
Better Sooner Rather Than Later

Anaïs Durand⋆, Michel Raynal† Gadi Taubenfeld§

⋆LIMOS, Université Clermont Auvergne CNRS UMR 6158, Aubière, France
†IRISA, Inria, CNRS, Univ Rennes, 35042 Rennes, France

§Reichman University, Herzliya 4610101, Israel

January 30, 2024

Abstract

This article unifies and generalizes fundamental results related to n-process asynchronous crash-
prone distributed computing. More precisely, it proves that for every 0 ≤ k ≤ n, assuming that pro-
cess failures occur only before the number of participating processes bypasses a predefined threshold
that equals n− k (a participating process is a process that has executed at least one statement of its
code), an asynchronous algorithm exists that solves consensus for n processes in the presence of f
crash failures if and only if f ≤ k. In a very simple and interesting way, the “extreme” case k = 0
boils down to the celebrated FLP impossibility result (1985, 1987). Moreover, the second extreme
case, namely k = n, captures the celebrated mutual exclusion result by E.W. Dijkstra (1965) that
states that mutual exclusion can be solved for n processes in an asynchronous read/write shared
memory system where any number of processes may crash (but only) before starting to participate
in the algorithm (that is, participation is not required, but once a process starts participating it may
not fail). More generally, the possibility/impossibility stated above demonstrates that more failures
can be tolerated when they occur earlier in the computation (hence the title).

Keywords: Adopt/commit, Asynchronous read/write system, Concurrency, Consensus, Contention,
Mutual exclusion, Process participation, Process crash, Time-constrained crash failure, Simplicity.

1 Introduction

1.1 Two fundamental problems in distributed computing

On the nature of distributed computing. Parallel computing aims to track and exploit data inde-
pendence in order to obtain efficient algorithms: the decomposition of a problem into data-independent
sub-problems is under the control of the programmer. The nature of distributed computing is different;
namely, distributed computing is the science of cooperation in the presence of adversaries (the most
common being asynchrony and process failures): a set of predefined processes, each with its own input
(this is not on the control of the programmer) must exchange information in order to attain a common
goal. The two most famous distributed computing problems are consensus and mutual exclusion.

The consensus problem. The consensus problem was initially introduced in the context of synchronous
message-passing systems in which some processes are prone to Byzantine failures [9, 11]. Consensus
is a one-shot object providing the processes with a single operation denoted propose(). This operation
takes an input parameter and returns a value. When a process invokes propose(v), we say it proposes
the value v. If propose() returns the value v′, we say that it decides v′. The following set of properties

1



defines consensus. A faulty process is a process that commits a failure (crash in our case, i.e., an unex-
pected premature and definitive stop). An initial failure is a process crash that occurs before the process
starts participating [18]. A process that is not faulty is said to be correct.

• Validity. If a process decides value v, then v was proposed by some process.

• Agreement. No two processes decide different values.

• Termination. If a correct process invokes propose(v) then it decides on a value.

A fundamental result related to consensus in asynchronous crash-prone systems where processes com-
municate by reading and writing atomic registers only is its impossibility if even only one process may
crash [10] (read/write counterpart of the famous FLP result stated for asynchronous message-passing
systems [4]).

The mutual exclusion problem. Mutual exclusion is the oldest and one of the most important syn-
chronization problems. Formalized by E.W. Dijkstra in the mid-sixties [1], it consists of building what
is called a lock (or mutex) object, defined by two operations, denoted acquire() and release(). The in-
vocation of these operations by a process pi follows the following pattern: “acquire(); critical section;
release()”, where “critical section” is any sequence of code. It is assumed that, once in the critical sec-
tion, a process eventually invokes release(). A mutex object must satisfy the following two properties.

• Mutual exclusion: No two processes are simultaneously in their critical section.

• Deadlock-freedom progress condition: If there is a process pi that has a pending operation acquire()
(i.e., it invoked acquire() and its invocation is not terminated) and there is no process in the critical
section, there is a process pj (maybe pj ̸= pi) that eventually enters the critical section.

A fundamental result related to mutual exclusion in asynchronous fault-free systems where processes
communicate by reading and writing atomic registers only is that mutual exclusion can be solved for
any finite number of processes even when (process) participation is not required [1].

Observation 1 In a shared memory system with no failures and where participation is not required,
mutual exclusion is solvable if and only if consensus is solvable.

The proof is straightforward. To solve consensus using mutual exclusion, we can simply let everybody
decide on the proposed value of the first process to enter the critical section. To solve mutual exclusion
using consensus, the processes can participate in a sequence of consensus objects to decide on the next
process to enter the critical section.

1.2 Contention-related crash failures

The notion of λ-constrained crash failures. Consensus can be solved in crash-prone (read/write
or message-passing) synchronous systems. So, an approach to solve consensus in crash-prone asyn-
chronous systems consists in capturing a “logical time notion” that can be exploited to circumvent the
consensus impossibility. In this article, the notion of time is captured by the increasing number of pro-
cesses that started participating in the consensus algorithm (a process becomes participating when it
accesses the shared memory for the first time).1 Crash failures in such a context have given rise to the
notion of λ-constrained crash failures (introduced in [17]) where they are named weak failures). Then,
they have been investigated in [2,3]. The idea consists in allowing some number k of processes to crash
only while the current number of participating processes has not bypassed some predefined threshold
denoted λ. An example of a run with λ-constrained crash failures is presented in Fig. 1 for n = 9, k = 3,
and λ = n− k = 6.

1Let us remind that such a process participation assumption is implicit in all asynchronous message-passing systems.

2



p3 p1

p8

p7

p9
initial crash

p6
crashes crashes

p1

p5

p2

p6

up to k processes may crash

p4

no process crashes

Figure 1: Asynchronous λ-constrained crash failures (n = 9, k = 3, λ = 6)

Observation 2 : A computability equivalence. The following observation follows immediately from
the definitions concerning process participation, initial crashes, and λ-constrained crash failures. From a
computability point of view, the three following statements are equivalent (each implies the two others).

It is possible to solve consensus and mutual exclusion in an asynchronous system

• in a fault-free system where participation is not required, or

• in the presence of any number of initial failures, or

• in the presence of any number of 0-constrained crash failures.

Motivation: Why study λ-constrained failures? As discussed and demonstrated in [2, 17], the new
type of λ-constrained failures enables the design of algorithms that can tolerate several traditional “any-
time” failures plus several additional λ-constrained failures. More precisely, assume that a problem can
be solved in the presence of t traditional (i.e., any-time) failures but cannot be solved in the presence of
t+1 such failures. Yet, the problem might be solvable in the presence of t1 ≤ t “any-time” failures plus
t2 λ-constrained failures, where t1 + t2 > t.

Adding the ability to tolerate λ-constrained failures to algorithms that are already designed to cir-
cumvent various impossibility results, such as the Paxos algorithm [8] and indulgent algorithms in gen-
eral [6, 7], would make such algorithms even more robust against possible failures. An indulgent algo-
rithm never violates its safety property and eventually satisfies its liveness property when the synchrony
assumptions it relies on are satisfied. An indulgent algorithm which in addition (to being indulgent) tol-
erates λ-constrained failures may, in many cases, satisfy its liveness property even before the synchrony
assumptions it relies on are satisfied.

When facing a failure-related impossibility result, such as the impossibility of consensus in the
presence of a single faulty process (discussed earlier [4, 10]) one is often tempted to use a solution that
guarantees no resiliency at all. We point out that there is a middle ground: tolerating λ-constrained
failures enables to tolerate failures some of the time. Notice that traditional t-resilient algorithms also
tolerate failures only some of the time (i.e., as long as the number of failures is at most t). After all,
something is better than nothing. As a simple example, a message-passing algorithm is described in [4],
which solves consensus despite asynchrony and up to t < n/2 processes crashes if these crashes occur
initially (hence no participating process crashes).

1.3 Computational model

Our model of computation consists of a collection of n asynchronous deterministic processes that com-
municate by atomically reading and writing shared registers. A process can read or write at each atomic
step, but not both. A register that can be written and read by any process is a multi-writer multi-reader
(MWMR) register. If a register can be written by a single (predefined) process and read by all, it is a
single-writer multi-reader (SWMR) register. Asynchrony means that there is no assumption on the rela-
tive speeds of the processes. Each process has a unique identifier. The only type of failure considered in
this paper is a process crash failure. As already said, a crash is a premature halt. Thus, until a process

3



possibly crashes, it behaves correctly by executing its code. The following known observation implies
that an impossibility results proved for the shared memory model also holds for such a message-passing
system.

Observation 3 A shared memory system that supports atomic registers can simulate a message-passing
system that supports send, receive, and even broadcast operations.

The proof is straightforward. The simulation is as follows. With each process p, we associate an un-
bounded array of shared registers which all processes can read from, but only p can write into. To
simulate a broadcast (or sending) of a message, p writes to the next unused register in its associated
array. When p has to receive a message, it reads the new messages from each process.

1.4 Contributions and related work

The article unifies and generalizes fundamental results about the mutual exclusion and consensus prob-
lems. To this end, it states and proves the following theorem.

Theorem 1 (Main result) For every 0 ≤ k ≤ n, an algorithm exists that solves consensus for n pro-
cesses in the presence of f (n− k)-constrained crash failures if and only if f ≤ k.

There are two special cases that are of special interest.

• The first special case, when k = 0, indicates that in the presence of any number of n-constrained
crash failures, not even a single failure can be tolerated. This implies the celebrated impossibility
results (from 1985 and 1987) which states that consensus cannot be solved by n processes in
an asynchronous message-passing or read/write shared memory system in which even a single
process may crash at any time [4, 10]. Here, we use Observation 3 that a shared memory system
can simulate a message passing system.

• The second special case, when k = n implies that consensus can be solved for n processes in an
asynchronous read/write shared memory system in the presence of any number of 0-constrained
crash failures. This result, together with Observation 1 and Observation 2, implies the celebrated
result by E.W. Dijkstra (from 1965), which originated the field of distributed computing, that
mutual exclusion can be solved for n processes in an asynchronous read/write shared memory
fault-free system where (process) participation is not required [1].

It is shown in [2,17], among other results, that consensus can be solved (1) despite a single process crash
if this crash occurs before the number of participating processes bypasses λ = n − 1; and (2) despite
k − 1 process crashes, where k > 1, if these crashes occur before the number of participating processes
bypasses λ = n− k.The main question left open in [2, 17] is whether this possibility result is tight.

Our main result, as stated in Theorem 1, shows that the answer to this open question is negative and
proves a new stronger result which is shown to be tight. Furthermore, two cumbersome and complicated
consensus algorithms were presented to prove the above results [2, 17]. These algorithms are based
on totally different design principles, and the following question was posed as an open problem in [2]:
“Does it exist a non-trivial generic consensus algorithm that can be instantiated for any value of k ≥
1?”2. Our result answers this second question positively.

To prove the if direction part in the proof of Theorem 1, a rather simple and elegant consensus
algorithm is presented. This new algorithm is based on two underlying (read/write implementable)

2“Non-trivial generic” means here that the algorithm must not be a case statement with different sub-algorithms for different
values of k.

4



objects, namely a crash-tolerant adopt-commit object [5] and a not-crash-tolerant deadlock-free acquire-
restricted mutex object (a mutex object without a release operation [15,16]). We show that the proposed
algorithm is optimal in the λ-constrained crash failures model.

Finally, contention-related crash failures were also investigated in [3] in a model where processes
communicate by accessing shared objects which are computationally stronger than atomic read/write
registers.

2 The Consensus Algorithm

This section proves the “if direction” of Theorem 1.

Theorem 2 (If direction) For every 0 ≤ k ≤ n, an algorithm exists that solves consensus for n pro-
cesses in the presence of f (n− k)-constrained crash failures if f ≤ k.

To prove this theorem, we present below a consensus algorithm tolerating k λ-constrained failures,
where λ = n − k. The processes, denoted p1, p2, ..., pn, execute the same code. It is assumed that
proposed values are integers and that the default value ⊥ is greater than any integer.

2.1 Shared and local objects used by the algorithm

Shared objects. The processes cooperate through the following shared objects (which can be built
on top of asynchronous read/write systems, the first one in the presence of any number of crashes, the
second one in failure-free systems, but as we will see, the access to this object will be restricted to correct
processes only).

• INPUT [1..n] is an array of atomic single-writer multi-reader registers. It is initialized to [⊥, ...,⊥].
INPUT [i] will contain the value proposed by pi.

• DEC is a multi-writer multi-reader atomic register, the aim of which is to contain the decided
value. It is initialized to ⊥ (a value that cannot be proposed).

• AC is an adopt/commit object. This object, which can be built in asynchronous read/write systems
prone to any number of process crashes, was introduced in [5]. It provides the processes with a
single operation (that a process can invoke only once) denoted ac_propose(). This operation takes
a value as an input parameter and returns a pair ⟨tag, v⟩, where tag ∈ {commit, adopt} and v
is a proposed value (we say that the process decides a pair). The following properties define the
object.

– Termination. A correct process that invokes ac_propose() returns from its invocation.

– Validity. If a process returns the pair ⟨−, v⟩, then v was proposed by a process.

– Obligation. If the processes that invoke ac_propose() propose the same input value v, only
the pair ⟨commit, v⟩ can be returned.

– Weak agreement. If a process decides ⟨commit, v⟩ then any process that decides returns the
pair ⟨commit, v⟩ or ⟨adopt, v⟩.

Let us remark that if, initially, a process executes solo ac_propose(v), it returns the value v, and,
if any, all later all invocations of ac_propose() will return v. The same occurs if (initially) a set of
processes invoke ac_propose() with the same value v: the adopt/commit object will always return
v. Wait-free implementation of the adopt-commit object are described in [5, 13].

5



• ARM is a one-shot acquire-restricted deadlock-free mutex object, i.e., a mutex object that pro-
vides the processes with a single operation denoted acquire() (i.e., a mutex object without release()
operation). One-shot means that a process can invoke acquire() at most once.

Let us observe that as there is no release() operation, only one process can return from its in-
vocation of acquire(). The other processes that invoked acquire() never terminate their acquire()
operation. The ARM object will be used to elect a process when needed in specific circumstances.

As we will see, the proposed consensus algorithm allows only correct processes to invoke the
acquire() operation. So any algorithm implementing a failure-free deadlock-free mutex algorithm
(or a read/write-based leader election algorithm) can be used [15]. Such space efficient algorithms
exist, that use only log n atomic read/write registers [16].

Local objects. Each process pi manages four local variables denoted inputi[1..n], vali, resi and tagi.
Their initial values are irrelevant.

2.2 An informal description of the algorithm

We present below the algorithm for process pi. Recall that there are at most k λ-constrained crash
failures, where λ = n− k.

1. pi first deposits its proposed value ini in INPUT [i].

2. pi repeatedly reads the INPUT [1..n] array until INPUT [1..n] contains at least n − k entries
different from their initial value ⊥. Because at most k processes may crash, and the process
participation assumption, this loop statement eventually terminates.

3. pi computes the smallest value deposited in the array INPUT [1..n] and sets vali to that value.

4. pi champions the value in vali for it to be decided. To this end, it uses the underlying wait-
free adopt/commit object; namely, it invokes AC .ac_propose(vali) from which it obtains a pair
⟨tagi, resi⟩.

5. Once pi’s invocation of the adopt-commit object terminates, there are two possible cases,

• if tagi = commit, due to the weak agreement property of the object AC , no value different
from resi can be decided. Consequently, pi writes resi in the shared register DEC and
returns resi as the agreed upon consensus value, and terminates.

• if tagi = adopt, pi continues to the next step below.

6. Notice that if pi arrives here, it must be the case that process participation is above n − k, and
hence no process will fail from that point in time. So, pi continually checks whether DEC ̸= ⊥
and, in parallel, starts participating in the single-shot mutex object.

7. If pi finds out that DEC ̸= ⊥, it returns the value of DEC as the agreed-upon consensus value
and terminates.

8. If pi enters the critical section, it writes resi in the shared register DEC , returns resi as the
agreed-upon consensus value, and terminates.

Notice that if process pi terminates in step 5, and process pj terminates in step 8, then, due to the weak
agreement property of the object AC it must be the case that resi = resj .

6



2.3 A formal description and correctness proof

Algorithm 1 describes the behavior of a process pi. The statement return(v) returns the value v to the
invoking process and terminates its execution of the algorithm. The idea that underlies the design of this
algorithm is pretty simple, namely:

• Failure-prone part: Exploitation of the participating processes assumption to benefit from the
adopt-commit object AC (Lines 1-5) and try to decide from it.

• Failure-free part: Exploitation of the λ-constrained failures assumption (Lines 6-8) to ensure that,
if the adopt-commit object does not allow processes to decide, the decision will be obtained from
the acquire-restricted mutex object, whose invocations occur in a failure-free context (crashes can
no longer occur when processes access ARM ).

operation propose(ini) is
(1) INPUT [i]← ini;
(2) repeat inputi[1..n]← asynchronous non-atomic reading of INPUT [1..n]

until
(
inputi[1..n] contains at most k ⊥

)
end repeat;

(3) vali ← min
(
values deposited in inputi[1..n]

)
;

(4) ⟨tagi, resi⟩ ← AC .ac_propose(vali);
(5) if (tagi = commit) then DEC ← resi; return(DEC ) end if;
(6) Launch in parallel the local thread T ;
(7) wait

(
DEC ̸= ⊥

)
; kill(T ); return(DEC ).

thread T is
(8) ARM .acquire(); if DEC = ⊥ then DEC ← resi end if.

Algorithm 1: Consensus tolerating k λ-constrained failures, where λ = n− k

Lemma 1 (Validity) A decided value is a proposed value.

Proof A process decides either on Line 5 or 7. Whatever the line, it decides the value of the shared
register DEC , which was previously assigned a value that has been deposited in a local variable resi
(Line 5 or 8). The only place where a local variable resi is updated is Line 4, and it follows from the
validity property of the adopt-commit object that this value is the proposed value valj of some process
pj . Since valj is the minimum value seen by pj in INPUT (Line 3) that contains only the input values
of the processes (and maybe some ⊥ values that are, by definition, greater than any input variables),
valj contains the proposed value of some process. 2Lemma 1

Lemma 2 If, when a process pi exits at Line 2 at time t, at least n − k + 1 entries of INPUT are
different from ⊥, then pi is a correct process and no more crash occurs after time t.

Proof If there is a time t at which at least n− k + 1 entries of INPUT are different from ⊥, it follows
that the number of participating processes is greater than n− k. It then follows from the λ-constrained
crash failures no process crashes after time t and pi is a correct process. 2Lemma 2

Lemma 3 If a process pi executes Line 6, it is a correct process.

7



Proof Let pi be a process that executes Line 6. If at least n − k + 1 entries of INPUT [1..n] were
different from ⊥ when pi exited Line 2, it follows from Lemma 2 that pi is a correct process. So, let us
consider the case where, when pi exited Line 2, exactly n − k entries of INPUT [1..n] were different
from ⊥.

Recall that by obligation property, if the processes that invoke ac_propose() propose the same input
value v, only the pair ⟨commit, v⟩ can be returned. Thus, since process pi did not obtain tagi = commit

at Line 4, it must be that some other process proposed, at Line 4, a value different than the value proposed
by pi. This implies that the minimum value computed by pi at Line 3, is (1) different than the minimum
value computed by some other process, say process pj , at Line 3, and (2) that process pj computed this
minimum value at Line 3 before pi reached Line 6.

Consequently, the set (of size n−k) of non-⊥ entries in inputi at the time when pi has exited Line 2
must be different than the set (of size at least n− k) of non-⊥ entries in inputj at the time when pj has
exited Line 2, from which it follows that when the last of pi and pj exited Line 4, there were at least
n− k + 1 participating processes. Thus, by Lemma 2, pi is a correct process. 2Lemma 3

Lemma 4 (Termination) Every correct process decides.

Proof Correct processes are required to participate, and there are no more than k crashes (model as-
sumption). Thus, at least n − k processes eventually write their input value into INPUT and, thus, no
process remains stuck in the loop at Line 2.

Since the adopt-commit object is wait-free, the invocation of AC .ac_propose(vali) at Line 4 always
terminates. If a correct process pi obtains the pair ⟨commit, v⟩ when it invokes AC .ac_propose(vali)
at Line 4, it assigns v ̸= ⊥ to the shared register DEC and then decides. Any process that obtains the
tag adopt will later decide at Line 7.

When no process pi obtains the pair ⟨commit, v⟩ at Line 5, or when every process that obtains a pair
⟨commit, v⟩ crashes before updating the shared register DEC , DEC will not be updated at Line 5.

In such a case by Lemma 3, every correct process launches in parallel its local thread T (Line 6). By
the deadlock-freedom property of ARM , some process, say process pk, will eventually enter the critical
section (Line 8). Process pk then assigns v ̸= ⊥ to DEC . Again, all other processes will be able to
decide with their threads T (Line 7). 2Lemma 4

Lemma 5 (Agreement) No two processes decide different values.

Proof We consider two cases. The first is when some process pi obtains the pair ⟨commit, v⟩ from the
invocation of AC .ac_propose(ini) at Line 4. In this case, due to the weak agreement property of the
adopt-commit object, all the processes that return from this invocation obtain a pair ⟨−, v⟩. It follows
that the local variables resj of every correct process pj contains v. As only the content of the shared
variable DEC or a local variable resj can be decided by pj , only the value v can be decided.

The second case is when no process pi obtains the pair ⟨commit,−⟩. In this case, when a process
pi decides, this occurs at Line 7. By Lemma 3, pi is correct (and also all the processes that cross Line 6
are correct ) and launched its local thread T . So, only correct processes launch their threads T . Due
to the deadlock-freedom property of mutex, one and only one of them, say process pj , terminates its
invocation of ARM .acquire() and imposes recj as the decided value. 2Lemma 5

Theorem 2 follows from Algorithm 1, Lemma 1, Lemma 4, and Lemma 5.

3 Optimality of the Algorithm

This section proves the “only if direction” of Theorem 1. We point out that the impossibility result
we give below was essentially already presented in [2, 17]. Our proof is an adaptation of the proof

8



from [2, 17].

Theorem 3 (Only if direction) For every 0 ≤ k ≤ n, an algorithm exists that solves consensus for n
processes in the presence of f (n− k)-constrained crash failures only if f ≤ k.

Proof To prove the only if direction, we have to show that, in the context of process participation and
λ-constrained crash failures, with λ = n−k, there is no read/write registers-based algorithm that solves
consensus while tolerating (k+1) λ-constrained crash failures. To this end, assume to the contrary that
for some k such that n > k+1, and λ = n−k that there is a read/write-based algorithm A that tolerates
k + 1 λ-constrained crash failures.

Given an execution of A, let us remove any set of k processes by assuming they crashed initially.
It then follows from the contradiction assumption that algorithm A solves consensus in a system of
n′ = n − k processes. However, in a system of n′ = n − k processes, the number of participating
processes is always smaller or equal to n′, from which follows that, in such an execution, n′-constrained
crash failures are crashes that occur at any time, i.e., these crashes are not constrained by some timing
assumption. It follows that A may be used to generate a read/write-based consensus algorithm for
n′ − k processes that tolerates one crash failure that can occur at any time. This contradicts the known
impossibility of consensus in the presence of asynchrony and even a single crash failure, presented
in [4, 10]. 2Theorem 3

4 Discussion

Better sooner than later in general. There are many reasons why it is better for failures to occur
sooner rather than later. For example, identifying failures early in the software development life cycle
helps save valuable time and resources. When failures are detected early in, the necessary actions can
be taken promptly to mitigate or address the issue. Early failures offer a chance to iterate and optimize,
increasing the chances of success in subsequent attempts. It also provides ample time to recover and
redirect efforts toward alternative solutions.

Better sooner than later in this article. In this article, we have identified yet another reason why
it is better for failures to occur sooner rather than later: in the context of asynchronous distributed
algorithms, more failures can be tolerated when it is a priori known that they may occur earlier in the
computation. That is, we have demonstrated a tradeoff between the number of failures that can be
tolerated and the information about how early they may occur. In the two extreme cases, if failures
may occur only initially, then both mutual exclusion and consensus can be solved in the presence of
any number of (initial) failures; while when failures may occur at any time, then it is impossible to
solve these problems even in the presence of a single (any time) failure. More generally, for every
0 ≤ k ≤ n, if it is known that failures may occur only before the number of participating processes
bypasses a predefined threshold that equals n− k, then it is possible to solve consensus for n processes
in the presence of up to k failures, but not in the presence of k + 1 failures.

On simplicity. The proposed algorithm is simple. This does not mean that the problem was simple!
As correctness, simplicity is a first class citizen property. Simplicity, as it captures the essence of a
problem, makes its understanding easier. As said by A. Perlis (the very first Turing Award), “Simplicity
does not precede complexity, but follows it.” [12].

Finally, let us notice that the following question has recently been addressed in [14]: Are consensus and
mutex the same problem? It is worth noticing that the present paper adds a new relation linking mutex
and consensus when considering the notions of participating processes and failure timing.

9



References

[1] Dijkstra E.W., Solution of a problem in concurrent programming control. Communications of the
ACM, 8(9):569 (1965)

[2] Durand A., Raynal M., and Taubenfeld T., Contention-related crash failures: definitions, agreement
algorithms, and impossibility results. Theoretical Computer Science, 909:76-86 (2022)

[3] Durand A., Raynal M., and Taubenfeld T., Reaching agreement in the presence of contention-
related crash failures. Theoretical Computer Science, 966-967:12 pages (2023)

[4] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374-382 (1985)

[5] Gafni E., Round-by-round fault detectors: unifying synchrony and asynchrony. Proc. 17th ACM
Symposium on Principles of Distributed Computing (PODC), ACM Press, pp. 143-152 (1998)

[6] Guerraoui R., Indulgent algorithms. Proc. 19th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC’00), ACM Press, pp. 289-297 (2000)

[7] Guerraoui R. and Raynal M., The information structure of indulgent consensus. IEEE Transactions
on Computers, 53(4):453-466 (2004)

[8] Lamport L., The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–169
(1998)

[9] Lamport L., Shostak R. and Pease M., The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3)-382-401 (1982)

[10] Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable asynchronous
processes. Advances in Computing Research, 4:163-183, JAIN Press Inc. (1987)

[11] Pease M., R. Shostak R. and Lamport L., Reaching agreement in the presence of faults. Journal of
the ACM, 27:228-234 (1980)

[12] Perlis A., Epigrams on Programming. ACM Sigplan, 17(9):7-13 (1982)

[13] Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515
pages, ISBN 978-3-642-32026-2 (2013)

[14] Raynal M., Mutual exclusion vs consensus: both sides of the same coin? Bulletin of the European
Association of Theoretical Computer Science (EATCS), Vol.140, 14 pages (2023)

[15] Raynal M. and Taubenfeld G., A visit to mutual exclusion in seven dates. Theoretical Computer
Science, 919:47-65 (2022)

[16] Styer E. and Peterson G.L., Tight bounds for shared memory symmetric mutual exclusion prob-
lems. Proc. 6th ACM Symposium on Principles of Distributed Computing (PODC), ACM Press,
pp. 117-191 (1989)

[17] Taubenfeld G., Weak failures: definition, algorithms, and impossibility results, Proc. 6th Int’l
Conference on Networked Systems (NETYS’18), Springer LNCS 11028, pp. 269–283 (2018)

[18] Taubenfeld G., Katz S., and Moran S., Initial failures in distributed computations. International
Journal of Parallel Programming, 18(4):255–276 (1989)

10


