
Self-Stabilizing Leader Election in Polynomial Steps⋆

Karine Altisen1, Alain Cournier2, Stéphane Devismes1, Anaı̈s Durand1, and
Franck Petit3

1 VERIMAG UMR 5104, Université Grenoble Alpes, France
2 MIS Lab., Université Picardie Jules Verne, France

3 LIP6 UMR 7606, INRIA, UPMC Sorbonne Universités, France

Abstract. In this paper, we propose a silent self-stabilizing leader election algo-
rithm for bidirectional connected identified networks of arbitrary topology. This
algorithm is written in the locally shared memory model. It assumes the dis-
tributed unfair daemon, the most general scheduling hypothesis of the model. Our
algorithm requires no global knowledge on the network (such as an upper bound
on the diameter or the number of processes, for example). We show that its sta-
bilization time is in Θ(n3) steps in the worst case, where n is the number of pro-
cesses. Its memory requirement is asymptotically optimal, i.e., Θ(logn) bits per
processes. Its round complexity is of the same order of magnitude — i.e., Θ(n)
rounds — as the best existing algorithms [10, 9] designed with similar settings.
To the best of our knowledge, this is the first asynchronous self-stabilizing leader
election algorithm for arbitrary identified networks that is proven to achieve a
stabilization time polynomial in steps. By contrast, we show that the previous
best existing algorithms designed with similar settings [10, ?] stabilize in a non
polynomial number of steps in the worst case.

1 Introduction
In distributed computing, the leader election problem consists in distinguishing
a single process, so-called the leader, among the others. We consider here iden-
tified networks. So, as it is usually done, we augment the problem by requiring
all processes to eventually know the identifier of the leader. The leader election
is fundamental as it is a basic component to solve many other important prob-
lems, e.g., consensus, spanning tree constructions, implementing broadcasting
and convergecasting methods, etc.

Self-stabilization [11] is a versatile technique to withstand any transient
fault in a distributed system: a self-stabilizing algorithm is able to recover, i.e.,
reach a legitimate configuration, in finite time, regardless the arbitrary initial
configuration of the system, and therefore also after the occurrence of transient
faults. Thus, self-stabilization makes no hypotheses on the nature or extent of
transient faults that could hit the system, and recovers from the effects of those
faults in a unified manner. Such versatility comes at a price. After transient
faults, there is a finite period of time, called the stabilization phase, before the

⋆ This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded
by the French program Investissement d’avenir and the AGIR project DIAMS.

1



system returns to a legitimate configuration. The stabilization time is then the
maximum time to reach a legitimate configuration starting from an arbitrary
one. Notice that efficiency of self-stabilizing algorithms is mainly evaluated ac-
cording to their stabilization time and memory requirement.

We consider deterministicasynchronous silent self-stabilizing leader elec-
tion problem in bidirectional, connected, and identified networks of arbitrary
topology. We investigate solutions to this problem which are written in the lo-
cally shared memory model introduced by Dijkstra [11]. In this model, the dis-
tributed unfair daemon is known as the weakest scheduling assumption. Under
such an assumption, proving that a given algorithm is self-stabilizing implies
that the stabilization time must be finite in terms of atomic steps. However,
despite some solutions assuming all these settings (in particular the unfairness
assumption) are available in the literature [10, ?,?], none of them is proven to
achieve a polynomial upper bound in steps on its stabilization time. Actually, the
time complexities of all these solutions are analyzed in terms of rounds only.

Related Work In [12], Dolev et al showed that silent self-stabilizing leader elec-
tion requires Ω(log n) bits per process, where n is the number of processes.
Notice that non-silent self-stabilizing leader election can be achieved using less
memory, e.g., the non-silent self-stabilizing leader election algorithm for unori-
ented ring-shaped networks given in [5] requires O(log log n) space per process.

Self-stabilizing leader election algorithms for arbitrary connected identified
networks have been proposed in the message-passing model [1, 4, 6]. First, the
algorithm of Afek and Bremler [1] stabilizes in O(n) rounds using Θ(log n)
bits per process. But, it assumes that the link-capacity is bounded by a value
B, known by all processes. Two solutions that stabilize in O(D) rounds, where
D is the diameter of the network, have been proposed in [4, 6]. However, both
solutions assume that processes know some upper bound D on the diameter D;
and require Θ(logD log n) bits per process.

Several solutions are also given in the shared memory model [13, 3, 8, 10, 9,
14]. The algorithm proposed by Dolev and Herman [13] is not silent, works un-
der a fair daemon, and assume that all processes know a bound N on the number
of processes. This solution stabilizes in O(D) rounds using Θ(N logN) bits per
process. The algorithm of Arora and Gouda [3] works under a weakly fair dae-
mon and assume the knowledge of some bound N on the number of processes.
This solution stabilizes in O(N) rounds using Θ(logN) bits per process.

Datta et al [8] propose the first self-stabilizing leader election algorithm (for
arbitrary connected identified networks) proven under the distributed unfair dae-
mon. This algorithm stabilizes in O(D) rounds. However, the space complexity
of this algorithm is unbounded. (More precisely, the algorithm requires each
process to maintain an unbounded integer in its local memory.)

2



Solutions in [10, 9, 14] have a memory requirement which is asymptotically
optimal (i.e. in Θ(log n)). The algorithm proposed by Kravchik and Kutten [14]
assumes a synchronous daemon and the stabilization time of this latter is in
O(D) rounds. The two solutions proposed by Datta et al in [10, 9] assume a dis-
tributed unfair daemon and have a stabilization time in O(n) rounds. However,
despite these two algorithms stabilizing within a finite number of steps (indeed,
they are proven assuming an unfair daemon), no step complexity analysis is
proposed.

Contribution We propose a silent self-stabilizing leader election algorithm for
arbitrary connected and identified networks. Our solution is written in the lo-
cally shared memory model assuming a distributed unfair daemon, the weakest
scheduling assumption. Our algorithm assumes no knowledge of any global pa-
rameter (e.g., an upper bound onD or n) of the network. Like previous solutions
of the literature [10, 9], it is asymptotically optimal in space (i.e., it can be im-
plemented using Θ(log n) bits per process), and it stabilizes in Θ(n) rounds in
the worst case. Yet, contrary to those solutions, we show that our algorithm has
a stabilization time in Θ(n3) steps in the worst case.

For fair comparison, we have also studied the step complexity of the algo-
rithms given in [10, ?], noted here DLV and DLV2, respectively. These latter
are the closest to ours in terms of performance. We show that their stabilization
time is not polynomial. Indeed, there is no constant α such that the stabilization
time of DLV is in O(nα) steps. More precisely, we show that fixing α to any
constant greater than or equal to 4, for every β ≥ 2, there exists a network of
n = 2α−1 × β processes in which there exists a possible execution that stabi-
lizes in Ω(nα) steps. Similarly, for n ≥ 5, there exists a network and a possible
execution ofDLV2 that stabilizes in Ω(2⌊

n−1
4 ⌋) steps. Due to the lack of space,

this latter result is not presented here. Refer to the technical report online [2] for
more details.

Roadmap. The next section is dedicated to computational model and basic def-
initions. In Section 3, we propose our self-stabilizing leader election algorithm.
In Section 4, we outline the proof of correctness and the complexity analysis. A
detailed proof of correctness and a complete complexity analysis are available
in the technical report online [2]. Finally, we conclude in Section 5.

2 Computational Model
Distributed systems. We consider distributed systems made of n processes.
Each process can communicate with a subset of other processes, called its neigh-
bors. We denote by Np the set of neighbors of process p. Communications are
assumed to be bidirectional, i.e. q ∈ Np if and only if p ∈ Nq. Hence, the topol-
ogy of the system can be represented as a simple undirected connected graph

3



G = (V,E), where V is the set of processes and E is a set of edges represent-
ing (direct) communication relations. We assume that each process has a unique
ID, a natural integer. IDs are stored using a constant number of bits, b. As com-
monly done in the literature, we assume that b = Θ(log n). Moreover, by an
abuse of notation, we identify a process with its ID, whenever convenient. We
will also denote by ℓ the process of minimum ID. (So, the minimum ID will be
also denoted by ℓ.)

Locally shared memory model. We consider the locally shared memory model
in which the processes communicate using a finite number of locally shared
registers, called variables. Each process can read its own variables and those
of its neighbors, but can only write to its own variables. The state of a process
is the vector of values of all its variables. A configuration γ of the system is
a vector consisting in one state of each process. We denote by C the set of all
possible configurations.

A distributed algorithm consists of one program per process. The program
of a process p is a finite set of actions of the following form: ⟨label⟩ :: ⟨guard⟩ →
⟨statement⟩. The labels are used to identify actions. The guard of an action in
the program of process p is a Boolean expression involving the variables of p
and its neighbors. If the guard of some action evaluates to true, then the action
is said to be enabled at p. By extension, if at least one action is enabled at p, p
is said to be enabled. We denote by Enabled(γ) the set of processes enabled in
configuration γ. The statement of an action is a sequence of assignments on the
variables of p. An action can be executed only if it is enabled. In this case, the
execution of the action consists in executing its statement.

The asynchronism of the system is materialized by an adversary, called the
daemon. In a configuration γ, if there is at least one enabled process, then the
daemon selects a non empty subset S of Enabled(γ) to perform an (atomic)
step: ∀p ∈ S, p atomically executes one of its actions enabled in γ, leading the
system to a new configuration γ′. We denote by 7→ the relation between configu-
rations such that γ 7→ γ′ if and only if γ′ can be reached from γ in one (atomic)
step. An execution is then a maximal sequence of configurations γ0, γ1, . . . such
that γi−1 7→ γi, ∀i > 0. The term “maximal” means that the execution is either
infinite, or ends at a terminal configuration γ in which Enabled(γ) is empty.

In this paper, the daemon is supposed to be distributed and unfair. “Dis-
tributed” means that while the configuration is not terminal, the daemon should
select at least one enabled process, maybe more. “Unfair” means that there is
no fairness constraint, i.e., the daemon might never permit an enabled process
to execute, unless it is the only enabled process.

4



Rounds. To measure the time complexity of an algorithm, we also use the notion
of round [?]. This latter allows to highlight the execution time according to the
speed of the slowest process. If a process p is enabled in a configuration γi but
not enabled in the next configuration γi+1 and does not execute any action be-
tween γi and γi+1, we said that p is neutralized during the step γi 7→ γi+1. The
first round of an execution e, noted e′, is the minimal prefix of e in which every
process that is enabled in the initial configuration either executes an action or
becomes neutralized. Let e′′ be the suffix of e starting from the last configuration
of e′. The second round of e is the first round of e′′, and so forth.

Self-stabilization. Let A be a distributed algorithm. Let E be the set of all pos-
sible executions of A. A specification SP is a predicate over E .
A is self-stabilizing for SP if and only if there exists a non-empty subset of

configurations L ⊆ C, called legitimate configurations, such that:
– Closure: ∀e ∈ E , for each step γi 7→ γi+1 ∈ e, γi ∈ L ⇒ γi+1 ∈ L.
– Convergence: ∀e ∈ E ,∃γ ∈ e such that γ ∈ L.
– Correctness: ∀e ∈ E such that e starts in a legitimate configuration γ ∈ L,

e satisfies SP .
Every configuration that is not legitimate is called illegitimate. The stabi-

lization time is the maximum time (in steps or rounds) to reach a legitimate
configuration starting from any configuration.

Self-stabilizing leader election. We define SPLE the specification of the leader
election problem. Let Leader : V 7→ N be a function defined on the state of
any process p ∈ V in the current configuration that returns the ID of the leader
appointed by p. An execution e ∈ E satisfies SPLE if and only if:
1. For each configuration γ ∈ e, ∀p, q ∈ V , Leader(p) = Leader(q) and

Leader(p) is the ID of some process in V .
2. For each step γi 7→ γi+1 ∈ e, ∀p ∈ V , Leader(p) has the same value in γi

and γi+1.
An algorithm A is silent if and only if every execution is finite [12]. Let γ

be a terminal configuration. The set of all possible executions starting from γ is
the singleton {γ}. So, if A is self-stabilizing and silent, γ must be legitimate.
Thus, to prove that a leader election algorithm is both self-stabilizing and silent,
it is necessary and sufficient to show that: (1) in every terminal configuration γ,
∀p, q ∈ V , Leader(p) = Leader(q) and Leader(p) is the ID of some process;
(2) every execution is finite.

3 Algorithm LE
In this section, we present a silent and self-stabilizing leader election algorithm,
called LE . Its formal code is given in Algorithm 1. Starting from an arbitrary

5



configuration, LE converges to a terminal configuration, where the process of
minimum ID, ℓ, is elected. More precisely, in the terminal configuration, every
process p knows the identifier of ℓ thanks to its local variable p.idR. This means
that, in particular, we instantiate the function Leader of the specification as
follows: Leader(p) = p.idR, ∀p ∈ V . Moreover, a spanning tree rooted at ℓ
is defined using two variables per process: par and level. First, ℓ.par = ℓ and
ℓ.level = 0. Then, for every process p ̸= ℓ, p.par points to the parent of p in
the tree and p.level is the level of p in the tree.

We now present a simple algorithm for the leader election in Subsection 3.1.
We show why this algorithm is not self-stabilizing in Subsection 3.2. We explain
in Subsection 3.3 how to modify this algorithm to make it self-stabilizing.

3.1 Non Self-Stabilizing Leader Election

We first consider a simplified version of LE . Starting from a predefined initial
configuration, it elects ℓ in all idR variables and builds a spanning tree rooted
at ℓ. Initially, every process p declares itself as leader: p.idR = p, p.par = p,
and p.level = 0. So, p satisfies the two following predicates: SelfRoot(p) ≡
(p.par = p) and SelfRootOk′(p) ≡ (p.level = 0) ∧ (p.idR = p). Note that, in the
sequel, we say that p is a self root when SelfRoot(p) holds. From such an
initial configuration, our non self-stabilizing algorithm consists in the following
single action:

J-Action′ :: ∃q ∈ Np, (q.idR < p.idR) → p.par ← min⪯{q ∈ Np};
p.idR← p.par.idR;
p.level← p.par.level + 1;

where ∀x, y ∈ V, x ⪯ y ⇔ (x.idR ≤ y.idR) ∧ [(x.idR = y.idR)⇒ (x < y)]

Informally, when p discovers that p.idR is not equal to the minimum iden-
tifier, it updates its variables accordingly. Let q be the neighbor of p having
idR minimum. Then, p selects q as new parent (p.par ← q and p.level ←
p.par.level+1) and sets p.idR to the value of q.idR. If there are several neigh-
bors having idR minimum, the identifiers of those neighbors are used to break
ties.

Hence, the identifier of ℓ is propagated, from neighbors to neighbors, into
the idR variables and the system reaches a terminal configuration in O(D)
rounds. Figure 1 shows an example of such an execution.

Notice first that for every process p, p.idR is always less than or equal to
its own identifier. Indeed, p.idR is initialized to p and decreases each time p
executes J-Action′. Hence, p.idR = p while p is a self root and after p executes
J-Action′ for the first time, p.idR is smaller than its ID forever.

Second, even in this simplified context, for each two neighbors p and q such
that q is the parent of p, it may happen that p.idR is greater than q.idR —an
example is shown in Figure 1c, where p = 6 and q = 3. This is due to the fact

6



1

3

5

7

6

2

4⟨1, 0⟩

⟨3, 0⟩

⟨5, 0⟩

⟨7, 0⟩

⟨6, 0⟩

⟨2, 0⟩

⟨4, 0⟩

(a) Initial configuration. SelfRoot(p) ∧
SelfRootOk′(p) holds for every process p.

1

3

5

7

6

2

4⟨1, 0⟩

⟨3, 0⟩

⟨1, 1⟩

⟨1, 1⟩

⟨3, 1⟩

⟨2, 0⟩

⟨2, 1⟩

(b) 4, 5, 6, and 7 have executed J-Action′.
Note that J-Action′ was not enabled at 2
because it is a local minimum.

1

3

5

7

6

2

4⟨1, 0⟩

⟨1, 1⟩

⟨1, 1⟩

⟨1, 1⟩

⟨3, 1⟩

⟨1, 2⟩

⟨1, 2⟩

(c) 2, 3, and 4 have executed J-Action′. 3
joins the tree rooted at 1, but the new value
of 3.idR is not yet propagated to its child 6.

1

3

5

7

6

2

4⟨1, 0⟩

⟨1, 1⟩

⟨1, 1⟩

⟨1, 1⟩

⟨1, 2⟩

⟨1, 2⟩

⟨1, 2⟩

(d) 6 has executed J-Action′. The configu-
ration is now terminal, ℓ = 1 is elected, and
a tree rooted at ℓ is available.

Fig. 1: An example showing an execution of the non self-stabilizing algorithm.
Process identifiers are given inside the nodes. ⟨x, y⟩ means idR = x and
level = y. Arrows represent par pointers. The absence of arrow means that
the process is a self root.

that p joins the tree of q but meanwhile q joins another tree and this change is not
yet propagated to p. Similarly, when p.idR ̸= q.idR, p.level may be different
from q.level + 1.

According to those remarks, we can deduce that when p.par = q with q ̸=
p, we have the following relation between p and q:

GoodIdR(p, q) ≡ (p.idR ≥ q.idR) ∧ (p.idR < p)
GoodLevel(p, q) ≡ (p.idR = q.idR)⇒ (p.level = q.level + 1)

3.2 Fake IDs

The algorithm presented in Subsection 3.1 is clearly not self-stabilizing. Indeed,
in a self-stabilization context, the execution may start in any arbitrary configu-
ration. In particular, idR variables can be initialized to arbitrary natural integer
values, even values that are actually not IDs of (existing) processes. We call
such values fake IDs.

The existence of fake IDs may lead the system to an illegitimate terminal
configuration. Refer to the example of execution given in Figure 2: starting from
the configuration in 2a, if processes 3 and 4 move, the system reaches the ter-
minal configuration given in 2b, where there are two trees and the idR variables

7



2 3 4 5
⟨1, 1⟩ ⟨3, 0⟩ ⟨4, 0⟩ ⟨1, 1⟩

(a) Illegitimate initial configuration, where 2
and 5 have fake idR.

2 3 4 5
⟨1, 1⟩ ⟨1, 2⟩ ⟨1, 2⟩ ⟨1, 1⟩

(b) 3 and 4 executed J-Action′. The configu-
ration is now terminal.

Fig. 2: Example of execution that does not converge to a legitimate configura-
tion.

elect the fake ID 1. In this example, 2 and 5 can detect the problem. Indeed,
predicate SelfRootOk′ is violated by both 2 and 5. One may believe that it is
sufficient to reset the local state of processes which detect inconsistency (here
processes 2 and 5) to p.idR ← p, p.par ← p and p.level ← 0. After these re-
sets, there are still some errors, as shown on Figure 3. Again, 3 and 4 can detect
the problem. Indeed, predicate GoodIdR(p, p.par) ∧ GoodLevel(p, p.par) is
violated by both 3 and 4. In this example, after 3 and 4 have reset, all inconsis-
tencies have been removed. So let define the following action:

R-Action′ ::
(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
∨
(
¬SelfRoot(p) → p.par ← p;

∧¬(GoodIdR(p, p.par) ∧GoodLevel(p, p.par))
)

p.idR← p;
p.level← 0;

2 3 4 5
⟨2, 0⟩ ⟨1, 2⟩ ⟨1, 2⟩ ⟨5, 0⟩

Fig. 3: One step after Figure 2b, 2 and 5 have reset.

Unfortunately, this additional action does not ensure the convergence in all
cases—refer to the example in Figure 4. Indeed, if a process resets, it becomes
a self root but this does not erase the fake ID in the rest of its subtree. Then,
another process can join the tree and adopt the fake ID which will be further
propagated, and so on. In the example, a process resets while another joins its
tree at lower level, and this leads to endless erroneous behavior, since we do not
want to assume any maximal value for level (such an assumption would other-
wise imply the knowledge of some upper bound on n). Therefore, the whole tree
must be reset, instead of its root only. To that goal, we first freeze the “abnor-
mal” tree in order to forbid any process to join it, then the tree is reset top-down.
The cleaning mechanism is detailed in the next subsection.

3.3 Cleaning Abnormal Trees

To introduce the trees, we define what is a “good relation” between a parent
and its children. Namely, the predicate KinshipOk′(p, q) models that a pro-
cess p is a real child of its parent q = p.par. This predicate holds if and only
if GoodLevel(p, q) and GoodIdR(p, q) are true. This relation defines a span-
ning forest: a tree is a maximal set of processes connected by par pointers and
satisfying KinshipOk′ relation. A process p is a root of such a tree whenever

8



3

5

2 6

4

⟨1, 2⟩

⟨5, 0⟩

⟨2, 0⟩ ⟨1, 4⟩

⟨1, 3⟩

(a) Initial configuration.

3

5

2 6

4

⟨3, 0⟩

⟨5, 0⟩

⟨1, 5⟩ ⟨1, 4⟩

⟨1, 3⟩

(b) 2 joins the tree. 3 leaves it.

3

5

2 6

4

⟨3, 0⟩

⟨1, 6⟩

⟨1, 5⟩ ⟨1, 4⟩

⟨4, 0⟩

(c) 5 joins the tree. 4 leaves it.

3

5

2 6

4

⟨1, 7⟩

⟨1, 6⟩

⟨1, 5⟩ ⟨6, 0⟩

⟨4, 0⟩

(d) Both 3 and 6 move.

3

5

2 6

4

⟨1, 7⟩

⟨1, 6⟩

⟨2, 0⟩ ⟨6, 0⟩

⟨1, 8⟩

(e) 4 joins, 2 leaves.

3

5

2 6

4

⟨1, 7⟩

⟨5, 0⟩

⟨2, 0⟩ ⟨1, 9⟩

⟨1, 8⟩

(f) Configuration similar to 4a.

Fig. 4: The first process of the chain of bold arrows violates the predicate
SelfRootOk′ and resets by executing R-Action′, while another process joins
its tree. This cycle of resets and joins might never terminate.

SelfRoot(p) holds or KinshipOk′(p, p.par) is false. When SelfRoot(p) ∧
SelfRootOk′(p) is true, p is a normal root just as in the non self-stabilizing
case. In other cases, there is an error and p is called an abnormal root: AbRoot′(p) ≡(
SelfRoot(p)∧¬SelfRootOk′(p)

)
∨
(
¬SelfRoot(p)∧¬KinshipOk′(p, p.par)

)
. A tree

is said to be abnormal (resp. normal) when its root is abnormal (resp. normal).
We now detail the different predicates and actions of Algorithm 1.

Variable status. Abnormal trees need to be frozen before to be cleaned in order
to prevent them from growing endlessly (see 3.2). This mechanism is achieved
using an additional variable, status, that is used as follows. If a process is clean
(i.e., not involved into any freezing operation), then its status is C. Otherwise,
it has status EB or EF and no neighbor can select it as its parent. These two
latter states are actually used to perform a “Propagation of Information with
Feedback” [7] into the abnormal trees. Status EB means “Error Broadcast”
and EF means “Error Feedback”. From an abnormal root, the status EB is
broadcast down in the tree. Then, once the EB wave reaches a leaf, the leaf
initiates a convergecast EF -wave. Once the EF -wave reaches the abnormal
root, the tree is said to be dead, meaning that there is no process of status C in
the tree and no other process can join it. So, the tree can be safely reset from the

9



Algorithm 1 Algorithm LE for every process p
Variables: p.idR ∈ N; p.par ∈ Np ∪ {p}; p.level ∈ N; p.status ∈ {C,EB,EF} ;
Macros:
Childrenp ≡ {q ∈ Np | q.par = p}
RealChildrenp ≡ {q ∈ Childrenp | KinshipOk(q, p)}
p ⪯ q ≡ (p.idR ≤ q.idR) ∧ [(p.idR = q.idR)⇒ (p ≤ q)]
Minp ≡ min⪯ {q ∈ Np | q.status = C}

Predicates:
SelfRoot(p) ≡ p.par = p
SelfRootOk(p) ≡ (p.level = 0) ∧ (p.idR = p) ∧ (p.status = C)
GoodIdR(s, f) ≡ (s.idR ≥ f.idR) ∧ (s.idR < s)
GoodLevel(s, f) ≡ (s.idR = f.idR)⇒ (s.level = f.level + 1)
GoodStatus(s, f) ≡ [(s.status = EB)⇒ (f.status = EB)]

∨[(s.status = EF )⇒ (f.status ̸= C)]
∨[(s.status = C)⇒ (f.status ̸= EF )]

KinshipOk(s, f) ≡ GoodIdR(s, f) ∧GoodLevel(s, f) ∧GoodStatus(s, f)
AbRoot(p) ≡ [SelfRoot(p) ∧ ¬SelfRootOk(p)]

∨[¬SelfRoot(p) ∧ ¬KinshipOk(p, p.par)]
Allowed(p) ≡ ∀q ∈ Childrenp, (¬KinshipOk(q, p)⇒ q.status ̸= C)

Guards:
EBroadcast(p) ≡ (p.status = C) ∧ [AbRoot(p) ∨ (p.par.status = EB)]
EFeedback(p) ≡ (p.status = EB) ∧ (∀q ∈ RealChildrenp, q.status = EF )
Reset(p) ≡ (p.status = EF ) ∧AbRoot(p) ∧Allowed(p)
Join(p) ≡ (p.status = C) ∧ [∃q ∈ Np, (q.idR < p.idR) ∧ (q.status = C)]

∧Allowed(p)
Actions:
EB-action :: EBroadcast(p) → p.status← EB;
EF -action :: EFeedback(p) → p.status← EF ;
R-action :: Reset(p) → p.status← C; p.par ← p;

p.idR← p; p.level← 0;
J-action :: Join(p) ∧ ¬EBroadcast(p) → p.par ←Minp; p.idR← p.par.idR;

p.level← p.par.level + 1;

abnormal root toward the leaves. Notice that the new variable status may also
get arbitrary initialization. Thus, we enforce previously introduced predicates as
follows. A self root must have status C, otherwise it is an abnormal root:

SelfRootOk(p) ≡ SelfRootOk′(p) ∧ (p.status = C)

To be a real child of q, p should have a status coherent with the one of q.
This is expressed with the predicate GoodStatus(p, q) which is used to enforce
the KinshipOk(p, q) relation:

GoodStatus(p, q) ≡ [(p.status = EB)⇒ (q.status = EB)]
∨[(p.status = EF )⇒ (q.status ̸= C)]
∨[(p.status = C)⇒ (q.status ̸= EF )]

KinshipOk(p, q) ≡ KinshipOk′(p, q) ∧GoodStatus(p, q)

Precisely, when p has status C, its parent must have status C or EB (if the
EB-wave is not propagated yet to p). If p has status EB, then the status of
its parent must be EB because p gets status EB from its parent q and q will
change its status to EF only after p gets status EF . Finally, if p has status
EF , its parent can have status EB (if the EF -wave is not propagated yet to its
parent) or EF .

10



Normal Execution. Remark that, after all abnormal trees have been removed,
all processes have status C and the algorithm works as in the initial version.
Notice that the guard of J-action has been enforced so that only processes with
status C and which are not abnormal root can execute it, and when executing
J-action, a process can only choose a neighbor of status C as parent. Moreover,
remark that the cleaning of all abnormal trees does not ensure that all fake IDs
have been removed. Rather, it guarantees the removal of all fake IDs smaller
than ℓ. This implies that (at least) ℓ is a self root at the end of the cleaning and
all other processes will elect ℓ within the next D rounds.

Cleaning Abnormal Trees. Figure 5 shows how an abnormal tree is cleaned. In
the first phase (see Figure 5a), the root broadcasts status EB down to its (abnor-
mal) tree: all the processes in this tree execute EB-action, switch to status EB
and are consequently informed that they are in an abnormal tree. The second
phase starts when the EB-wave reaches a leaf. Then, a convergecast wave of
status EF is initiated thanks to action EF -action (see Figure 5b). The system
is asynchronous, hence all the processes along some branch can have status EF
before the broadcast of the EB-wave is done into another branch. In this case,
the parent of these two branches waits that all its children in the tree (processes
in the set RealChildren) get status EF before executing EF -action (Fig-
ure 5c). When the root gets status EF , all processes have status EF : the tree
is dead. Then (third phase), the root can reset (safely) to become a self root by
executing R-action (Figure 5e). Its former real children (of status EF ) become
themselves abnormal roots of dead trees (Figure 5f) and reset.

Finally, we used the predicate Allowed(p) to temporarily lock the parent of
p in two particular situations — illustrated in Figure 6 — where p is enabled to
switch its status from C to EB. These locks impact neither the correctness nor
the complexity of LE . Rather, they allow us to simplify the proofs by ensuring
that, once enabled, EB-action remains continuously enabled until executed.

4 Correctness and Complexity Analysis

First, remark that idR and level can be stored in Θ(log n) bits. So, the memory
requirement of LE is Θ(log n) bits per process.

Let us first distinguish between clean and dirty configurations. Given any
configuration γ, γ is clean if and only if in γ, ∀p ∈ V,¬EBroadcast(p) ∧
p.status = C. In other words, a configuration is clean if and only if it contains
no abnormal trees. In particular, such a clean configuration does not contain fake
IDs smaller than ℓ. Any configuration that is not clean is said to be dirty.

11



EB-action

C

6

2 8

⟨1, 0⟩

⟨1, 1⟩ ⟨1, 1⟩

(a) When an abnormal root detects an error, it
executes EB-action. The EB-wave is broad-
cast to the leaves. Here, 6 is an abnormal root
because it is a self root and its idR is different
from its ID (1 ̸= 6).

EF -action

C
EB

(b) When the EB-wave reaches a leaf, it exe-
cutes EF -action. The EF -wave is propagated
up to the root.

C EF

EB

5

4

7

9

⟨1, 4⟩

⟨1, 5⟩

⟨1, 5⟩

⟨1, 5⟩

(c) It may happen that the EF -wave reaches a
node, here process 5, even though the EB-wave
is still broadcasting into some of its proper sub-
trees: 5 must wait that the status of 4 and 7 be-
come EF before executing EF -action.

EF -action

EF
EB

(d) EB-wave has been propagated in the other
branch. An EF -wave is initiated by the leaves.

R-action

EF

(e) EF -wave reaches the root. The root can
safely reset (R-action) because its tree is dead.
The cleaning wave is propagated down to the
leaves.

R-action

EF EF

6

2 8

⟨6, 0⟩

⟨1, 1⟩ ⟨1, 1⟩

(f) Its children become themselves abnormal
roots of dead trees and can execute R-action: 2
and 8 can clean because their status is EF and
their parent has status C.

Fig. 5: Schematic example of the cleaning mechanism. Trees are filled according
to the status of their processes: white for C, dashed for EB, gray for EF .

12



4

9

⟨3, 0⟩

⟨4, 1⟩

(a) 4 and 9 are abnormal roots. If 4 executes
R-action before 9 executes EB-action, the
kinship relation between 4 and 9 becomes cor-
rect and 9 is no more an abnormal root. Then,
EB-action is no more enabled at 9.

6 3

4

9

⟨2, 3⟩ ⟨3, 0⟩

⟨3, 1⟩

⟨2, 5⟩

(b) 9 is an abnormal root and Min4 is 6. If 4 ex-
ecutes J-action before 9 executes EB-action,
the kinship relation between 4 and 9 becomes
correct and 9 is no more an abnormal root.
Then, EB-action is no more enabled at 9.

Fig. 6: Example of situations where the parent of a process is locked.

4.1 Correctness and Stabilization Time in Steps
Convergence from a clean configuration. Let us first consider any clean config-
uration, γ. As γ is clean, γ may contain some fake IDs, but all of them (if any)
are greater than ℓ. This implies, in particular, that ℓ is a self root and ℓ.idR = ℓ
forever from γ. Moreover, in γ there are at most n different values disseminated
into the idR variables. Every process p ̸= ℓ can only decrease its own value
of idR by executing J-action (all other actions are disabled forever at p be-
cause they deal with abnormal trees). Hence, overall after at most (n−1)×(n−2)

2
executions of J-action, the configuration is terminal and ℓ is elected.

Convergence from an arbitrary configuration. The remainder of the proof con-
sists in showing that, from any arbitrary configuration, a clean configuration is
reached in O(n3) steps. So, let consider a dirty configuration γ. Then, γ contains
some abnormal trees. In the following, we say that a process p is called alive if
and only if p.status = C. Otherwise, it is said to be dead. By extension, a tree
T is called an alive tree if and only if ∃p ∈ T such that p is alive. Otherwise, it
is called a dead tree.

We first show that no abnormal alive tree can be created from γ. So, as
there are at most n abnormal alive trees in the initial configuration, and each of
them may contain up to n processes, at most n2 EB-action, EF -action, and
R-action respectively are sufficient to freeze and remove all them. Notice that
this way we clean abnormal trees is the main difference between our algorithm
LE and the algorithm proposed in [10], DLV . Indeed, we have shown that,
contrary to LE , the correction mechanism implemented in DLV can involve a
non-polynomial number of correction actions (see [2]).

Nevertheless, processes can execute J-action during the removal of abnor-
mal trees. In particular, a process p can leave an abnormal alive tree T by ex-

13



ecuting J-action to join another (normal or abnormal) tree. However, in this
case the value of p.idR necessarily decreases. Later p can join T again, but this
may happen only if p executes actions EB-action, EF -action, and R-action
at least once in the meantime. This means that p participates to the removal of
some abnormal tree. Thus, each time p joins T again, the number of abnormal
trees decreases, i.e., p can join and leave T at most n− 1 times.

Thus, each process (n) can join each abnormal tree (at most n) at most n−1
times using J-action which gives an overall number of J-actions in O(n3).

To sum up, starting from any configuration, a terminal configuration where
ℓ is elected is reached in O(n3) steps. (We prove a tighter bound in [2].)

4.2 Stabilization Time in Rounds

Let us consider a clean configuration γ. Again, γ may contain some fake IDs,
but all of them (if any) are greater than ℓ. This implies, in particular, that ℓ is
a self root and ℓ.idR = ℓ forever from γ. ℓ being the minimum value in idR
variables, ℓ is propagated, from neighbors to neighbors, into the idR variables
and the system reaches a terminal configuration in O(D) rounds.

Consider now a dirty configuration γ. From γ, all abnormal trees are frozen
and removed in parallel using three waves: (1) the broadcast of the value EB
from the abnormal roots to the leaves, (2) a convergecast of the value EF from
the leaves to the abnormal roots, and (3) finally, the cleaning is performed top-
down. As the maximum height of a tree is n, each of these waves is done in at
most n rounds. Overall, abnormal trees are removed in at most 3n rounds.

Hence, the stabilization time is at most 3n+D rounds.

5 Conclusion
We proposed a silent self-stabilizing leader election algorithm, called LE , for
bidirectional connected identified networks of arbitrary topology. Starting from
any arbitrary configuration, LE converges to a terminal configuration, where all
processes know the ID of the leader, this latter being the process of minimum ID.
Moreover, as in most of the solutions from the literature, a distributed spanning
tree rooted at the leader is defined in the terminal configuration.
LE is written in the locally shared memory model. It assumes the distributed

unfair daemon, the most general scheduling hypothesis of the model. Moreover,
it requires no global knowledge on the network (such as an upper bound on
the diameter or the number of processes, for example). LE is asymptotically
optimal in space, as it requires Θ(log n) bits per process, where n is the size
of the network. We analyzed its stabilization time both in rounds and steps. We
showed that LE stabilizes in at most 3n + D rounds, where D is the diameter
of the network. We have also proven in the technical report [2] that for every

14



n ≥ 4, for every D, 2 ≤ D ≤ n− 2, there is a network of n processes in which
a possible execution exactly lasts this complexity.

Finally, we proved that LE achieves a stabilization time polynomial in steps.
More precisely, we have shown in the technical report [2] that its stabilization
time is at most n3

2 + 2n2 + n
2 + 1 steps. Still in [2], we have shown that for

every n ≥ 4, there exists a network of n processes (and of diameter 2) in which
a possible execution exactly lasts n3

6 + 3
2n

2 − 8
3n + 2 steps, establishing then

that the worst case is in Θ(n3).
Perspectives of this work deal with complexity issues. In [10], Datta et al

showed that it is easy to implement a silent self-stabilizing leader election which
works assuming an unfair daemon, uses Θ(log n) bits per process, and stabilizes
in O(D) rounds (where D is an upper bound onD). Nevertheless, processes are
assumed to know D. It is worth investigating whether it is possible to design
an algorithm which works assuming an unfair daemon, uses Θ(log n) bits per
process, and stabilizes in O(D) rounds without using any global knowledge. We
believe this problem remains difficult, even adding some fairness assumption.

References
1. Afek, Y., Bremler-Barr, A.: Self-Stabilizing Unidirectional Network Algorithms by Power

Supply. Chicago J. Theor. Comput. Sci. 1998 (1998)
2. Altisen, K., Cournier, A., Devismes, S., Durand, A., Petit, F.: Self-Stabilizing Leader Elec-

tion in Polynomial Steps. Tech. rep., CNRS (2014), hal.archives-ouvertes.fr/hal-00980798
3. Arora, A., Gouda, M.G.: Distributed Reset. IEEE Trans. Computers 43(9), 1026–1038

(1994)
4. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time Optimal Self-

stabilizing Synchronization. In: STOC. pp. 652–661 (1993)
5. Blin, L., Tixeuil, S.: Brief Announcement: Deterministic Self-stabilizing Leader Election

with O(log log n)-bits. In: PODC. pp. 125–127 (2013)
6. Burman, J., Kutten, S.: Time Optimal Asynchronous Self-stabilizing Spanning Tree. In:

DISC. pp. 92–107 (2007)
7. Chang, E.J.H.: Echo Algorithms: Depth Parallel Operations on General Graphs. IEEE Trans.

Software Eng. 8(4), 391–401 (1982)
8. Datta, A.K., Larmore, L.L., Piniganti, H.: Self-stabilizing Leader Election in Dynamic Net-

works. In: SSS. pp. 35–49 (2010)
9. Datta, A.K., Larmore, L.L., Vemula, P.: An O(n)-time Self-stabilizing Leader Election Al-

gorithm. J. Parallel Distrib. Comput. 71(11), 1532–1544 (2011)
10. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing Leader Election in Optimal Space

under an Arbitrary Scheduler. Theor. Comput. Sci. 412(40), 5541–5561 (2011)
11. Dijkstra, E.W.: Self-stabilizing Systems in Spite of Distributed Control. Commun. ACM

17(11), 643–644 (1974)
12. Dolev, S., Gouda, M.G., Schneider, M.: Memory Requirements for Silent Stabilization. Acta

Inf. 36(6), 447–462 (1999)
13. Dolev, S., Herman, T.: Superstabilizing Protocols for Dynamic Distributed Systems. Chicago

J. Theor. Comput. Sci. 1997 (1997)
14. Kravchik, A., Kutten, S.: Time Optimal Synchronous Self Stabilizing Spanning Tree. In:

DISC. pp. 91–105 (2013)

15


