
Message-efficient Self-stabilizing Transformer using
Snap-stabilizing Quiescence Detection

Anaı̈s Durand and Shay Kutten

Technion - Israel Institute of Technology, Haifa, Israel
danais@technion.ac.il, kutten@ie.technion.ac.il

Abstract. By presenting a message-efficient snap-stabilizing quiescence detec-
tion algorithm, we also facilitate a transformer that converts non self-stabilizing
algorithms into self-stabilizing ones. We propose a message-efficient snap-stabili-
zing ongoing quiescence detection algorithm. (Notice that by definition it is also
self-stabilizing and can detect termination.) This algorithm works for diffusing
computations. We are not aware of any other self-stabilizing or snap-stabilizing
ongoing quiescence or termination detection algorithm.

Keywords: Fault-tolerance · Snap-stabilization · Quiescence · Termination · Dif-
fusing computations

1 Introduction

Self-stabilization [11] is a property of distributed systems that withstand transient faults.
After transient faults set it into an arbitrary state, a self-stabilizing system recovers in
finite time a correct behavior. Multiple transformers that transform non self-stabilizing
algorithms A into self-stabilizing ones [2, 4–6] works roughly as follows. First, A is
executed. When A terminates, a local checking algorithm is executed (called “local
detection” algorithm [2] or local verifier of a Proof Labeling Scheme [19]). This verifier
detects an illegal state if and only if a fault occurred. A self-stabilizing reset algorithm,
e.g., [3], is then executed to bring all the nodes to an initial state that is legal for A.
The cycle is then started again, i.e., A is executed, termination detected, etc. Note that a
proof labeling scheme has to be designed especially for A, and some change to A may
be needed in order to generate the specific proof labeling scheme.

The above transformers assume a synchronous network in order to know that A ter-
minated and the verifier could be activated to verify the output (otherwise, the verifier
would signal a fault since the output is not yet computed). We do not want this assump-
tion. Alternatively [18], such transformers use a self-stabilizing synchronizer [3,7]. This
is a very message intensive function. It uses Ω(m) messages per round (where m is the
number of edges). For example, if A’s time complexity is Ω(n), its self-stabilizing
version (using such a transformer), would need Ω(nm) messages till stabilization. An
earlier transformer uses even more messages [17]. (It assumed a self stabilizing leader
election, which was then provided by [2]). The snap-stabilizing quiescence detection al-
gorithm presented here is a much more message-efficient termination detection method
in place of the self-stabilizing synchronizer, at least for diffusing computations [12]
(e.g., DFS, BFS, token circulation).



2 A. Durand and S. Kutten

Still, one needs yet another component for the transformer. Indeed, since A is not
self-stabilizing, if a fault occurs, A may never terminates. The missing component is
one that enforces termination. Here we use a very simple enforcer: assume that a node
sends at most some x messages executing A when there is no fault. To implement the
enforcer, each node just refuses to send more than x messages. It turns out that even
under these constraints (diffusing computations and the simple enforcer) the resulting
transformer sends less messages than the traditional ones for various algorithms.

Quiescence detection. A distributed system reaches quiescence [9, 21] when no mes-
sages are in the communication links and a local indicator of stability holds at every
process. Termination and deadlock are two examples of quiescence properties. Detect-
ing quiescence is fundamental. When a deadlock is detected, some measures can be
taken such as initiating a reset. Detecting the termination of a task allows the system
to use its computed result or issue another operation. In particular, a distributed appli-
cation is often composed of several modules where one must wait for the termination
of a module before starting the next one. It is considered easier to design a task that
eventually terminates and combine it with a termination detection protocol, see [15].

The quiescence detection problem and its sub-problems have been extensively stud-
ied in distributed computing since the seminal works of Dijkstra and Scholten [12] and
Francez [14] on termination detection. One can distinguish two main kinds of quies-
cence detection algorithms. Ongoing detection algorithms must monitor the execution
since its beginning and eventually detects quiescence when it is reached, e.g., [12]. Im-
mediate detection algorithms answers whether the system has reached quiescence by
now or not, e.g., [14]. Ongoing quiescence detection is needed for the transformer, and
for most other applications. Ongoing detection can be designed using an immediate
detection algorithm by repeatedly executing the detection algorithm until it actually
detects quiescence, however it might be highly inefficient.

Cournier et al. [10] explain how to design a snap-stabilizing1 immediate termina-
tion detection algorithm using their Propagation of Information and Feedback (PIF)
algorithm in the locally shared memory model. This does not seem applicable for the
message efficient transformer - not only this is not an ongoing detection, the memory
requirement is large since the whole state of the system must be locally computed and
stored (this can also increase the message complexity in the CONGEST model).

Contributions. We propose the first self-stabilizing and snap-stabilizing ongoing quies-
cence detection algorithm Q for diffusing computations.2 Using Q, we also implement
a message-efficient self-stabilizing transformer.

Q requires O(∆ log n) bits per process, where ∆ is the maximum degree. The ad-
ditional cost of Q is O(tab + mA + n) rounds, where tab is the number of rounds
needed to empty all the initial messages out of the channels and reach stabilization of

1 Snap-stabilization [8] is a variant of self-stabilization that ensures immediate recovery after
transient faults. Notice that a snap-stabilizing algorithm is also self-stabilizing.

2 In a diffusing computation, a unique process, the initiator, can spontaneously send a message
to one or more of its neighbors and only once. [12]. After receiving their first message, the
other processes can freely send messages to their neighbors.



Title Suppressed Due to Excessive Length 3

the alternating bit protocol of Afek and Brown [1]. The message complexity of A, the
monitored algorithm, is denoted mA.

2 Quiescence Detection Algorithm Q

We assume the CONGEST model [20] with FIFO channels of message capacity one
(see [1, 4] to enforce this).

A (global) quiescent property is defined by a local quiescent-indicator quiet(p) at
each process p such that: (a) while quiet(p) holds, p does not send messages and, as
long as p does not receives a message, quiet(p) continues to hold; (b) the channels are
empty and quiet(p) holds at every process p if and only if quiescence is reached.

In the context of snap-stabilization (see [8]), a quiescence detection algorithm can
start from an arbitrary configuration that leads processes to signal quiescence even if
quiescence is not actually reached. In particular, some message can initially be in some
channel (p, q) while neither p or q are aware of it until q receives it. Thus, processes
have two output signals: SignalQ() and SignalE(). A process calls SignalQ() when
it detects (global) quiescence. SignalE() is called when an error is detected, i.e., the
execution did not start from a clean configuration. For example, in a clean configuration
of our algorithm Q it is required, among other things, that channels are empty and an
execution of A starting from this configuration is actually a diffusing computation.

Definition 1. Q is a snap-stabilizing ongoing quiescence detection algorithm if, for
every execution Γ where Q monitors algorithm A since the beginning of its execution:

– Eventual Detection: If the execution of A reaches quiescence, a process eventually
calls SignalQ() or SignalE().

– Soundness: If SignalQ() is called, either the execution of A actually reached qui-
escence or the initial configuration of Q was not clean.

– Relevance: If the execution of A satisfies E and the initial configuration of Q is
clean, no process ever calls SignalE().

The relevance property prevents a trivial and useless detection algorithm where a pro-
cess calls SignalE() in every execution. Notice that there is no assumption on A, i.e.,
we do not require A to be self-stabilizing or even to compute a correct result.

Overview of the Algorithm. A and Q are composed using a fair composition [13]. To
avoid confusion, we call packets the messages of A. The idea of Q adapts the algorithm
of Dijkstra and Scholten [12] to the snap-stabilizing context using local checking [2].
To monitor A and detect quiescence, Q builds the tree of the execution. The initiator
of the diffusing computation is the root. When a process that is not in the tree receives
a packet m, it joins the tree by choosing the sender of m as parent. When a process
p has no children and quiet(p) holds, p leaves the tree. SignalQ() is called when the
initiator has no children and its local quietness-indicator holds.

To ensure that quiescence is not signaled when some messages are traveling, Q
uses acknowledgments to wait until messages are received before taking any action of
leaving the tree. In [12], counters are used to keep track of how many messages have not
been acknowledged yet. In a stabilizing context, maintaining counters is not easy. Thus,



4 A. Durand and S. Kutten

Q sends and receives packets of A using a self-stabilizing alternating bit protocol [1].
Simple proof labeling schemes [19] are used in various parts of the algorithm to make
sure it performs correctly. (Those schemes are somewhat generalized in the sense that
they are used to verify properties of the algorithm while the algorithm is still running.)
See the full version of the paper.

References

1. Afek, Y., Brown, G.M.: Self-stabilization over unreliable communication media. Distributed
Computing 7(1), 27–34 (1993)

2. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its application to self-
stabilization. Theor. Comput. Sci. 186(1-2), 199–229 (1997)

3. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time optimal self-
stabilizing synchronization. In: STOC’93. pp. 652–661 (1993)

4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and cor-
rection (extended abstract). In: FOCS’91. pp. 268–277 (1991)

5. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local checking
and global reset. In: WDAG’94. pp. 326–339 (1994)

6. Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building self-
stabilizing distributed protocols. In: FOCS’91. pp. 258–267 (1991)

7. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In: PODC
2004. pp. 150–159 (2004)

8. Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in tree networks.
In: WSS’99. pp. 78–85 (1999)

9. Chandy, K.M., Misra, J.: An example of stepwise refinement of distributed programs: Qui-
escence detection. ACM TOPLAS 8(3), 326–343 (1986)

10. Cournier, A., Datta, A.K., Devismes, S., Petit, F., Villain, V.: The expressive power of snap-
stabilization. Theor. Comput. Sci. 626, 40–66 (2016)

11. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM
17(11), 643–644 (1974)

12. Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations. Informa-
tion Processing Letters 11(1), 1–4 (1980)

13. Dolev, S.: Self-stabilization. MIT press (2000)
14. Francez, N.: Distributed termination. ACM TOPLAS 2(1), 42–55 (1980)
15. Francez, N., Rodeh, M., Sintzoff, M.: Distributed termination with interval assertions. In:

Formalization of Programming Concepts. pp. 280–291 (1981)
16. Hendler, D., Kutten, S.: Bounded-wait combining: constructing robust and high-throughput

shared objects. Distributed Computing 21(6), 405–431 (2009)
17. Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. Distributed

Computing 7(1), 17–26 (1993)
18. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self-stabilizing verification, com-

putation, and fault detection of an MST. In: PODC’11. pp. 311–320 (2011)
19. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Computing 22(4),

215–233 (2010)
20. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. Society for Industrial and

Applied Mathematics (2000)
21. Shavit, N., Francez, N.: A new approach to detection of locally indicative stability. In:

ICALP’86. pp. 344–358 (1986)


	Message-efficient Self-stabilizing Transformer using Snap-stabilizing Quiescence Detection

