
Reducing the Number of Messages in Self-stabilizing Protocols

Anäıs Durand
Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

anais.durand@lip6.fr

Shay Kutten
Technion - Israel Institute of Technology, Haifa, Israel

kutten@ie.technion.ac.il

March 25, 2020

Abstract

Self-stabilizing algorithms recover from sever faults, such as inconsistent initialization.
Traditionally, when designing a self-stabilizing message-passing algorithm, the main goal
was to reduce the time until stabilization. The message cost was neglected. In this work,
we strive to reduce the number of messages sent on the average per time period. As a tool,
we present a stabilizing module that can message-efficiently determine when a task (from a
wide family of tasks) is terminated. False positive detection is possible, but only when faults
occurred. This module is then used in the transformation of non self-stabilizing algorithms
into self-stabilizing ones.

Keywords: Fault-tolerance · Self-stabilization · Message complexity · Quiescence de-
tection · Termination detection.

1 Introduction

In 1974, Dijkstra [11] introduced the self-stabilization as a property of distributed that withstand
sever faults. If a self-stabilizing system is led by faults into any incorrect global state, it
eventually recovers a correct behavior. For example, the token circulation algorithms proposed
in [11] can recover from an arbitrary initial configuration where several processes hold a token
instead of only one. After recovery, exactly one token remains. Self-stabilizing protocols for
various problems have been devised: leader election, synchronization, etc. However, when
designing a self-stabilizing algorithm, the message complexity is traditionally neglected and the
designers only aim at reducing the stabilization time, i.e., the time before recovering a correct
behavior. This happened probably because a self-stabilizing message-passing algorithm cannot
stop. It needs to continuously send messages in order to check whether faults occurred and
recovery is needed.

In particular, multiple transformers that convert a non self-stabilizing algorithm A into a
self-stabilizing one have been designed [1, 3, 4, 5]. Most of those transformers work roughly as
follows. First, A is executed. Then, once the execution of A is terminated, a local checking
algorithm is executed (called “local detection” algorithm [1] or the local verifier of a Proof
Labeling Scheme [18]). This checking detects when the state is illegal (because a fault occurred).
For example, if A is an algorithm to construct a routing tree of shortest paths (SPT), the
verifier checks that the states of every node (but the root) include a parent pointer, and that
the collection of parent pointers forms a tree of shortest paths. If a fault is actually detected,

1

A
Termination
enforcement

Termination
detection

Reset
error

Local
checking

termination

error

ok

Figure 1: Schematic overview of the proposed transformer.

a self-stabilizing reset algorithm, e.g., [2], is executed in order to bring all the nodes to a legal
initial state of A. Then, the process starts again, i.e., A is executed, termination detected, etc.1

Being able to detect termination is necessary to know when the verifier should be activated.
Otherwise, if the verification is done before the output is computed, a fault would be signaled.
For example, before algorithm A of the above example terminates, the SPT is not yet computed
so the verifier may interpret that as a fault. The above transformers assume a synchronous
network to detect that enough time has passed so A must have terminated. However, we do
not want such an assumption. Alternatively [17], such transformers can use a self-stabilizing
synchronizer [2, 6]. Unfortunately, a self-stabilizing synchronizer is very costly in number of
exchanged messages. It uses Ω(m) messages per round (where m is the number of edges). For
example, if A’s time complexity is Ω(n), its self-stabilizing version (using such a transformer),
would need Ω(nm) messages till stabilization (and would continue using Ω(m) messages forever).
An earlier transformer uses even more messages [16]. (It assumed a self stabilizing leader
election, which was then provided by [1]).

In this work, we present a method for reducing the number of messages sent on the average
per time period (compared to using synchronizers), at least for a wide class of tasks called dif-
fusing computations [12] (e.g., DFS, broadcast and echo, two-phase commit, token circulation).
In a diffusing computation, a unique process, the initiator, can spontaneously send a message
to one or more of its neighbors and only once. After receiving their first message, the other
processes can freely send messages to their neighbors. Indeed, we propose a snap-stabilizing2

quiescence detection algorithm tailored to detect when the execution of A is terminated by
proposing a termination detection method more message-efficient than a self-stabilizing syn-
chronizer. Note that both detection methods may have a one sided error. That is, if faults
occurred, the detector may detect termination even though A has not terminated; such a false
detection is still useful for a transformer, since triggering reset to rerun A would be the right
thing to do in the case faults occurred.

Another component is needed for the transformer. If the execution ofA starts in an arbitrary
configuration because of faults, it may never terminate since A is not self-stabilizing. Thus, the
transformer needs a mechanism to enforce termination. We can use a very simple enforcer as
follows. Assume that an upper bound x on the number of messages that a node sends in A
when there is no fault is known. For example, in broadcast and echo, the number of messages
each node sends is bounded by twice the number of its neighbors. To implement the enforcer,
each node just refuses to send more than x messages. Figure 1 proposes a schematic overview
of the transformer.

Quiescence Detection. Quiescence [8] is a global property of distributed systems. A dis-
tributed system is quiet when the communication channels are empty and a local indicator of

1A proof labeling scheme has to be designed especially for A, and some changes to A may be needed in order
to generate the specific proof labeling scheme.

2A snap-stabilizing [7] algorithm is a self-stabilizing algorithm that recovers immediately after faults occurred.

2

stability holds at every process. Termination is an example of quiescence property. Detecting
quiescence is a known fundamental problem in distributed computing. For example, in addition
to its usefulness in the self-stabilizing transformer, detecting the termination of a task allows
the system to know the computed result is ready for output. Moreover, termination detection
simplifies the design of a complex task. The task is broken into modules, such that some module
m2 must wait until some other module m1 terminates. It is easier to design a terminating m1,
and then couple it with a termination detection protocol [14].

Since the seminal works of Dijkstra and Scholten [12] and Francez [13] on termination
detection in distributed systems, the quiescence detection and its sub-problems have been ex-
tensively studied. For a survey, see [20]. Two main kinds of quiescence detection algorithms
can be distinguished. Ongoing detection algorithms monitors the execution since its beginning
and eventually detects quiescence when it is reached, e.g., [12]. A different approach is the
immediate detection algorithms that answer whether the system has reached quiescence by now
or not, e.g., [13]. Ongoing quiescence detection is needed for the transformer, and for most
other applications. Ongoing detection can be designed using an immediate detection algorithm
by repeatedly executing the detection algorithm until it actually detects quiescence, however it
might be highly inefficient.

A self-stabilizing Propagation of Information and Feedback (PIF) algorithm [10, 19, 21] can
be used to design an immediate termination detection algorithm, see [9]. Varghese [21] proposes
a self-stabilizing PIF algorithm in the message-passing model. Snap-stabilizing PIF algorithms
are proposed in [10, 19]. Such an application would have high communication and memory
complexity even without the need to convert this farther to an ongoing detection.

Contributions. First, we propose a new measure for message efficiency for asynchronous net-
works, where we count the number of messages in executions that are “reasonable” synchronous,
i.e., k-synchronous executions. Then, we propose a self-stabilizing and snap-stabilizing ongoing
quiescence detection algorithm Q for diffusing computations. Using Q, one can implement a
message-efficient self-stabilizing transformer. When Q monitors an algorithm A, it detects qui-
escence or signals an error in O(tA +n) rounds, where tA is the round complexity of A and n is
the number of processes. Its memory complexity is O(∆ log n) bits per process, where ∆ is the
maximum degree. If the execution is k-synchronous, the message complexity of the quiescence
detection algorithm is O(k(m+n(tA +n) +MA)), where m is the number communication links
and MA is the message-complexity of A.

Roadmap. In the next section, we detail the considered computational model and the speci-
fication of the quiescence detection problem. Section 3 presents our snap-stabilizing quiescence
detection algorithm Q and an analysis of its correctness and complexities is given in Section 4.

2 Preliminaries

Consider connected distributed systems of n processes operating in the asynchronous message-
passing model. The topology of the system is represented by a graph G = (V,E) where V is
the set of processes and E is the set of communication links. Each process can send messages
to and receive messages from a subset of other process called neighbors. Np denotes the set
of neighbors of process p, i.e., (p, q) ∈ E ⇔ q ∈ Np. Communications are bidirectional, i.e.,
p ∈ Nq ⇔ q ∈ Np. We assume reliable (no message is lost) and FIFO (messages are received in
the order they are sent) channels of bounded capacity c. Messages are received in finite time.
The size of a message is restricted to Θ(log n) bits.

3

Variables and Executions. Every process has a finite number of variables. Let us denote
p.x the variable x of process p. Assume a unique process is distinguished as the initiator of
the diffusing computation, i.e., every process p has a constant p.init that evaluates to true at a
unique process. The state of a process is the vector of the values of its variables. The state of
a channel is the list of messages it contains. A configuration is a vector of states, one for every
process or channel in the network. Denote by γ(p).x the value of variable p.x in configuration
γ.

Let 7→ be a binary relation over configurations such that γ 7→ γ′ is a step, i.e., γ′ can be
obtained from γ by the activation of one or more processes, i.e., some messages are received
and/or sent, some internal computation is done. It is required that during a step, a process
receives and sends at most one message over each of its connecting channel. An execution is a
sequence of configurations Γ = γ0, γ1, . . . , γi, . . ., such that ∀i ≥ 0, γi 7→ γi+1. Configuration
γ0 is the initial configuration of Γ. Infinitely often during an execution, a process triggers a
timeout and processes it to do some internal computation and/or to send some messages.

A round is a unit of complexity measure and is defined as follows. It is the shortest execution
such that every message in transit (i.e., inside the channels) at the beginning of the round is
received (and processed) by its reciepient and every process triggers (and processes) a timeout.

Quiescence Detection. A (global) quiescent property is characterized by a local quiescence-
indicator Quiet(p) at each process p such that:
• Quiescence: If Quiet(p) holds, p does not send messages and, as long as p does not receives

a message, Quiet(p) continues to hold.
• Local Indicativity: The channels are empty and Quiet(p) holds at every process p if and

only if quiescence is reached.
For example, for the termination property, Quiet(p) holds when p is disabled.
A distributed algorithm is snap-stabilizing [7] w.r.t. some specification S if any execution

starting from an arbitrary configuration satisfies S. In this context, we define the set of regular
initial configurations of the quiescence detection algorithm, i.e., initial configurations where the
detection algorithm is well initialized. Notice that, since the initial configuration is arbitrary,
it can be not regular. (The definition of regular initial configurations for our algorithm is given
in Definition 7.)

The goal of a quiescence detection algorithm Q is to detect when the execution of another
algorithm A that Q monitors, reaches quiescence.

Definition 1. Q is a snap-stabilizing quiescence detection algorithm for diffusing computations
if, for every execution Γ where Q monitors an algorithm A since the beginning of its execution
the following holds:
• Eventual Detection: If the execution of A reaches quiescence, some process eventually

calls SigQuiet() or SigError().
• Soundness: If SigQuiet() is called, either the execution of A reached quiescence or was

not a diffusing computation, or the initial configuration of Q was not regular.
• Relevance: If the execution of A is a diffusing computation and the initial configuration

of Q is regular, no process ever calls SigError().

SigQuiet() and SigError() are two output signals. When such a signal is emitted, it triggers
an external response from the system, e.g., a reset [1, 2, 3]. Notice that there is no hypothesis
on A, i.e., we do not require A to be self-stabilizing or even to compute a correct result.

4

3 Quiescence Detection Algorithm Q
In this section, we propose a self-stabilizing ongoing quiescence detection algorithm Q for dif-
fusing computations written in the message-passing model. The code of Q is presented in
Algorithm 1.

Algorithm 1: Algorithm Q for Process p

1: upon PIF rcv(q, 〈pckt, dist〉) do
2: if ¬Error(p) then
3: p.status := Act ; Deliver(q, pckt) ;
4: if ¬p.init ∧ p.par = ⊥ then p.par := q ; p.dist := dist + 1 ;

5: if p.par = q then PIF send fbck(q, 〈true〉);
6: else PIF send fbck(q, 〈false〉);
7: upon PIF fbck(q, 〈isChild〉) do
8: if ¬Error(p) then
9: p.pckt[q] := ⊥ ;

10: if isChild then // q is a child of p
11: if p.status = Act ∧ (p.init ∨ p.par 6= ⊥) then p.child[q] := true ;
12: else p.status := Err ; SigError() ;

13: else p.child[q] := false;

14: upon rcv(q, 〈Par〉) do // q thinks it is the parent of p
15: if ¬Error(p) ∧ p.par 6= q then send(q, 〈NoChild〉) ;

16: upon rcv(q, 〈Child, dist〉) do // q is a child of p
17: if ¬Error(p) then
18: if p.status = Act ∧ (p.init ∨ p.par 6= ⊥) ∧ dist = p.dist + 1 then
19: p.child[q] := true;
20: else p.status := Err ; SigError() ;

21: upon rcv(q, 〈NoChild〉) do // q is not a child of p
22: if ¬Error(p) then p.child[q] := false;

23: upon timeout do
24: if Error(p) then p.status := Err ; SigError() ;
25: else if Passive(p) then
26: p.status := Pass ;
27: if p.par 6= ⊥ then send(p.par, 〈NoChild〉) ; p.par := ⊥ ;
28: if p.init then SigQuiet();

29: else
30: foreach q ∈ Np : p.pckt[q] 6= ⊥ do
31: p.status := Act ;
32: PIF send(q, 〈p.pckt[q], p.dist〉) ;

33: foreach q ∈ Np : p.child[q] = true do send(q, 〈Par〉);
34: if p.par 6= ⊥ then send(p.par, 〈Child, p.dist〉);

Overview. The idea of Q adapts the algorithm of Dijkstra and Scholten [12] to the stabilizing
context using local checking [1, 3]. To monitor an algorithm A and detect its quiescence, Q
handles the sending and reception of messages of A, that we will call packets in order to avoid
confusion. Q builds the tree of the execution defined as follows. The initiator of the diffusing
computation is the root of the tree. When a process p receives a packet pckt, it joins the tree
by choosing the sender of pckt as its parent by updating variable p.par. Each process p has also
a Boolean variable p.child[q] for each of neighbor q, stating if q is a child of p. When a process
p has no children and predicate Passive(p) holds, p leaves the tree by notifying its parent and
removing its parent pointer, if p is not the initiator. Otherwise, it signals quiescence.

5

A Q PIF PIF Q A
p q

p.pckt[q] := pckt
PIF send(q, pckt)

PIF rcv(p, pckt)
Deliver(p, pckt)

PIF send fbck(p, ack)

PIF fbck(q, ack)
p.pckt[q] := ⊥

Figure 2: Schematic view of how the packets of A from process p to process q are handled. The
wavy arrows illustrate the communications between p and q through protocol PIF .

Algorithm 2: Macro of Modifica-
tion of Algorithm A
/* Replace every: */

1: send(q, pckt);
/* by: */

2: wait until p.pckt[q] = ⊥;
3: p.pckt[q] := pckt;

Handling the messages of A. In order to al-
low Q to manage the packets of the monitored
algorithm A, we assume that the functions of
A to send and receive packets are slightly al-
tered as shown in Algorithm 2. Every process
p has a variable p.pckt[q] for each neighbor q
used to communicate between A and Q. Indeed,
p.pckt[q] contains the packet of A that p wants to send to q, or ⊥ if no packet has to be sent.
When p needs to send some packet pckt to q in A, p must wait until the previous packet is pro-
cessed, i.e., until Q sets p.pckt[q] to ⊥. On the other hand, when a process p receives a packet
pckt from q in Q, this packet is delivered to A at p using Deliver(q, pckt), i.e., it triggers a
rcv(q, pckt) in A.

In order to ensure that the packets of A are delivered and quiescence is not signaled when
some messages are in transit, Q uses a snap-stabilizing Propagation of Information with Feedback
(PIF) algorithm [10], denoted here PIF . A PIF allows a process to send a messages to other
processes (propagation) and to receive in return an acknowledgment from those other processes
(feedback). Let us use PIF as follows. To send packets to a neighbor q, a process p uses a
dedicated instance of PIF involving only p and q. Notice that one instance of PIF between
only two processes requires a constant number of bits per process and so O(∆) bits per process
to send and receive packets from all neighbors (where ∆ is the maximum degree). Primitives of
the PIF algorithm are prefixed with PIF . When a message msg is sent from p to q through
the PIF protocol (i.e., using PIF send(q,msg)), it triggers a PIF rcv(p,msg) at process q.
Then q sends a feedback to p using PIF send fbck(p, ack) that triggers a PIF fbck(q, ack).
Notice that the messages of Q used to do the detection are not transmitted through PIF since
no feedback on those message is required.

Those three protocols – A, Q, and PIF – are composed using a fair composition. Figure 2
illustrates how the packets of A are handled and the interactions between the three protocols.

Quiescence and Error Detection. To check whether the execution tree is correctly built
and to update the knowledge of a process about its children, every process p regularly send
control messages along the tree: 〈Par〉 to its children (Line 33) and 〈Child, p.dist〉 to its
parent (Line 34), where p.dist is the distance from p to the root. In particular, if a process q
receives a message 〈Child, dist〉 from one of its children p and dist 6= q.dist + 1, the distances
in the tree are not well computed (e.g., the tree contains a cycle) so q signals an error. If a
process q receives a message 〈Par〉 from a neighbor p that is not its parent, it sends back a
message 〈NoChild〉 and p can update its variable p.child[q].

In addition, process p locally checks the correctness of the tree, i.e., if predicate LCorrect(p)
holds. For example, p can check that it has no children if it is not attached to the tree.

6

(Notice that the formal definition of LCorrect(p) is given in Definition 3.) If Error(p) ≡
(¬LCorrect(p) ∨ p.status = Err) holds, p signals an error (Lines 24-24). A process p which
calls SigError() also sets p.status to Err.

A process p leaves the tree when it becomes passive, i.e., the following predicate Passive(p)
holds.

Definition 2. Predicate Passive(p) holds if Quiet(p) holds,3 p has no packets to send and no
received packets to process (i.e., there is no incoming event PIF rcv and ∀q ∈ Np, p.pckt[q] =
⊥), and p has no children (that it knows of), i.e., ∀q ∈ Np,¬p.child[q].

4 Analysis

In this section, we show that Q is a snap-stabilizing ongoing quiescence detection algorithm and
we analyze its complexities. Due to the lack of space, some straightforward proofs are omitted.
Notice that since the three algorithms A, Q, and PIF are fairly composed, a process executes
a round of one of these algorithms every 3 rounds.

4.1 Properties of the PIF protocol

First, let us state some useful property of the snap-stabilizing PIF protocol PIF from [10].

Proposition 1. If a process p initiates a PIF to send a message m to its neighbor q through
the protocol PIF (i.e., using PIF send(q,m)), it is received by q (PIF rcv(p,m)) in at most
8 rounds of PIF . Then, p receives the feedback from q in at most 1 additional round of PIF
(PIF fbck(q, fbck)). Moreover p cannot receive a feedback from q before q received m.

Notice that it does not prevent situations where the arbitrary initial configuration generates
faulty communications of the PIF protocol leading to some process p receiving feedback without
initiating any PIF. However, once p actually initiated some PIF with a neighbor q, i.e., the call
to function PIF send(q,m) is terminated and PIF will manage the communications between
p and q to ensure the transmission of m, p cannot receive any feedback that is sent by q
before q receives m. Let tainted messages be messages of PIF present in the arbitrary initial
configuration or generated afterwards and that are not related to a PIF actually initiated by
some process.

Proposition 2. If there are no tainted messages in the channels (i.e., in transit or in the
incoming mailboxes of processes but not yet processed by their recipient), a process p cannot
receive any feedback from a neighbor q if p does not initiate any PIF to send a packet to q.

Since one PIF lasts at most 9 rounds of PIF (by Proposition 1), we can deduce the following
corollary.

Corollary 1. After 9× 3 = 27 rounds, there is no more tainted messages.

4.2 Execution Trees

Now, let us show that par-variables actually define trees. If the structure of the tree is incorrect,
process p locally detects the errors using predicate LCorrect(p) defined as follows.

Definition 3. Predicate LCorrect(p) holds at some process p if all of the four following condi-
tions are satisfied:

3Predicate Quiet(p) is defined in Section 2.

7

C1(p). (p.status 6= Err ∧ p.init)⇒ (p.par = ⊥ ∧ p.dist = 0)
C2(p). (p.status 6= Err ∧ ¬p.init ∧ p.par = ⊥)⇒ (∀q ∈ Np : ¬p.child[q])
C3(p). (p.status 6= Err ∧ ¬p.init ∧ p.par = ⊥)⇒ (∀q ∈ Np : p.pckt[q] = ⊥)
C4(p). p.status = Pass⇒ p.par = ⊥

Lemma 1. Let p ∈ V . If the execution of A is a diffusing computation, we have the following
results.

1. Let γ 7→ γ′. If LCorrect(p) holds in γ then LCorrect(p) holds in γ′.
2. In at most 3 rounds, LCorrect(p) holds.

Now, let us prove that par-variables actually define trees. We define three conditions on the
relationship between p and its parent q ∈ Np.

Definition 4. Let p ∈ V and q ∈ Np.
C5(p, q). (p.status 6= Err ∧ q.status 6= Err ∧ p.par = q)⇒ (q.child[p] ∨ q.pckt[p] 6= ⊥)
C6(p, q). (p.status 6= Err ∧ q.status 6= Err ∧ p.par = q)⇒ (q.init ∨ q.par 6= ⊥)
C7(p, q). (p.status 6= Err ∧ q.status 6= Err ∧ p.par = q)⇒ p.dist = q.dist + 1

Lemma 2. Let p ∈ V and q ∈ Np.
1. Let γ 7→ γ′ s.t. no tainted messages are in the channels. If C5(p, q), C6(p, q), and C7(p, q)

hold in γ then C5(p, q), C6(p, q), and C7(p, q) hold in γ′.
2. In at most 33 rounds, C5(p, q), C6(p, q), and C7(p, q) hold.

Definition 5. The execution graph Gex = (Vex, Eex) is the subgraph of non-error processes
induced by par-variables, i.e., Vex = {p ∈ V : p.status 6= Err} and Eex = {(p, q) ∈ E : p.par =
q ∧ p, q ∈ Vex}.

From Lemmas 1 and 2, one can deduce the following corollary.

Corollary 2. In at most 33 rounds, Gex is a forest.

4.3 Detection of Quiescence

In this subsection, we show that Q fulfills the three properties of quiescence detection: eventual
detection (Theorem 1), soundness (Theorem 2), and relevance (Theorem 3). Let γ0 be the
initial configuration and let γ0(A) be the projection of γ0 on the variables and messages of A.

Theorem 1 (Eventual Detection). If any execution of A starting from γ0(A) reaches quiescence,
then a process calls SigError() or SigQuiet() in O(tA + n) rounds, where n is the number of
processes and tA is the maximum number of rounds for A to reach quiescence from γ0(A).

Proof. First, notice that if the execution is not a diffusing computation, i.e., if some process p
that is not the initiator of A spontaneously requires the sending of some packet of A in Q (i.e.,
p.pckt[q] becomes different than ⊥ with q ∈ Np), p signals an Err (see Line 24). If Q signals
an error, we are done. Now, assume that SigError() is never called.

Since every packet of A is eventually delivered through PIF and thanks to the fair com-
position, Q does not block the execution of A. Let γ be the first configuration after which Gex
is a forest (see Corollary 2) and A reached quiescence, i.e., at every process p, Quiet(p) holds
and p does not require the sending of a packet of A (∀q ∈ Np, p.pckt[q] = ⊥).

When some process p requires the sending of a packet in A to some neighbor q, i.e.,
p.pckt[q] 6= ⊥, p initiates a PIF (Line 32) in at most 3 rounds. The PIF lasts 27 rounds
(Proposition 1) before p sets p.pckt[q] to ⊥ and allows the sending of the next packet of A.
Thus, in at most 30tA rounds, every packet of A has been delivered. So γ is reached in at most

8

33tA + 27 rounds. Notice that no process has status Err or it would have signaled an error in
the meantime (Lines 24).

Now, let us show that the height of the trees decreases in at most 12 rounds and that
eventually every process has status Pass. First, since ∀p ∈ V , ∀q ∈ Np, p.pckt[q] = ⊥, no PIF
is initiated after γ. Hence, no process can get a PIF rcv anymore. Let p be a leaf in Gex. By
definition, ∀q ∈ Np, γ(q).par 6= p. Since p will never send a packet to q, q.par cannot become
equal to p anymore. Now, let us show that p.child[q] becomes false in finite time.

If γ(p).child[q] = true, p sends a message 〈Par〉 to q in at most 3 rounds (Line 33). At
most 3 rounds later, q receives this message (Line 14) and sends back a message 〈NoChild〉
since q.par 6= p (Line 15). When p receives this message at most 3 rounds later (Line 16), it
sets p.child[q] to false (Line 21). Since q.par remains different than p afterwards, q can never
send a feedback containing 〈true〉 or a message 〈Child, ∗〉 to p. Thus, p never sets p.child[q]
to true again. Hence, in at most 9 rounds after γ, ∀q ∈ Np, p.child[q] = false so Passive(p)
continuously holds. In at most 3 additional rounds, p gets status Pass and leaves the tree by
setting p.par to ⊥ (Lines 25-28). So the height of the tree that contained p in γ decreases in at
most 12 rounds.

By repeating this argument, eventually every tree is composed of only one process of status
Pass. In particular, the initiator signals quiescence when it gets status Pass (Line 28). Since
the height of the trees is at most n−1, the initiator signals quiescence at most 12n rounds after
γ.

Let us define a last property on p ∈ V and its neighbors q ∈ Np.

Definition 6. Let p ∈ V and q ∈ Np.
C8(p, q). p.status = Pass ∧ q.status 6= Err⇒ q.par 6= p

Lemma 3. Let p ∈ V and q ∈ Np.
1. Let γ 7→ γ′ s.t. no tainted messages are in the channels. If C5(p, q) and C8(p, q) hold in

γ then C8(p, q) holds in γ′.
2. In at most 33 rounds, C8(p, q) holds.

Proof.
1. Let γ 7→ γ′ s.t. there is no tainted messages in the channels, and C5(p, q) and C8(p, q)

hold in γ. A process with status Err cannot change it. Assume γ′(p).status = Pass and
γ′(q).status 6= Err.

(a) If γ(p).status = Pass then, by C8, γ(q).par 6= p. Assume q sets q.par to p during
γ 7→ γ′, it receives a packet pckt from p (Line 4). However, when p initiates the PIF
to send pckt (Line 32), p.pckt[q] 6= ⊥ and p.status = Act. Moreover, p cannot get
status Pass without receiving a feedback from q, which must happen after γ 7→ γ′

in which pckt is assumed to be received by q (Proposition 2), a contradiction. Hence
γ′(q).par 6= p.

(b) If p gets status Pass during γ 7→ γ′, γ(p).pckt[q] = ⊥ and γ(p).child[q] = false.
Thus, by the contrapositive of C5(p, q), γ(q).par 6= p. Similarly to case 1a, q cannot
set q.par to p.

2. Let γT be the first configuration after 27 rounds. By Corollary 1, no tainted messages
are in the channels. If γT (p).status = Act but γT (q).par = p then q sends a message
〈Child, ∗〉 to p in at most 3 rounds (Line 34). When p receives this message at most 3
rounds later, it gets status Err (Line 20).

Definition 7. An initial configuration γ0 is regular if:

9

R1. ∀p ∈ V , γ0(p).init⇒ (γ0(p).dist = 0 ∧ γ0(p).par = ⊥)
R2. ∀p ∈ V , ¬γ0(p).init⇒ (γ0(p).par = ⊥ ∧ ∀q ∈ Np,¬γ0(p).child[q])
R3. ∀p ∈ V , γ0(p).status = Pass ∧ ∀q ∈ Np, γ0(p).pckt[q] = ⊥
R4. There is no messages in the channels in γ0.

By Definition 7 and Lemmas 1, 2, and 3, we have the following corollary.

Corollary 3. In any configuration γ of an execution starting from a regular initial configuration
γ0 such that every execution of A starting from γ0(A) is a diffusing computation, ∀p ∈ V ,
LCorrect(p) holds and Gex is a forest in γ. Moreover, ∀p ∈ V , ∀q ∈ Np, C5(p, q), C6(p, q),
C7(p, q), and C8(p, q) hold in γ.

Theorem 2 (Soundness). If SigQuiet() is called, either the execution of A actually reached
quiescence or was not a diffusing computation, or the initial configuration of Q was not regular.

Proof. We prove this theorem by the contrapositive. Assume the execution of A never reaches
quiescence (i.e., there is always some enabled process in A or a process that needs to send
or receive a packet of Q) and is a diffusing computation, and the initial configuration of Q is
regular. Assume by contradiction that Q signals quiescence.

By hypothesis, quiescence is signaled before any error signal. Moreover, a process gets status
Err before signaling an error and the initial status of every process is Pass. So no process ever
gets status Err. Let r be the only initiator and thus the process that signaled quiescence. Let
γi 7→ γi+1 be the step where r calls SigQuiet() (Line 28). Thus, Passive(r) holds in γi. Since
the execution of A has not reached quiescence, there are three cases:

1. ∃p ∈ V s.t. ¬Quiet(p) holds in γi. Thus, ¬Passive(p) holds in γi.
2. A packet of A must be sent, i.e., ∃p ∈ V , ∃q ∈ Np, s.t. γi(p).pckt[q] 6= ⊥. Thus,
¬Passive(p) holds in γi.

3. A PIF has been initiated by some process p to send a packet pckt to some neighbor q,
yet q did not received pckt yet. In this latter case, when p initiated the PIF (Line 32),
p.pckt[q] = pckt 6= ⊥. Moreover, p cannot set p.pckt to ⊥ until p receives a feedback from
q. However, q cannot send such a feedback before receiving pckt. Thus, γi(p).pckt[q] 6= ⊥
and ¬Passive(p) holds in γi.

In those three cases, ∃p ∈ V s.t. ¬Passive(p) holds in γi. Notice that p 6= r.
The initial configuration is regular, ¬Passive(p) holds in γi, and p is not the initiator. Thus,

p received a first packet from some neighbor x (Line 1) at some point in the execution. Again,
since the initial configuration is regular, p sets p.par to x and gets status Act. Consider the
last time p changes its status from Pass to Act (say in γj 7→ γj+1) before γi, i.e., j < i,
γj(p).status = Pass, and ∀j′ ∈ {j + 1, . . . , i}, γj′(p).status = Act. Again, in order to get
status Act, p had received a packet from some neighbor y (Line 1) in γj 7→ γj+1. Hence,
γj+1(p).par = y. Process p cannot change the value of p.par without getting status Pass
(Line 27). Hence, γi(p).par = y 6= ⊥.

By Corollary 3, Property C6, and since Gex is a forest, there is a sequence of distinct processes
seq = p0, p1, . . . , pk, 0 < k ≥ n, such that p0 = p, ∀i ∈ {0, . . . , k−1}, γ(pi).par = pi+1, and pk =
r. Now, by recursively applying C5(pi, pi+1) for i ∈ {0, . . . , k − 1}, we have γ(pi+1).pckt[pi] 6=
⊥∨ γ(pi+1).child[pi]. Thus, ¬Passive(pi+1) holds in γi. In particular, ¬Passive(r) holds in γi,
a contradiction.

Theorem 3 (Relevance). If the initial configuration of Q is regular and the execution of A is
a diffusing computation, no process ever calls SigError().

Proof. Let p ∈ V . By Corollary 3, LCorrect(p) holds throughout the execution so p cannot call
SigError() executing Lines 24 without already being in status Err. Initially, p.status 6= Err

10

since the initial configuration is regular. Except by executing Lines 24, p can get status Err
when receiving a feedback (Line 12) or a message 〈Child, ∗〉 (Line 20). In both cases, p
immediately calls SigError() (Lines 12 and 20, respectively). Thus, there are two cases.

1. If p calls SigError() executing Line 12, it has just received a feedback fbck containing
〈true〉 from some q ∈ Np while p.status = Pass or ¬p.init ∧ p.par = ⊥. When q sent fbck
(say in γ 7→ γ′), q.par = p. By Corollary 3, C5(q, p), C6(q, p), and the contrapositive of
C8(q, p), γ(p).status = Act, γ(p).pckt[q] 6= ⊥ ∨ γ(p).child[q], and γ(p).init ∨ γ(p).par 6= ⊥.
So p cannot get status Pass or change the value of its par-variable before receiving fbck
(Proposition 2), a contradiction.

2. If p calls SigError() executing Line 20, it received some message msg = 〈Child, dist〉
from a neighbor q ∈ Np while (a) p.status = Pass, or (b) ¬p.init∧ p.par = ⊥, or
(c) dist 6= p.dist + 1. When q sent msg (say in γ 7→ γ′), q.par = p and q.dist = dist.
Thus, situations (a) and (b) are similar to case 1. Now, consider situation (c). By Corol-
lary 3, C5(q, p), C7(q, p), and the contrapositive of C8(q, p), we have γ(p).status = Act,
γ(p).pckt[q] 6= ⊥∨ γ(p).child[q], and γ(p).dist = γ(q).dist + 1 = dist+ 1. Process p cannot
change its distance without getting status Pass and so, without q.par becoming different
than p. If q.par remains equal to p in between γ and the reception of m by p, p never
changes its distance, a contradiction. Otherwise, q.par becomes different than p at some
point between γ and the reception of m by p. To allow p to get status Pass, q must send
a message msg′ = 〈NoChild〉 or a feedback fbck containing 〈false〉 to p after changing
its par-variable, i.e., after sending msg. Moreover, p must receive msg′ or fbck before
msg even if the channels are FIFO, a contradiction.

4.4 Message Complexity

Finally, we study the message complexity of Q in k-synchronous execution. We adapt the
definition of k-synchronous executions from [15] to message-passing systems.

Definition 8. An execution Γ is k-synchronous if the following conditions hold.
a). The difference of speed between the slowest and fastest messages is at most k. More

precisely, let γsm 7→ γsm+1 and γrm 7→ γrm+1 be the steps during which the message
m is sent and received, respectively. For every pair of messages m,m′ sent during Γ,
(rm − sm) ≤ k(rm′ − sm′).

b). The difference of speed between the slowest and fastest processes is at most k. More
precisely, for any Γ0,Γ1,Γ

′ such that Γ = Γ0Γ1Γ
′, and for any two processes p and q, if q

triggers at least k + 1 timeout during Γ1 then p triggers at least one timeout during Γ1.

Theorem 4 (Message Complexity). If Γ is k-synchronous and any execution of A starting
from γ0(A) reaches quiescence, then O(k(m+ n(tA + n) +MA)) messages are sent before some
process calls SigQuiet() or SigError(), where n is the number of processes, m is the number
of edges, tA (respectively, MA) is the maximum number of rounds (respectively, of exchanged
messages in A) for A to reach quiescence from γ0(A).

Proof. Let p be a process. Γ is k-synchronous and a process sends at most one message per
neighbor at each activation, so p sends at most k messages per neighbor during one round.
By Corollary 2, Gex becomes a forest in at most 33 rounds. During these 33 rounds, up to
O(k m) messages are exchanged. The remaining of the computation before a process signals
quiescence or an error lasts O(tA + n) rounds. During this part of the computation, messages
〈Child, ∗〉 and 〈Par〉 are only exchanged along the trees, i.e., a total of O(k(n − 1)(tA + n))
messages. Moreover, the transmission of a packet and the corresponding feedback using PIF
lasts 27 rounds during which the emitter and the recipient of the packet exchange PIF messages

11

(Proposition 1), i.e., a total of O(k MA) messages. Hence O(k(m + (n − 1)(tA + n) + MA))
messages are exchanged before a signal.

Remark 1. Notice that, if the initial configuration of Q is regular and the execution of A is
a diffusing computation, Gex is always a forest. Thus, in this case, O(k(n(tA + n) + MA))
messages are exchanged before a signal.

5 Discussion and Future Work

We proposed the first self-stabilizing and snap-stabilizing ongoing quiescence detection algo-
rithm Q. This algorithm works for diffusing computations. One can use Q to detect termi-
nation before safely re-starting a task or starting a new one, for example to transform a non
self-stabilizing algorithm into a self-stabilizing one. This transformer is more efficient than
the Awerbuch and Varghese transformation. For example, let consider a non self-stabilizing
algorithm A whose time and message complexity are x and y, respectively. If no faults hit
the system (in particular, the initial configuration of Q is regular), the transformer using Q
requires O(k(n x+ n2 + y)) messages before detecting the termination of A, if the execution is
k-synchronous. In a similar context, the transformer of Awerbuch and Varghese uses m mes-
sages per time unit for the synchronizer. Hence, Ω(k m x+ y) messages are exchanged. (N.B.,
k is a constant.)

In addition to the improved performances, the proposed transformer has other advantages
over the method with a synchronizer. Indeed, it does not require to know the time complexity
of A contrary to the previous methods that use this bound to know when the execution of A
is terminated. Moreover, the time complexity of A is an upper bound on the time before A
terminates, but an execution of A can actually terminate (far) earlier. In this case, our method
stabilizes faster since it detects termination when it happens. These advantages hold only if the
execution of A terminates. Otherwise, it requires a termination enforcement method like the
one proposed above.

A natural open problem is the generalization of this quiescence detection algorithm to non-
diffusing computations.

References

[1] Yehuda Afek, Shay Kutten, and Moti Yung. The local detection paradigm and its appli-
cation to self-stabilization. Theor. Comput. Sci., 186(1-2):199–229, 1997.

[2] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and George Varghese.
Time optimal self-stabilizing synchronization. In STOC’93, pages 652–661, 1993.

[3] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-stabilization by local
checking and correction (extended abstract). In FOCS’91, pages 268–277, 1991.

[4] Baruch Awerbuch, Boaz Patt-Shamir, George Varghese, and Shlomi Dolev. Self-
stabilization by local checking and global reset. In WDAG’94, pages 326–339, 1994.

[5] Baruch Awerbuch and George Varghese. Distributed program checking: a paradigm for
building self-stabilizing distributed protocols. In FOCS’91, pages 258–267, 1991.

[6] Christian Boulinier, Franck Petit, and Vincent Villain. When graph theory helps self-
stabilization. In PODC’04, pages 150–159, 2004.

12

[7] Alain Bui, Ajoy Kumar Datta, Franck Petit, and Vincent Villain. State-optimal snap-
stabilizing PIF in tree networks. In WSS’99, pages 78–85, 1999.

[8] K. Mani Chandy and Jayadev Misra. An example of stepwise refinement of distributed
programs: Quiescence detection. ACM TOPLAS, 8(3):326–343, 1986.

[9] Alain Cournier, Ajoy Kumar Datta, Stéphane Devismes, Franck Petit, and Vincent Villain.
The expressive power of snap-stabilization. Theor. Comput. Sci., 626:40–66, 2016.

[10] Sylvie Delaët, Stéphane Devismes, Mikhail Nesterenko, and Sébastien Tixeuil. Snap-
stabilization in message-passing systems. J. Parallel Distrib. Comput., 70(12):1220–1230,
2010.

[11] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17(11):643–644, 1974.

[12] Edsger W. Dijkstra and Carel S. Scholten. Termination detection for diffusing computa-
tions. Information Processing Letters, 11(1):1–4, 1980.

[13] Nissim Francez. Distributed termination. ACM TOPLAS, 2(1):42–55, 1980.

[14] Nissim Francez, Michael Rodeh, and Michel Sintzoff. Distributed termination with interval
assertions. In Formalization of Programming Concepts, pages 280–291, 1981.

[15] Danny Hendler and Shay Kutten. Bounded-wait combining: constructing robust and high-
throughput shared objects. Distributed Computing, 21(6):405–431, 2009.

[16] Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions for message-passing systems.
Distributed Computing, 7(1):17–26, 1993.

[17] Amos Korman, Shay Kutten, and Toshimitsu Masuzawa. Fast and compact self-stabilizing
verification, computation, and fault detection of an MST. In PODC’11, pages 311–320,
2011.

[18] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Com-
puting, 22(4):215–233, 2010.

[19] Florence Levé, Khaled Mohamed, and Vincent Villain. Snap-stabilizing PIF on arbitrary
connected networks in message passing model. In SSS’16, pages 281–297, 2016.

[20] Jeff Matocha and Tracy Camp. A taxonomy of distributed termination detection algo-
rithms. Journal of Systems and Software, 43(3):207–221, 1998.

[21] George Varghese. Self-stabilization by counter flushing. SIAM J. Comput., 30(2):486–510,
2000.

13

A Appendix

In this appendix, we detail the proof of Lemmas 1 and 2.

Lemma 1. Let p ∈ V . If the execution of A is a diffusing computation, we have the following
results.

1. Let γ 7→ γ′. If LCorrect(p) holds in γ then LCorrect(p) holds in γ′.
2. In at most 3 rounds, LCorrect(p) holds.

Proof.
1. Let γ 7→ γ′ s.t. LCorrect(p) holds in γ. A process with status Err cannot change its

status. Now, if γ(p).status 6= Err:

C1. An initiator cannot change its parent or distance. Moreover a non-initiator cannot
become initiator. Thus, C1(p) holds in γ′.

C2. When a process p sets p.child[q] to true (Lines 11 or 19), p is an initiator or has a
parent. Again, an initiator cannot become non-initiator. Moreover, a non-initiator
cannot set its variable par to ⊥ if it has children. Thus, C2(p) holds in γ′.

C3. By definition of a diffusing computation, p can only send a packet ofA, i.e., p.pckt[q] 6=
⊥, if p is the initiator or already received a packet (Line 1). In the latter case, p set
p.par to a value different than ⊥ (Line 4). Thus, C3(p) holds in γ′.

C4. It is not possible for p to get status Pass without setting p.par to ⊥ (Lines 25-28).
Moreover, p cannot set p.par to a value different than ⊥ without getting status Act
(Line 4). Thus, C4(p) holds in γ′.

2. If ¬LCorrect(p), p gets status Err in at most 3 rounds (Lines 24).

Lemma 2. Let p ∈ V and q ∈ Np.
1. Let γ 7→ γ′ s.t. no tainted messages are in the channels. If C5(p, q), C6(p, q), and C7(p, q)

hold in γ then C5(p, q), C6(p, q), and C7(p, q) hold in γ′.
2. In at most 33 rounds, C5(p, q), C6(p, q), and C7(p, q) hold.

Proof.
1. Let γ 7→ γ′ s.t. no tainted messages are in the channels and C5(p, q), C6(p, q), and C7(p, q)

hold in γ. A process with status Err cannot change its status. Assume γ′(p).status 6=
Err, γ′(q).status 6= Err, and γ′(p).par = q. Then, there are two cases: either γ(p).par =
γ′(p).par = q, or γ(p).par 6= q and p sets p.par to q during γ 7→ γ′.

(a) If γ(p).par = q then, by C5(p, q), γ(q).child[p] = true or γ(q).pckt[p] 6= ⊥. If q is the
initiator it cannot become non-initiator. Moreover, q.par and q.dist cannot change
as long as (q.child[p] ∨ q.pckt[p] 6= ⊥). Now, let us show that (q.child[p] ∨ q.pckt[p])
continuously holds between γ and γ′.

If γ(q).pckt[p] 6= ⊥, q can only set q.pckt[p] to a ⊥ if it receives a feedback from p
(Line 7). However, since there is no tainted messages in the channels, this feedback
was sent by p after it receives some packet from q (Proposition 2). Hence, the
value inside the feedback can only be true as long as p.par = q. In this case,
γ′(q).child[p] = true.

Now, if γ(q).child[p] = true, q can only set q.child[p] to false if it receives a feedback
from p with value 〈false〉 or a message 〈NoChild〉 from p. As long as p.par = q,
p cannot send such messages, so γ′(q).child[p] = true. Thus, C5(p, q) and C6(p, q)
hold in γ′.

Finally, p and q cannot change their distance without changing their parent, thus
C7(p, q) also hold in γ′.

14

(b) If p sets p.par to q during γ 7→ γ′, it receives a packet m = 〈pckt, dist〉 from q (Lines 1-
4) and sets p.dist to dist+ 1. Since no tainted messages are in the channels, the PIF
used to send m has been initiated by q (Proposition 2). When q sent m (Line 32),
q.pckt[p] 6= ⊥, q.dist = dist, and q.init ∨ q.par 6= ⊥. Similarly to case 1a, this hold
until q receives a feedback from p containing 〈false〉. Again, q cannot receive such a
feedback before p received m (Proposition 2). Hence, C5(p, q), C6(p, q), and C7(p, q)
hold in γ′.

2. Let γT be the first configuration after 27 rounds. By Corollary 1, no tainted messages
are in the channels. If γT (p).status 6= Err, γT (q).status 6= Err, and γT (p).par = q then,
in at most 3 rounds, p sends a message m = 〈Child, dist〉 where dist = p.dist (Line 34).
(Notice that p cannot change its distance as long as p.par = q.) When q receives m at
most 3 rounds later (Line 16), q gets status Err if ¬q.init∧q.par = ⊥ or if dist 6= q.dist+1
(Line 20). Otherwise, q sets q.child[p] to true (Line 19). Hence, C5(p, q), C6(p, q), and
C7(p, q) hold after 27 rounds.

15

