynchronous Perpetual Grid Exploration 7

case, the scalability and flexibility of the algorithm is weak. To be more general, two of
the algorithms we propose have locally-defined sets of initial configurations. Configura-
tions in a locally-defined set of initial configurations are defined by colors and relative
positions of the robots only. Hence, for a given grid, every two possible initial configura-
tions are equal up to possible transformations applied on all robots positions. The set
of possible transformations includes any combinations of translations and rotations of
angle π

2 applied to all robot positions. Moreover, when no common chirality is assumed,
the previous combinations can also be augmented with mirroring. The set of all possible
initial configurations is then closed by the set of possible transformations.

Synchronous Sequential Algorithms. Let A be well-defined algorithm. Informally, A
is sequential if robots move or change their color one at a time. More formally, we start
by defining the notion of seq-enabled robots. In a configuration C, a robot r at a position
p is said to be move-enabled, resp. col-enabled if we have T (VC(p)) = (move,),
resp. T (VC(p)) = (, c), where move ̸= Idle, resp. c is not the color of r in C. A
robot that is move-enabled or col-enabled is said to be enabled. Finally, it is said to be
seq-enabled if it is either move-enabled or col-enabled, but not both. An synchronous
execution (Ci)i∈N under is said to be sequential if ∀j ∈ N, no robot except one is
enabled in C3nj , and this latter being actually seq-enabled in C3nj . An algorithm is said
to be synchronous-sequential if it is well-defined and all its synchronous executions are
sequential.

We show the correctness of our algorithm by induction on the size of the grid in
which they are deployed. We use Theorem 1 below to establish the base cases of these
inductions using a simulator.

Theorem 1. Let A be a synchronous-sequential algorithm using n robots and G be
a grid. Every synchronous execution of A in G achieves the PGE if and only if every
(asynchronous) execution of A in G achieves the PGE.

Let (Ci)i∈N a synchronous execution of A on some grid G. Our simulator actually
computes the sequence of configurations (C3ni)i∈N. To apply Theorem 1, we then need
to check if:

– A is well-defined. To that goal, we test every indistinguishable transformation (a
finite number of transformations) on each of its rules (the number of rules of A is
also finite).

– A is synchronous-sequential and its synchronous execution achieves the PGE. Since
A is well-defined, all its synchronous executions are fully determined by their initial
configuration. So, we should make one simulation per possible initial configuration
(the set of all possible initial configurations can be computed by applying every
authorized transformation on the local initial pattern). Each simulation stops as
soon as a configuration appears again. This necessarily happens since the number
of configurations is finite. Then, we have to check all nodes have been visited in
the execution prefix (to show the correctness) and in all encountered configurations
exactly one robot is enabled and this robot is actually seq-enabled (to show that A is
synchronous-sequential).

8 Bramas et al.

3 Impossibility Results
In this section, we first establish in Theorem 2 a general impossibility result for the PGE
problem with robots having visibility one. To do so, we show that a team of robots cannot
cross a fence (defined below). We then give a specific impossibility result for the PGE
problem with three oblivious robots having visibility range two. To show Theorem 2, we
prove a variant of the test of the fence (introduced in [4]) for the case of finite grids. In
our setting, a fence is the boundary of width two of a square.

More formally, Let Square((x1, y1), (x2, y2)) be the nodes in the square delimited
by the given points, with x1 < x2 and y1 < y2 : Square((x1, y1), (x2, y2)) = {(x, y) ∈
Z2 | x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2}. Then, a fence F(x1,y1),(x2,y2), with x1 + 4 <
x2 and y1 + 4 < y2 is defined as: F(x1,y1),(x2,y2) = Square((x1, y1), (x2, y2)) \
Square((x1 + 2, y1 + 2), (x2 − 2, y2 − 2)). We say a robot is outside (resp. inside)
the fence if it is outside the outer square (resp. inside the inner square). We say that
a set of robots has crossed a fence when they are all inside the fence at a given time.
Notice that this does not mean that the robots always stay inside of the fence afterward.
Formally, we say that a set of robots S has crossed the fence F(x1,y1),(x2,y2) at Round
t if there exists t′ ≤ t such that every robot r ∈ S is at some coordinates (x, y) ∈
Square((x1 + 2, y1 + 2), (x2 − 2, y2 − 2)) at Round t′.

We say a set of robots S single-handed crosses the fence F between t and t′ if for
every robot r ∈ S, (1) r is located outside F at Round t; (2) r is located at inside F at
Round t′; and (3) only robots of S are within distance one of r between Round t and
Round t′. We say that a set of robots S has single-handed crossed the fence F at Round
t if ∃t′ < t′′ ≤ t such that S single-handed crosses the fence F between t′ and t′′.

To be more general, we now consider any algorithm, i.e., well-defined or not. We
first prove that if robots explore any finite grid, then there is a fence that is single-handed
crossed by a subset of robots; see Lemma 1. This latter result will be used to show that,
if robots have visibility one the PGE problem is impossible, whatever the number of
robots is, indeed we show that the test of the fence fails; see Theorem 2.

Lemma 1 (The test of the fence in finite grids). Let A be any algorithm solving the
PGE using n robots. There is an execution of A, a grid G, a fence F of G, and a subset
of robots S such that S single-handed crosses F within a finite number of rounds.

Theorem 2. There exists no algorithm solving the PGE problem with robots having
visibility range one, even assuming a common chirality.

The proof of the next theorem follows the same principles as Theorem 3.5 in [6].
We had just to adapt these principles for our specific setting. In particular, we had to
show that, whatever the algorithm, the adversary can impose a single way to translate
the positions of three oblivious robots by one, when they do not see any wall.

Theorem 3. There exists no algorithm solving the PGE problem with three oblivious
robots having visibility range two, even assuming a common chirality.

Optimal Asynchronous Perpetual Grid Exploration 9

4 Algorithms
4.1 Algorithm with 4 Oblivious Robots and Common Chirality

We first present an algorithm, denoted by A1, that uses four oblivious robots, assuming a
common chirality and visibility range two4. The algorithm we present here is for when
the number of lines and columns is at least 5. The particular cases where the number of
lines or columns is 4 are handled with special rules shown in the interactive simulation.

The exploration of the grid is performed alternatively rows by rows and columns by
columns in a given direction. Precisely, three robots explore a line (a row or a column),
while leaving the fourth robot, called sentinel, adjacent to a wall. When the three robots
have explored the line, they perform a U-turn and move back toward the sentinel. When
they meet the sentinel, the four robots perform a sequence of moves in a way that allows
them to explore the next line. The lines are explored one by one in a given direction
called the exploring direction which is initially ↓ in the illustration. After all the lines are
explored, the four robots perform a sequence of moves to change the exploring direction,
from ↓ to←. In more detail, the four robots initially form an L-shaped pattern with a
unique robot being adjacent to a wall (see Fig. 2) and the robot alone in its row must
not see any wall. Assume without loss of generality that the sentinel is placed on Row
ℓi and let ℓi+1 and ℓi+2 be the next two rows from ℓi in the exploring direction. The
exploration of the rows ℓi and ℓi+1 is initiated by the robot adjacent to the sentinel by
moving to its adjacent node in the exploration direction ↓ by executing Rule a) of Fig. 4.
While the sentinel remains idle on its node, the three other robots, being in exploration
formation (Fig. 3), move in a straight line to explore Rows ℓi and ℓi+1. This is done by
moving in a sequential manner starting from the robot that is located on ℓi by executing
the rules defined in Fig. 4, (b – f).

A A A

A

ℓi

ℓi+1

ℓi+2

Fig. 2: Instance
of an initial
configuration.

A

A A

Fig. 3: Ex-
ploration
formation.

a)

A A A

A

b)

A A

A A

c)
A

A A

d)
A

A A

e)

A

A A

f)

A A

g)

A

A A

h)
A

A A

Fig. 4: Rules to move in a straight line.

A

A A A A

A

A

A

A

A A

A A

A A A

A A

A

Fig. 5: Rules to perform the U-turn and initiate the exploration towards the sentinel.

4 An interactive simulation of A1 is given at https://robots.app.bramas.fr/?SSS2024/0

10 Bramas et al.

A

A A

A

A

A

A A

A

A A

A

Fig. 6: Sequence of configurations during a change of row and a U-turn.

Once the three explorer robots reach the opposite wall, they not only move to the
next adjacent row with respect to direction ↓ but also perform a U-turn so that they move
back on Rows ℓi+1 and ℓi+2 towards the sentinel. The U-turn is performed by executing
the rules of Fig. 5. The sequence of configurations during this process is illustrated in
Fig. 6. When moving towards the sentinel, a robot eventually becomes adjacent to a wall
and it can see the sentinel at distance two. Robots then move to re-create the L-shaped
pattern but this time on row ℓi+1. This is done by executing the rules of Fig. 8. The
sequence of configurations during this process is illustrated in Fig. 7.

A

A A

A

A

A A

A

A

A A A

A

A A A

A

A A

A

A A A

A

A A A

A

Fig. 7: Sequence of configurations during a change of row for the sentinel.

a) A

A

A

b)

A

A A

c)
A

A A A

d)

A A

A

e)

A

A A

A f)

A A A

A

Fig. 8: Rules to move the sentinel to the next row
to be explored.

a)
A A A

A

b)

A A A

A

c)

A A

A A

d)

A

A A

A

A

e)

Fig. 9: Rules to switch to the columns
exploration.

Let ℓ1, ℓ2, . . . , ℓL be the sequence of rows in direction ↓. By repeating the same
process, the sentinel will eventually be located at ℓL−3 and the robots explore Rows
ℓL−3, ℓL−2 and ℓL−1. When robots move back towards the sentinel and reach it, they
move to initiate the exploration of the grid columns by columns in direction←, labeled
m1,m2, . . . ,mC . Note that the robots cannot differentiate between rows and columns,
thus, they apply the same process to the columns. That is, robots will explore the
columns as they did with the rows. To switch from rows to columns exploration, the
robots perform a sequence of moves first by using the rules of Fig. 8 as they are changing
rows except that this time, Rule (f) will not be enabled as the robot observes another
wall below, at distance two. Instead, the robot executes Rule (a) of Fig. 9 and moves
towards the wall on its current row to notify the other robots that they are switching to
columns exploration. The robots then create the desired L-shape on m2 by executing the
rules of Fig. 9. The sequence of configurations during this process is presented in Fig. 10.
Robots explore the columns as they did for the rows and then switch again to the rows

Optimal Asynchronous Perpetual Grid Exploration 11

exploration in direction ↑ by placing again the sentinel adjacent to a wall on rows and so
on. That is, the sentinel moves along the wall of the grid in the clockwise direction.

A

A A

A

A

A A A

A

A A A

A

A A

A

A A A

A

A A A

A

A A

A A

A A

A A

A A

A

A

A A

A

A

Fig. 10: Sequence of configurations during rows/columns exploration switch.

Theorem 4. Algorithm A1 solves the PGE problem using four oblivious asynchronous
robots with visibility range two and a common chirality.

Proof Outline. We first observe that A1 is well-defined. Next, in the remaining of the
proof we only consider a synchronous scheduler, first to prove that A1 is synchronous-
sequential and then to show that A1 solves the problem under a synchronous scheduler.
These two claims are shown by induction on n ×m, where n is the number of lines
and m is the number of columns of the grid (n.b., the base case is established using our
simulator). Hence, by Theorem 1, this covers the case of an asynchronous scheduler as
well. □

4.2 Algorithm with 3 2-Color Robots without Common Chirality
We now present an algorithm, denoted by A2, that uses three robots, each having lights
of two colors, and assumes visibility range two. Note that, this time, we do not make any
assumption on chirality.5. The exploration is similar to Algorithm A1, except that here
two robots are used to explore a line, and these robots move back on the same line. The
two exploring robots are called the leader, with color A, and the follower, with color B.
They explore the grid row by row, going from one wall to the other and coming back on
the same row. The third robot (of color A) plays the role of a sentinel. It remains at one
side of the row being explored and points to the next row. The rows are explored in one
direction, e.g., initially from top to bottom, then the robots do a quarter turn at a corner
and continue their exploration column by column, e.g., from left to right, and so on.

When exploring a line, the leader and the follower move in a straight line in two
steps, using the rules of Fig. 11: the leader (robot A) first moves away from its follower,
then robot B follows. When they reach the opposite wall, they switch their role and
colors, using the rules of Fig. 12. The leader changes its color to B, then the follower
gets Color A. When their roles are switched, they start moving along the row in the
opposite direction.

5 An interactive simulation of A2 is given at https://robots.app.bramas.fr/?SSS2024/1

12 Bramas et al.

a)

B A

b)

B A

Fig. 11: Rules to move straight.

a)

B A
B

b)

B B
A

c)

A B

d)

A B

Fig. 12: Rules to turn around on the same row.

When they reach back the first wall, the robots, along with the sentinel, move to the
next row in the direction pointed by the sentinel, using the rules of Fig. 13. The sequence
of configurations during this process is illustrated in Fig. 14. After changing rows, the
new leader and follower start to explore the new row as previously.

a)

A B

A

b)

A B

A

B

c)

B B

A

d)
B

A B

e)
B

B

A

A

f)

B

A

A

g)

B

A h)

B A

A

i)

B A

A

Fig. 13: Rules to perform a turn and a change of row.

A B

A

A B

A

A B

A

B B

A

B

A B

B

B

A

B

A

A

B

A

A

B A

A

B A

A

Fig. 14: Sequence of configurations during a change of row.

When the robots have explored the penultimate row, they cannot perform the same
steps as before to move to the next row since the sentinel cannot move forward. Thus,
the robots perform a quarter turn and change the direction of exploration: they will now
explore the grid column by column, e.g., from left to right if they were going from top to
bottom previously. The rules for the quarter turn are shown in Fig. 15 and the sequence
of configurations reached during this process is given in Fig. 18. After the turn, the new
leader and follower start to explore the second column (ordered from right to left) as
previously. Notice that for grids with one side of size 3 (e.g, 3×3 or 3×4), the algorithm
requires an additional rule; see Fig. 16. Indeed, when the robots do the U-turn at the end
of the row, the former follower sees the sentinel. This does not happen in larger grids.
Nonetheless, the exploration follows the same principle.

Initial configurations. Initially, the three robots form an “L”-shape: one robot (the future
sentinel) has color A and is adjacent to another robot with color A (the future leader),

Optimal Asynchronous Perpetual Grid Exploration 13

a)

A B

A

A

b)

A A

A

B

c)

B A

A

Fig. 15: Rules to perform a quarter
turn and change the direction of ex-
ploration on the last row.

B B

A

A

Fig. 16: Addi-
tional rule for
3× 3 grids.

a)
A B

A

b)

A B

A

Fig. 17: Rules to reach a
wall from the initial con-
figuration.

A B

A

A A

A

B A

A

B

A A

B

B A

B

B A

B

B A

A

B A

A

B A

A

B A

A

B

A

Fig. 18: Sequence of configurations during a quarter turn when robots are on the last row
and change the direction of exploration.

which is adjacent to the third robot with color B (the future follower); as shown in
Fig. 19. The three robots can be anywhere in the grid as long as they respect these
relative positions. Hence, the set of initial configurations is locally-defined.

The robots will move in the direction of the wall pointed by the two robots of color
A, using the rules in Fig. 17. The three following steps are repeated until reaching the
wall: the sentinel moves on its row, away from the two other robots. Then, the leader
moves in the same direction and the follower takes its place. When they reach the wall,
they are in the same position as when they move to the next row in the exploration part.
Thus, the exploration begins.

Theorem 5. Algorithm A2 solves the PGE problem using three asynchronous robots
equipped with two colors and visibility range two.

4.3 Algorithm with 3 oblivious Robots under Visibility Range 3
without Common Chirality

Finally, we present an algorithm, denoted by A3, that uses three oblivious robots and
assumes a visibility range three. Again, we make no assumption on the chirality.6.
Contrary to the previous algorithms, the robots only explore the grid row by row, without
switching to the column exploration. Moreover, no “sentinel” remains adjacent to a wall.
The three robots explore the grid in a “snake” shape: initially the leader is alone on its row
and column; the two followers are on the adjacent row, one of them being on a diagonal
to the leader; as shown in Fig. 21. The three robots can be initially anywhere in the grid
as long as they respect these relative positions. Hence the set of initial configurations is
locally-defined. The rows are explored in one direction, e.g., from top to bottom, then
the robots switch directions, e.g., from bottom to top.

6 An interactive simulation of A3 is given at https://robots.app.bramas.fr/?SSS2024/2

14 Bramas et al.

When exploring a row, the leader and its followers move straight from one wall to
the other using the rules of Fig. 20. The leader moves away from its followers. Then, the
followers follow, the closest one first, the other afterward. Upon reaching the opposite
wall, they perform a turn to start exploring the next row, on the opposite side from the
leader, using the rules of Fig. 22. The first follower moves to the row on the opposite
side from its leader. The leader follows and then, the second follower (that did not move)
becomes the new leader and conversely. They start exploring the row in the opposite
direction (e.g., from left to right if they were exploring from right to left previously).

A B

A

Fig. 19: Locally-defined
initial configurations of
A2.

a)

A

A A

b)

A

A A

c)

A A

Fig. 20: Rules to move in a straight line.

A

A A

Fig. 21: Locally-defined
initial configuration of A3.

A

A A

a)

A

A

A

b)

A A

A

c)

Fig. 22: Rules to move to the next row.

When the robots end the exploration of the last row and reach a corner they perform
a turn in order to start exploring the rows in the opposite direction, using the rules of
Fig. 23. After three moves, the second follower becomes the leader, the leader becomes
the first follower and the first follower becomes the second follower. Then, the robots
start the exploration of the grid in the opposite direction (e.g., from bottom to top if they
were exploring the rows from top to bottom previously). Notice that the robots have to
do some special moves when turning after exploring the first row along the wall; see
rules of Fig. 24.

A

A A

a)

A

A A

b)

A

A A

c)

Fig. 23: Rules to turn in a corner.

A A

A

a)

A A A

b)

A

A A

c)

Fig. 24: Rules to turn after exploring the
first row.

Theorem 6. Algorithm A3 solves the PGE problem using three asynchronous oblivious
robots with visibility range three.

Optimal Asynchronous Perpetual Grid Exploration 15

5 Conclusion
We have presented three grid exploration algorithms for swarms of luminous robots.
Depending on how many they are, how many colors they have, their visibility range, and
whether they share a common chirality, one can choose the most appropriate algorithm.
We have proven that our algorithms are optimal as the problem becomes not solvable
by weakening any of the assumptions. However, some improvements can still be made
in future work. For instance, our first algorithm is not locally-defined, precisely if the
robots are deployed in the center of the grid, the algorithm does not work. Then, our
second algorithm assumes that a robot can see another robot even if it is behind a third
one (i.e., we do not assume opacity). This might not be the case in practice and designing
an optimal algorithm that works in this case is a challenging open problem.

References
1. L. Blin, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Exclusive perpetual ring exploration

without chirality. In DISC 2010.
2. F. Bonnet, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Asynchronous exclusive perpetual

grid exploration without sense of direction. In OPODIS 2011.
3. Q. Bramas, S. Devismes, A. Durand, P. Lafourcade, and A. Lamani. Beedroids: How luminous

autonomous swam of UAVs can save the world? In FUN 2022.
4. Q. Bramas, S. Devismes, and P. Lafourcade. Finding water on poleless using melomaniac

myopic chameleon robots. In FUN 2020.
5. Q. Bramas, S. Devismes, and P. Lafourcade. Infinite grid exploration by disoriented robots.

In NETYS 2020.
6. Q. Bramas, P. Lafourcade, and S. Devismes. Optimal exclusive perpetual grid exploration by

luminous myopic opaque robots with common chirality. Theor. Comput. Sci., 2023.
7. A. K. Datta, A. Lamani, L. L. Larmore, and F. Petit. Enabling ring exploration with myopic

oblivious robots. In IPDPS 2015.
8. A. K. Datta, A. Lamani, L. L. Larmore, and F. Petit. Ring exploration by oblivious agents

with local vision. In ICDCS 2013.
9. S. Devismes, A. Lamani, F. Petit, P. Raymond, and S. Tixeuil. Terminating exploration of A

grid by an optimal number of asynchronous oblivious robots. Comput. J., 2021.
10. S. Devismes, A. Lamani, F. Petit, and S. Tixeuil. Optimal torus exploration by oblivious

robots. Computing, 2019.
11. S. Devismes, F. Petit, and S. Tixeuil. Optimal probabilistic ring exploration by semi-

synchronous oblivious robots. Theor. Comput. Sci., 2013.
12. P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Remembering without memory: Tree

exploration by asynchronous oblivious robots. Theor. Comput. Sci., 411, 2010.
13. P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. How many oblivious robots can explore a

line. Inf. Process. Lett., 111(20):1027–1031, 2011.
14. P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without communicating: Ring

exploration by asynchronous oblivious robots. Algorithmica, 2013.
15. S. Kamei and S. Tixeuil. An asynchronous maximum independent set algorithm by myopic

luminous robots on grids. Comput. J., 67(1), 2024.
16. S. Nagahama, F. Ooshita, and M. Inoue. Terminating grid exploration with myopic luminous

robots. Int. J. Netw. Comput., 12(1), 2022.
17. F. Ooshita and S. Tixeuil. Ring exploration with myopic luminous robots. In SSS 2018.
18. A. Rauch, Q. Bramas, S. Devismes, P. Lafourcade, and A. Lamani. Optimal exclusive

perpetual grid exploration by luminous myopic robots without common chirality. In NETYS.

