
Leader Election in Rings with Bounded Multiplicity
(Short Paper)

Karine Altisen1, Ajoy K. Datta2, Stéphane Devismes1, Anaı̈s Durand1, and
Lawrence L. Larmore2

1 Université Grenoble Alpes, Grenoble, France, Firstname.Lastname@imag.fr
2 UNLV, Las Vegas, USA, Firstname.Lastname@unlv.edu

Abstract. We study leader election in unidirectional rings of homonym pro-
cesses that have no a priori knowledge on the number of processes. We show
that message-terminating leader election is impossible for any class of rings Kk

with bounded multiplicity k ≥ 2. However, we show that process-terminating
leader election is possible in the sub-class U∗ ∩ Kk, where U∗ is the class of
rings which contain a process with a unique label.

1 Introduction
We consider deterministic leader election in unidirectional rings of homonym
processes. The model of homonym processes [1, 3] has been introduced as a
generalization of the classical fully identified model. Each process has an iden-
tifier, called here label, which may not be unique. Let L be the set of labels
present in a system of n processes. Then, |L| = 1 (resp., |L| = n) corresponds
to the fully anonymous (resp., fully identified) model.

Related Work. Homonyms have been mainly studied for solving the consen-
sus problem in networks where processes are subjected to Byzantine failures [1].
However, Delporte et al [2] have recently considered the leader election prob-
lem in bidirectional rings of homonym processes. They have given a necessary
and sufficient condition on the number of distinct labels needed to design a
leader election algorithm. Precisely, they show that there exists a deterministic
solution for message-terminating (i.e., processes do not terminate but only a fi-
nite number of messages are exchanged) leader election on a bidirectional ring
if and only if the number of labels is strictly greater than the greatest proper
divisor of n. Assuming this condition, they give two algorithms. The first one
is message-terminating and does not assume any further extra knowledge. The
second one assumes the processes know n, is process-terminating (i.e., every
process eventually halts), and is asymptotically optimal in messages. In [3],
Dobrev and Pelc investigate a generalization of the process-terminating leader
election in both bidirectional and unidirectional rings of homonym processes. In
their model, processes a priori know a lower bound m and an upper bound M
on the (unknown) number of processes n. They propose algorithms that decide
whether the election is possible and perform it, if so. They give synchronous al-
gorithms for bidirectional and unidirectional rings working in time O(M) using

O(n log n) messages. They also give an asynchronous algorithm for bidirec-
tional rings that uses O(nM) messages, and show that it is optimal; no time
complexity is given.

Contribution. We explore the design of process-terminating leader election
algorithms in unidirectional rings of homonym processes which, contrary to [2,
3], know neither the number of processes n, nor any bound on it. We study two
different classes of unidirectional rings with homonym processes, denoted by
U∗ and Kk. U∗ is the class of all ring networks in which at least one label is
unique. Kk is the class of all ring networks where no label occurs more than k
times, so k is an upper bound on the multiplicity of the labels. We prove that
there are no message-terminating leader elections for any class Kk with k ≥ 2
despite processes know k, sinceKk includes symmetric labeled rings. However,
we give a process-terminating leader election algorithm for the sub-class U∗ ∩
Kk. Interestingly, there are labeled rings (e.g., a ring of three processes with
labels 1, 2, and 2) for which we can solve process-terminating leader election,
whereas it cannot be solved in the model of [2, 3].

2 Preliminaries

Ring Networks. We assume unidirectional rings of n ≥ 2 processes, p1, . . . ,
pn, operating in asynchronous message-passing model, where links are FIFO
and reliable. pi can only receive messages from its left neighbor, pi−1, and can
only send messages to its right neighbor, pi+1. Subscripts are modulo n.

We assume that each process p has a label, p.id; labels may not be distinct.
For any label ` in the ring R, let mlty [`] = |{p : p.id = `}|, the multiplicity of
` in R. Comparison is the only operator permitted on labels.

Leader Election. An algorithm ALG solves the message-terminating leader
election problem, noted MT-LE, in a ring network R if every execution of ALG

on R satisfies the following conditions:
1. The execution is finite.
2. Each process p has a Boolean variable p.isLeader s.t. when the execution

terminates, L.isLeader is TRUE for a unique process (i.e., the leader).
3. Every process p has a variable p.leader s.t. when the execution terminates,

p.leader = L.id, where L satisfies L.isLeader.
An algorithm ALG solves the process-terminating leader election problem, noted
PT-LE, in a ring network R if it solves MT-LE and satisfies the following ad-
ditional conditions:
4. p.isLeader is initially FALSE and never switched from TRUE to FALSE: each

decision of being the leader is irrevocable. Consequently, there should be at
most one leader in each configuration.

5. Every process p ∈ R has a Boolean variable p.done, initially FALSE, such
that p.done is eventually TRUE for all p, indicating that p knows that the
leader has been elected. More precisely, once p.done becomes TRUE, it will
never again become FALSE, L.isLeader is equal to TRUE for a unique pro-
cess L, and p.leader is permanently set to L.id.

6. Every process p eventually halts (local termination decision) after p.done
becomes TRUE.

Ring Network Classes. An algorithm ALG is MT-LE (resp., PT-LE) for the
class of ring networkR if ALG solves MT-LE (resp., PT-LE) for every network
R ∈ R. It is important to note that, for ALG to be MT-LE (resp., PT-LE) for a
classR, ALG cannot be given any specific information about the network (such
as its cardinality) unless that information holds for all members of R, since we
require that ALG works for every R ∈ R without any change in its code.

We consider two main classes of ring networks. U∗ is the class of all ring
networks in which at least one label is unique.Kk is the class of all ring networks
such that no label occurs more than k times, where k ≥ 1.

3 Impossibility Result
A labeled ring network R is symmetric if it has a non-trivial rotational symmetry,
i.e., there is some integer 0 < d < n such that pi+d and pi have the same label
for all i. In our model, it is straightforward to see that there is no solution to the
leader election problem for a symmetric ring. Now, for any k ≥ 2, Kk contains
symmetric rings. Hence, follows.

Theorem 1. For any k ≥ 2, there is no algorithm that solves MT-LE for Kk.

4 Leader Election in U∗ ∩ Kk

For any k ≥ 2, we give the algorithm Uk that solves PT-LE for the class U∗∩Kk

(see Table 1). Uk always elects the process of minimum unique label to be the
leader, namely the process L such that L.id = min {x : mlty [x] = 1}. In Uk,
each process p has the following variables.
1. p.id, constant of unspecified label type, the label of p.
2. p.init, Boolean, initially TRUE.
3. p.active, Boolean, which indicates that p is active. If ¬p.active, we say p is

passive. Initially, all processes are active, and when Uk is done, the leader
is the only active process. A passive process never becomes active.

4. p.cnt, an integer in the range 0 . . . k + 1. Initially, p.cnt = 0. p.cnt will give
to p a rough estimate of the frequency of its label in the ring.

5. p.leader, of label type. When Uk is done, p.leader = L.id.
6. p.isLeader, Boolean, initially FALSE, follows the problem specification. Even-

tually, L.isLeader becomes TRUE and remains TRUE, while, for all p 6= L,
p.isLeader remains FALSE for the entire execution.

7. p.done, Boolean, initially FALSE, follows the problem specification.
Uk uses only one kind of message. Each message is the forwarding of a token
which is generated at the initialization of the algorithm, and is of the form 〈x, c〉,
where x is the label of the originating process, and c is a counter, an integer in
the range 0 . . . k + 1, initially zero.

Table 1: Actions of Process p in Algorithm Uk

A1 p.init → send
〈
p.id, 0

〉
p.init← FALSE

A2 ¬p.init ∧ ¬p.active ∧ rcv
〈
x, c

〉
∧ x 6= p.id ∧ c ≤ k → send

〈
x, c

〉
A3 ¬p.init ∧ p.active ∧ rcv

〈
x, c

〉
∧ x 6= p.id ∧ → send

〈
x, c

〉
(p.cnt = 0 ∨ c > p.cnt)

A4 ¬p.init ∧ p.active ∧ rcv
〈
x, c

〉
∧ x 6= p.id ∧ c < p.cnt → send

〈
x, c

〉
p.active← FALSE

A5 ¬p.init ∧ p.active ∧ rcv
〈
x, c

〉
∧ x > p.id ∧ c = p.cnt ∧ c ≥ 1 → send

〈
x, c

〉
A6 ¬p.init ∧ p.active ∧ rcv

〈
x, c

〉
∧ x < p.id ∧ c = p.cnt ∧ c ≥ 1 → send

〈
x, c

〉
p.active← FALSE

A7 ¬p.init ∧ ¬p.active ∧ rcv
〈
x, c

〉
∧ x = p.id → (nothing)

A8 ¬p.init ∧ p.active ∧ rcv
〈
x, c

〉
∧ x = p.id ∧ c = p.cnt ∧ → send

〈
x, c+ 1

〉
c ≤ k − 1 p.cnt← c+ 1

A9 ¬p.init ∧ p.active ∧ rcv
〈
x, k

〉
∧ x = p.id ∧ p.cnt = k → send

〈
x, k + 1

〉
p.isLeader ← TRUE

p.leader ← p.id
p.done← TRUE

p.cnt← k + 1

A10 ¬p.init ∧ ¬p.active ∧ rcv
〈
x, k + 1

〉
→ send

〈
x, k + 1

〉
p.leader ← x
p.done← TRUE

(halt)
A11 ¬p.init ∧ p.active ∧ rcv

〈
x, k + 1

〉
∧ x = p.id ∧ p.cnt = k + 1 → (halt)

Overview of Uk. The explanation below is illustrated by the example in Fig-
ure 1. The fundamental idea of Uk is that a process becomes passive, i.e., is no
more candidate for the election, if it receives a message that proves its label is
not unique or is not the smallest unique label. Initially, every process initiates
a token with its own label and counter zero (see (a)). No tokens are initiated
afterwards. The token continually moves around the ring – every time it is for-
warded, its counter and the local counter of the process are incremented if the
forwarding process has the same label as the token (e.g., Step (a) 7→(b)). Thus, if
the message 〈x, c〉 is in a channel, that token was initiated by a process whose
label is x, and has been forwarded c times by processes whose labels are also
x. The token could also have been forwarded any number of times by processes
with labels which are not x. Thus, the counter in a message is a rough estimate
of the frequency of its label in the ring.

A1
C
0

B 0

B
0

A
0

B0

〈C,0〉

〈B,0〉

〈B,0〉

〈A,0〉

〈B,0〉(a)

A3 A8
C
0

B 0

B
1

A
0

B0

〈B,0〉

〈C,0〉

〈B,1〉

〈B,0〉

〈A,0〉(b)

A3 A4 A8
C
0

B 1

B
1

A
0

B1

〈A,0〉

〈B,1〉

〈C,0〉

〈B,1〉

〈B,1〉(c)

A2 A8
C
1

B 1

B
1

A
1

B2

〈C,1〉

〈A,1〉(d)

A2 A6
C
1

B 1

B
1

A
1

B2

〈A,1〉

〈C,1〉

(e)

A2
C
1

B 1

B
1

A
3

B2

〈A,3〉

(f)

A9
C
1

B 1

B
1

A
F4

B2

〈A,4〉

(g)

A10
C
1

B 1

B
1

A
F4

B
2

A

〈A,4〉(h)

A10
C

1A

B 1
A

B
1

A
A

F4

B
2

A

〈A,4〉

(i)

A11

Fig. 1: Extracts from an example of execution of Uk where k = 3. The counter of a process is
next to the corresponding node. Crossed out nodes are passive. p.isLeader = TRUE if there is a
star next to the node. The black bubble contains the elected label.

If a process receives a message whose counter is less than p.cnt, and p.cnt ≥
1, this proves its label is not unique since its counter grows faster than the one
of another label. In this case, p executes Action A4 and becomes passive (e.g.,
Step (b) 7→(c)). Similarly, if a process p has a unique label but not the smallest
one, it will become passive executing Action A6 when p receives a message
with the same non-zero counter but a label lower than p.id (e.g., Step (d) 7→(e)).
In both cases, it happens at the latest when the process receives the message
〈L.id, 1〉, i.e., before the second time L receives its own token.

So, after the token of L has made two traversals of the ring, it is the only
surviving token (the others are consumed by Action A7) and every process but
L is passive. The execution continues until the leader L has seen its own label
return to it k + 1 times, otherwise L cannot be sure that what it has seen is not
part of a larger ring instead of several rounds of a small ring. Then, L designates
itself as leader by Action A9 (see Step (f) 7→(g)) and its token does a last traversal
of the ring to inform the other processes of its election (e.g., Step (g) 7→(h)). The
execution ends when L receives its token after k + 2 traversals (see (i)).

References
1. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A., Ruppert, E., Tran-The, H.:

Byzantine agreement with homonyms. Distributed Computing 26(5-6), 321–340 (2013)
2. Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Leader election in rings with homonyms.

In: Networked Systems - 2nd International Conference, NETYS. pp. 9–24 (2014)
3. Dobrev, S., Pelc, A.: Leader election in rings with nonunique labels. Fundam. Inform. 59(4),

333–347 (2004)

