
On Implementing Stabilizing Leader Election with Weak
Assumptions on Network Dynamics

Karine Altisen, Stéphane Devismes, Anaı̈s Durand, Colette Johnen, and Franck Petit

June 1, 2021

Abstract

In this paper, we consider self-stabilization and its weakened form called pseudo-stabilization. We
study conditions under which (pseudo- and self-) stabilizing leader election is solvable in networks subject
to frequent topological changes. To model such an high dynamics, we use the dynamic graph (DG)
paradigm and study a taxonomy of nine important DG classes.

Our results show that self-stabilizing leader election can only be achieved in the classes where all
processes are sources. However, we also show that, among those classes, the convergence time of pseudo-
and so self-stabilizing solutions can only be bounded in the class where all sources are actually timely.

Furthermore, even pseudo-stabilizing leader election cannot be solved in all remaining classes, except
in the class where at least one process is a timely source. We illustrate this result by proposing a pseudo-
stabilizing leader election algorithm for the latter class. We also show that in this last case, the convergence
time of pseudo-stabilizing leader election algorithms cannot be bounded. Nevertheless, we show that our
solution is speculative since its convergence time can be bounded when the dynamics is not too erratic,
precisely when all processes are timely sources.

Keywords: leader election, dynamic graphs, self-stabilization, pseudo-stabilization, speculation, sources,
sinks, timely sources, timely sinks.

1 Introduction

Leader election is a fundamental problem in distributed computing. Notably, it is often used as a basic
building block in the design of more complex crucial tasks such as spanning tree constructions, broadcasts,
and convergecasts. Consequently, leader election is commonly used as a benchmark problem to explore new
models or environments.

Modern networks —e.g., MANET (Mobile Ad-Hoc Networks), VANET (Vehicular Ad-Hoc Networks),
and DTN (Delay-Tolerant Networks)— are prone to both faults and frequent alteration of their topology
(i.e., the addition or the removal of communication links). Several works aim at capturing such a network
dynamics using graph-based models. In [10, 21], the network dynamics is represented as a sequence of
digraphs called evolving or dynamic graphs. In [9], the topological evolution of the network is modeled by a
Time-Varying Graph (TVG, for short). A TVG consists of a (fixed) digraph and a presence function which
indicates whether or not a given arc of the digraph exists at a given time.

The way a network is connected over time is of prime interest to develop algorithmic solutions. On the
other hand, an algorithmic solution should be as general as possible and so not focus on a single dynamic

1

pattern. Therefore, dynamic patterns are often classified according to the temporal characteristics of edge pres-
ence they satisfy; see, e.g., [9]. Such taxonomies are always proposed together with possibility/impossibility
results related to the strength of classes that compose them.

In [2], we have initiated research to unify fault-tolerance and endurance to high-frequency of topological
changes by proposing self-stabilizing algorithms for the leader election problem in three important classes
of dynamic networks, modeled using the TVG paradigm. In the present paper, we explore conditions on
the network dynamics under which the (deterministic) stabilizing leader election is solvable. The term
“stabilization” covers here both self-stabilization [13] and its weakened deterministic variant called pseudo-
stabilization [7] (n.b., by definition, any self-stabilizing algorithm is pseudo-stabilizing, but the reverse is not
necessarily true). Essentially, these two properties express the ability of a distributed algorithm to withstand
transient faults, i.e., faults (such as memory corruption) that occur at an unpredictable time, but do not result
in a permanent hardware damage and whose frequency is low. Indeed, starting from an arbitrary configuration
(which may be the result of transient faults), a self-stabilizing algorithm makes a distributed system reach
within finite time a configuration from which all possible execution suffixes satisfy the intended specification.
In contrast, an algorithm is pseudo-stabilizing if all its executions, starting from arbitrary configurations, have
a suffix satisfying the intended specification. Up to now, these two stabilizing properties have been mainly
studied in static systems, i.e., assuming a network with a fixed topology. In highly dynamic networks, the
design of stabilizing solutions is challenging since the network topology continuously evolves over the time.
Notably, stabilization should be achieved in spite of the high-frequency of topological changes occurring
throughout the convergence.

As is shown by this paper, pseudo- (and so self-) stabilization is often simply impossible to achieve
when the dynamics is too erratic. Furthermore, when stabilization is possible, the convergence time of
stabilizing solutions is often unboundable. In such cases, speculation [20] makes sense. Indeed, an algorithm
is speculative whenever it satisfies its requirements for all executions, but also exhibits significantly better
performances in a subset of more probable executions. Speculative self-stabilization has been initially
investigated in static networks [18]. Yet, recently, we have proposed speculative self-stabilizing solutions
for dynamic networks [2]: when the convergence time cannot be bounded in a very general class, we try to
exhibit an important subclass where it can be.

Contribution. In this paper, we study conditions under which stabilizing leader election can be solved in
highly dynamic identified message passing systems. We model the network dynamics using the dynamic
graph (DG for short) paradigm [10]. Moreover, we assume that processes can synchronously communicate
using local broadcast primitives: at each round, every process can send a common message to its unknown
set of current neighbors (if any).

Due to the intrinsic absence of termination detection, stabilizing leader election is close to the eventual
leader election problem [12] (usually denoted by Ω) studied in crash-prone partially synchronous, yet static
and fully connected, systems. In this problem, all correct processes should eventually always designate the
same correct process as leader [1]. We propose here to study the stabilizing leader election problem in DG
classes defined by analogy with the classes of partially synchronous systems investigated for Ω. In those
latter classes, the notions of source, sink, and timeliness are central. We first accommodate these concepts to
the DG paradigm. Roughly speaking, in a DG, a source is a process which is infinitely often able to reach all
other ones by flooding. It is a quasi-timely source if, using flooding, it can infinitely often reach all other
processes within some bounded time Δ. Finally, a timely source is a source that can always reach (still by
flooding) all other processes within some bounded time Δ. Conversely, a sink is a process which is infinitely
often reachable by all other ones using flooding. Quasi-timely and timely sinks are defined similarly to the

2

quasi-timely and timely sources. Using these notions we consider a taxonomy of nine DG classes:

• J1,∗, J Q
1,∗(Δ), and J B

1,∗(Δ) contain every DG where at least one (a priori unknown) process is a
source, a quasi-timely source, and a timely source, respectively.

• J∗,1, J Q
∗,1(Δ), and J B

∗,1(Δ) contain every DG where at least one (a priori unknown) process is a sink,
a quasi-timely sink, and a timely sink, respectively.

• Finally, J∗,∗, J Q
∗,∗(Δ), and J B

∗,∗(Δ) (the three classes studied in [2]) contain every DG where all
processes are sources, quasi-timely sources, and timely sources, respectively.

The hierarchy among all classes of this taxonomy is presented in Figure 2, page 7.
We first study the possibility of designing stabilizing leader election in those classes. Our results are

summarized in Figure 1. From [2], we already know that self-stabilizing leader election can be achieved in
J∗,∗, J Q

∗,∗(Δ), and J B
∗,∗(Δ). However, in this paper, we show that those three classes are actually the only

ones of our taxonomy where it is possible. Moreover, we show that, among those classes, the convergence
time of pseudo- and so self-stabilizing solutions can only be bounded in J B

∗,∗(Δ). By the way, we proposed
an asymptotically time-optimal self-stabilizing leader election algorithm for J B

∗,∗(Δ) in [2].
Furthermore, we establish that in the remaining classes, even pseudo-stabilizing leader election is not

possible, except in the class J B
1,∗(Δ). For this latter class, we propose a pseudo-stabilizing leader election

algorithm, called Algorithm LE . Now, we also show that, in general, convergence time of pseudo-stabilizing
leader election algorithms cannot be bounded in J B

1,∗(Δ). Nevertheless, we show that Algorithm LE is
speculative in the sense that its convergence time in J B

∗,∗(Δ) ⊂ J B
1,∗(Δ) is at most 6Δ+ 2 rounds.

Finally, we give a preliminary result on the space complexity of any pseudo-stabilizing leader election
solution in J B

1,∗(Δ), the class where only pseudo-stabilization can be achieved for the leader election problem.
Namely, we show that the memory requirement of any pseudo-stabilizing leader election algorithm for this
class is finite only if it depends on Δ.

Related Work. Ensuring convergence in highly dynamic networks regardless of the initial configuration is
challenging, even impossible in many cases [6]. However, perhaps surprisingly, a number of self-stabilizing
works, e.g., [11, 14, 17] (n.b., [11] deals with leader election) are advertised as solutions suited for dynamic
networks. Actually, those works propose self-stabilizing algorithms dedicated to arbitrary network topologies
and do not propose any specific patch to handle topological changes. Consequently, they tolerate topological
changes only if they are eventually detected locally at involved processes and if the frequency of such events
is low enough. Indeed, in such a case, topological changes can be seen as transient faults. Furthermore,
several approaches derived from self-stabilization, e.g., superstabilization [16] and gradual stabilization [3],
aims at additionally providing countermeasures to efficiently treat topological changes when they are both
spatially and timely sparse (i.e., transient). Overall, all these approaches become totally ineffective when the
frequency of topological changes drastically increases.

To the best of our knowledge, only few self-stabilizing works [2, 5, 8, 15] deal with a highly dynamic
context. The present paper is a follow-up of [2], in which we propose self-stabilizing solutions for the leader
election in three important classes of dynamic networks. Here we complete the panorama by studying more
general classes. All other aforementioned works, i.e., [5, 8, 15], use widely different models and assumptions
than ours, as explained below.

In [5], authors consider the self-stabilizing exploration of a highly dynamic ring by a cohort of synchronous
robots equipped with visibility sensors, moving actuators, yet no communication capabilities. Contrary to [5],
our classes never enforce the network to have a particular topology at a given time. In [8], Cai et al. tackles

3

JB
1,∗(Δ)

JQ
1,∗(Δ)

J1,∗

JB
∗,1(Δ)

JQ
∗,1(Δ)

J∗,1

JB
∗,∗(Δ)

JQ
∗,∗(Δ)

J∗,∗

Figure 1: Stabilizing leader election: summary of the results. Pseudo- (and so self-) stabilizing leader election
is impossible in the red area. Self- (and so pseudo-) stabilizing leader election is possible in the green area. In
the yellow area, only pseudo-stabilization can be achieved.

the self-stabilizing leader election problem in highly dynamic systems through the population protocol model.
In this model, communications are achieved by atomic rendezvous between pairs of anonymous processes,
where ties are nondeterministically broken. The local broadcast primitive we use here is weaker. Moreover,
authors assume global fairness, meaning that every configuration which is infinitely often reachable is actually
infinitely often reached. We do not make such an assumption here. Finally, Dolev et al. [15] assume the
system is equipped with a routing algorithm which allows any two processes to communicate, providing
that the sender knows the identifier of the receiver. This blackbox protocol abstracts the dynamics of the
system: the dynamics makes it fair lossy, non-FIFO, and duplication-prone. Moreover, the channel capacity
is assumed to be bounded. Based on this weak routing algorithm, they build a stronger routing protocol which
is reliable, FIFO, and which prevents duplication. Again, the communication primitive we assume here is
drastically weaker. As a matter of facts, in several classes studied here all-to-all communication is simply
impossible.

Roadmap. In Section 2, we present our taxonomy of DG classes and the computational model. In the
same section, we define the two stabilizing variants we will consider as well as the leader election problem.
Section 3 is dedicated to our impossibility results and lower bounds. Our speculative pseudo-stabilizing
leader election algorithm for J B

1,∗(Δ) is proposed in Section 4. We make concluding remarks in Section 6.

2 Preliminaries

2.1 Dynamic Graphs

Dynamicity refers to the structure of communication links between processes that evolves over the time. We
model this using the so-called dynamic graphs [10].

In a dynamic graph, the set of vertices (representing processes of the network) is fixed, but the set of
edges may evolve. So, a dynamic graph is a sequence of graphs gathering the same set of vertices, but where

4

the set of edges can be different from one graph to another. In such a model, the notion of “static” path used
in classical graph theory should be adapted as path over time, called here journey, since the existence of a
given edge depends on the instant we consider. Accordingly, the classical notions of distance and diameter
should be re-engineered as temporal distance and temporal diameter, respectively.

The next paragraph provides the formal definitions of dynamic graph, journey, temporal distance, and
temporal diameter. Next, we will define the important classes of dynamic graphs that will be studied in this
paper.

2.1.1 Dynamic Graph Model [10]

For any directed graph G, we denote by V (G) its vertex set and by E(G) its set of oriented edges. A dynamic
graph G with vertex set V (DG for short) is an infinite sequence of directed loopless graphs G1, G2, ... such
that V (Gi) = V , for every i ∈ N∗. Notice that our definition of DG is close to the model, called evolving
graphs, defined in [21]. For every i ∈ N∗, we denote by Gi� the dynamic graph Gi, Gi+1, ... with vertex set
V , i.e., the suffix of G starting from position i.

A journey J can be thought as a path over time from a starting vertex p1 to a destination vertex qk,
i.e., J is a finite non-empty sequence of pairs J = (e1, t1), (e2, t2), ..., (ek, tk) where ∀i ∈ {1, . . . , k},
ei = (pi, qi) ∈ E(Gti) and i < k ⇒ qi = pi+1 ∧ ti < ti+1. We respectively denote by departure(J)
and arrival(J) the starting time t1 and the arrival time tk of J . The temporal length of J is equal to
arrival(J)− departure(J) + 1. We denote by JG(p, q) the set of journeys from p to q in G. We let G� to
be the binary relation over V such that p G� q if and only if p = q or there exists a journey from p to q in G.

The temporal distance from p to q in G, d̂G(p, q), is defined as follows: d̂G(p, q) = 0, if p = q,
d̂G(p, q) = min{arrival(J) : J ∈ JG(p, q)} otherwise (by convention, we let min ∅ = +∞). Roughly
speaking, the temporal distance from p to q in G gives the minimum timespan for p to reach q in G.

The temporal distance from p to q in G at position i ∈ N∗, d̂G,i(p, q), is the temporal distance from p to q

in Gi�, i.e., d̂Gi�(p, q). Similarly, the temporal diameter in G at position i ∈ N∗ is the maximum temporal
distance at position i between any two vertices in G.

For all aforementioned notations, we omit the subscript G when it is clear from the context.

2.1.2 Dynamic Graph Classes

A class of dynamic graphs is defined as a particular set of dynamic graphs. A DG class C is said to be
recurring if and only if for every DG G ∈ C, we have ∀i ∈ N∗, Gi� ∈ C; in other words, every recurring DG
class is suffix-closed.

We will consider the nine recurring DG classes in this paper. They are formally defined in Table 1, 2,
and 3.

The first three classes (Table 1) contain dynamic graphs with at least one (a priori unknown) (temporal)
source, i.e., a vertex from which every vertex can be reached infinitely often via a journey. These classes
are said to be “one to all” or classes with a source, and are indexed by 1, ∗. They actually differ by the
timing guarantees on journeys they offer. In the first class, except from the existence of a source, there is no
guarantees. The second class contains a timely source,1 in the sense that its temporal distance to any vertex is
always bounded by some value Δ ∈ N∗; the class name is then written with the superscript B. The third
class guarantees that there is a source such that at any time and for any vertex, we have wait for some (finite
yet unbounded) time before the source can reach this vertex within a bounded temporal distance. Hence, we

1We have chosen this name by analogy with timely sources in partially synchronous systems [12].

5

say that the distance is quasi-bounded and so the source is a quasi-timely source; the class name then contains
the superscript Q.

The second set of three classes (see Table 2) contains dynamic graphs with at least one (temporal) sink,
namely a vertex that can be reached infinitely often by any other vertices via a journey; These classes are said
to be “all to one” or classes with a sink, and are indexed by ∗, 1. Similarly to the classes with a source, they
differ by their timing guarantees on journeys they offer.

The last three classes (see Table 3) contain dynamic graphs where every vertex is a source (and so a
sink). Hence, they are called “all to all” and indexed by ∗, ∗. Using the same classification as for the previous
classes, these three classes have been already defined in [9], [19] and [2] respectively.

Class J1,∗
At least one vertex, called a (temporal) source, can reach all the other vertices
infinitely often through a journey:

G ∈ J1,∗ iff ∃src ∈ V, ∀p ∈ V, ∀i ∈ N∗, src
Gi�� p

Class J B
1,∗(Δ)

At least one vertex, called a timely source, is always at temporal distance at
most Δ from all other vertices:

G ∈ J B
1,∗(Δ) iff ∃src ∈ V, ∀p ∈ V, ∀i ∈ N∗, d̂G,i(src, p) ≤ Δ

Class J Q
1,∗(Δ)

At least one vertex, called a quasi-timely source, is infinitely often at temporal
distance at most Δ from each other vertex:

G ∈ J Q
1,∗(Δ) iff ∃src ∈ V, ∀p ∈ V, ∀i ∈ N∗, ∃j ≥ i, d̂G,j(src, p) ≤ Δ

Table 1: Classes with a source – indexed by 1, ∗ (G is a dynamic graph with vertex set V and Δ ∈ N∗).

Class J∗,1
At least one vertex, called a sink, can be reached by all the other vertices
infinitely often through a journey:

G ∈ J∗,1 iff ∃snk ∈ V, ∀p ∈ V, ∀i ∈ N∗, p
Gi�� snk

Class J B
∗,1(Δ)

Every vertex is always at temporal distance at most Δ of at least one given
vertex, called a timely sink:

G ∈ J B
∗,1(Δ) iff ∃snk ∈ V, ∀p ∈ V, ∀i ∈ N∗, d̂G,i(p, snk) ≤ Δ

Class J Q
∗,1(Δ)

Every vertex is infinitely often at temporal distance at most Δ from at least one
given vertex, called a quasi-timely sink:

G ∈ J Q
∗,1(Δ) iff ∃snk ∈ V, ∀p ∈ V, ∀i ∈ N∗, ∃j ≥ i, d̂G,j(p, snk) ≤ Δ

Table 2: Classes with a sink – indexed by ∗, 1 (G is a dynamic graph with vertex set V and Δ ∈ N∗).

Remark 1. By definition, for every x ∈ {1, ∗; ∗, 1; ∗, ∗} and y ∈ {B,Q}, for every Δ� ≥ Δ, we have

J y
x (Δ) =⇒ J y

x (Δ
�)

By definition, for every Δ ∈ N∗, we have the inclusions depicted in Figure 2. Furthermore, as stated
by the theorem below, there is no inclusion between any other pair of classes. In particular, this means that
inclusions in Figure 2 are strict.

Theorem 1. ∀Δ ∈ N∗, the inclusions given in Figure 2 hold. These inclusions are strict and there is no
inclusion between any other pair of classes.

6

Class J∗,∗
Every vertex can always reach all the others through a journey:

G ∈ J∗,∗ iff ∀p ∈ V, ∀q ∈ V, ∀i ∈ N∗, p
Gi�� q

Class J B
∗,∗(Δ)

Every vertex is always at temporal distance at most Δ from all other vertices:
G ∈ J B

∗,∗(Δ) iff ∀p ∈ V, ∀q ∈ V, ∀i ∈ N∗, d̂G,i(p, q) ≤ Δ

Class J Q
∗,∗(Δ)

Every vertex is infinitely often at temporal distance at most Δ from each other
vertex:

G ∈ J Q
∗,∗(Δ) iff ∀p, q ∈ V, ∀i ∈ N∗, ∃j ≥ i, d̂G,j(p, q) ≤ Δ

Table 3: Classes where every vertex is a sink and a source – indexed by ∗, ∗ with G a dynamic graph with
vertex set V and Δ ∈ N∗.

J B
∗,∗(Δ) J Q

∗,∗(Δ) J∗,∗

J B
1,∗(Δ) J Q

1,∗(Δ) J1,∗

J B
∗,1(Δ) J Q

∗,1(Δ) J∗,1

Figure 2: The hierarchy of studied DG classes. A → B means that A ⊂ B.

J B
1,∗(Δ) J B

∗,∗(Δ) J B
∗,1(Δ) J Q

1,∗(Δ) J Q
∗,∗(Δ) J Q

∗,1(Δ) J1,∗ J∗,∗ J∗,1
J B
1,∗(Δ) — � (1) � (1) ⊂ � (1) � (1) ⊂ � (1) � (1)

J B
∗,∗(Δ) ⊂ — ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂

J B
∗,1(Δ) � (1) � (1) — � (1) � (1) ⊂ ⊂ � (1) � (1)

J Q
1,∗(Δ) � (2) � (1) � (1) — � (1) � (1) ⊂ � (1) � (1)

J Q
∗,∗(Δ) � (2) � (2) � (2) ⊂ — ⊂ ⊂ ⊂ ⊂

J Q
∗,1(Δ) � (1) � (1) � (2) � (1) � (1) — � (1) � (1) ⊂
J1,∗ � (3) � (1) � (1) � (3) � (1) � (1) — � (1) � (1)
J∗,∗ � (3) � (3) � (3) � (3) � (3) � (3) ⊂ — ⊂
J∗,1 � (1) � (1) � (3) � (1) � (1) � (3) � (1) � (1) —

Figure 3: Relations between classes

. . .

v1

. . .

v1

Figure 4: The star graph S with a source and the star graph T with a sink.

7

Proof. First, for every Δ ∈ N∗, the inclusions in Figure 2 hold by definition of the classes. Now, regarding
non-inclusions, the proof is split into three parts. Each number in Figure 3 refers to one of the part.

Let Δ be a positive number and V = {v1, ..., vn} be a set of n > 1 vertices.

� (1) This first part of the proof compares DGs with a source (resp. a sink) against all to all DGs.

Let S = (V,ES) be a out-star graph, i.e., ES = {(v1, vi) : i ∈ {2, ..., n}}. Let T = (V,ET) be a
out-star graph, i.e., ET = {(vi, v1) : i ∈ {2, ..., n}}. See Figure 4 for illustrative examples.

We consider the dynamic graph G(1S) = S, S, ... with vertex set V .

Obviously, G(1S) ∈ J1,∗,J Q
1,∗(Δ) and J B

1,∗(Δ), since at any time, v1 can directly reach any other
vertex using one single edge.

But G(1S) �∈ J∗,∗,J Q
∗,∗(Δ),J B

∗,∗(Δ), indeed v1 can never be reached.

Moreover, by transitivity, G(1S) �∈ J∗,1,J Q
∗,1(Δ),J B

∗,1(Δ). Hence, the non-inclusions between those
classes.

Similarly, we consider the dynamic graph G(1T) = T, T, ... with vertex set V .

Obviously, G(1T) ∈ J∗,1,J Q
∗,1(Δ),J B

∗,1(Δ). But, G(1T) �∈ J∗,∗,J Q
∗,∗(Δ),J B

∗,∗(Δ). Moreover, by
transitivity, G(1T) �∈ J1,∗,J Q

1,∗(Δ),J B
1,∗(Δ).

� (2) This second part of the proof compares classes with a quasi-bounded distance against classes with a
bounded distance (i.e., B against Q).

Let G(2) = G1, G2, ... be the dynamic graph with vertex set V where ∀i ∈ N∗, if ∃j ∈ N such that
i = 2j , then Gi is fully connected; Gi has no edge otherwise.

Obviously, G(2) ∈ J Q
∗,∗(Δ),J Q

1,∗(Δ),J Q
∗,1(Δ), since at position 2j , every vertex can directly reach

every other one using one single edge.

But, G(2) �∈ J B
∗,∗(Δ),J B

∗,1(Δ),J B
1,∗(Δ) because waiting for the next index, which is a power of 2, is

longer and longer and so cannot be bounded.

� (3) The third part of the proof compares recurrent dynamic graphs against dynamic graphs with bounded
or quasi-bounded distances.

Consider the following edges: ei = (vi, vi+1), for i = 1, ..., n− 1 and en = (vn, v1). Notice that those
edges shape a unidirectional ring.

Let G(3) = G1, G2, ... be the dynamic graph with vertex set V , where ∀i ∈ N∗, Gi contains 0 or one
edge; precisely, for every j ∈ N, G2j contains the edge e(j mod n)+1; Gi contains no edge otherwise
(i.e., when i cannot be written as a power of 2).

Obviously, G(3) ∈ J∗,∗,J∗,1,J1,∗, because every edge of the ring always eventually appears.

However, G(3) �∈ J Q
∗,∗(Δ),J Q

∗,1(Δ),J Q
1,∗(Δ). Indeed, the temporal length of journeys linking any two

non-consecutive vertices increases over time and so cannot be bounded. Moreover, by transitivity,
G(3) �∈ J B

∗,∗(Δ),J B
∗,1(Δ),J B

1,∗(Δ).

8

2.2 Computational Model

We consider the computational model defined in [4, 10]. We assume a distributed system made of a set V of
n processes. Each process has a local memory, a local sequential and deterministic algorithm, and message
exchange capabilities. We assume that each process p has a unique identifier (ID for short).The ID of p is
denoted by id(p) and taken in an arbitrary domain IDSET totally ordered by <. Processes are assumed
to communicate by message passing through an interconnected network that evolves over the time. The
dynamic topology of the network is then conveniently modeled by a dynamic graph G = G1, G2, ... with
vertex set V , i.e., the set of processes. Processes execute their local algorithms in synchronous rounds. For
every i ∈ N∗, the communication network at Round i is defined by Gi, i.e., the graph at position i in G.
∀p ∈ V , ∀i ∈ N∗, we denote by IN (p)i = {q ∈ V : (q, p) ∈ E(Gi)} the set of p’s incoming neighbors at
Round i. IN (p)i is assumed to be unknown by p, whatever be the value of i.

A distributed algorithm A is a collection of n local algorithms A(p), one per process p ∈ V (n.b.,
different processes may have different codes). At each round, the state of each process p ∈ V in A is
defined by the values of its variables in A(p). Some variables may be constant in which case their values
are predefined. Since any algorithm A is designed for a given class of dynamic graphs C, we assume the
following property of well-formedness: for all G,G� ∈ C with vertex sets V and V � respectively, if |V | = |V �|,
then every process p ∈ V ∩ V � executes the same local program A(p) (in particular, with the same set of
local states) whether p is running in G or G�. This property claims that an algorithm depends only on (1)
characteristics that are global to the class in which it runs (e.g., Δ for J B

1,∗(Δ)), (2) process identifiers, and
(3) maybe the number of processes.

A configuration of A for V is a vector of n components γ = (s1, s2, . . . , sn), where s1 to sn represent
the states of the processes in V . Let γ1 be the initial configuration of A for V . For any (synchronous)
round i ≥ 1, the system moves from the current configuration γi to some configuration γi+1, where γi (resp.
γi+1) is referred to as the configuration at the beginning (resp. end) of Round i. Such a move is atomically
performed by every process p ∈ V according to the following three steps, defined in its local algorithm A(p):

1. p sends a message consisting of all or a part of its local state in γi using the primitive SEND(),
2. using Primitive RECEIVE(), p receives all messages sent by processes in IN (p)i, and
3. p computes its state in γi+1.

An execution of a distributed algorithm A in the dynamic graph G = G1, G2, ... is an infinite sequence of
configurations γ1, γ2, . . . of A for V such that ∀i > 0, γi+1 is obtained by executing a synchronous round of
A on γi based on the communication network at Round i, i.e., the graph Gi.

2.3 Stabilizing Leader Election in Recurring DG Classes

We have initiated research on self-stabilization in highly dynamic identified message-passing systems in [2].
Notably, we have adapted the definition of self-stabilization to handle recurring DG classes. We recall this
definition below. Then, we accommodate the definition of pseudo-stabilization, that was initially defined in
the static context, to recurring DG classes. Finally, we define what we mean by self- and pseudo- stabilizing
leader election.

Stabilization in Recurring DG Classes. Let A be a distributed algorithm, SP be a specification (i.e., a
predicate over configuration sequences), and C be a recurring DG class.

Definition 1 (Self-stabilization). An algorithm A is self-stabilizing for SP on C if and only if for every set of
processes V , there exists a subset of configurations L of A for V , called legitimate configurations, such that
for every G ∈ C with set of processes V ,

9

1. for every configuration γ of A for V , every execution of A in G starting from γ contains a legitimate
configuration γ� ∈ L (Convergence), and

2. for every legitimate configuration γ ∈ L and every execution e in G starting from γ, SP (e) holds
(Correctness).

The length of the stabilization phase of an execution e is the length of its maximum prefix containing no
legitimate configuration. The stabilization time in rounds is the maximum length of a stabilization phase over
all possible executions.

Burns et al. define in [7], in the context of static networks, a weak variant of self-stabilization called
pseudo-stabilization. Intuitively, an algorithm is pseudo-stabilizing if all its executions (starting from arbitrary
configurations) have a suffix satisfying the intended specification. In [7], pseudo-stabilization has been shown
to be strictly weaker than self-stabilization in terms of expressive power. That is, there are systems and
problems for which pseudo-stabilizing solutions do exist but self-stabilizing ones do not. As a matter of
facts, they show that the data-link problem can be pseudo-stabilizingly, yet not self-stabilizingly, solved in
static message passing systems where the link capacity is unbounded and the process memories are finite.
Consequently, in general we cannot define a set of legitimate configurations for a pseudo-stabilizing solution.
In other words, this notion is irrelevant in pseudo-stabilization.

Below, we define pseudo-stabilization for the context of recurring DG classes.

Definition 2 (Pseudo-stabilization). A is pseudo-stabilizing for SP on C if and only if for every set of
processes V , every G ∈ C with set of processes V , and every configuration γ of A for V , every execution of
A in G starting from γ contains a suffix satisfying SP .

The length of the pseudo-stabilization phase of an execution γ1, γ2, . . . is the minimum index i such
that S(γi+1, γi+2, . . .) holds. The pseudo-stabilization time in rounds is the maximum length of a pseudo-
stabilization phase over all possible executions.

Remark 2. By definition, if A is self-stabilizing for SP on C, then A is also pseudo-stabilizing for SP on C
(but the reverse is not necessarily true).

Moreover, the length of the pseudo-stabilization phase is less than or equal to that of the stabilization
phase in a given execution of A; and so are its the pseudo-stabilization and stabilization time.

Stabilizing Leader Election. The leader election problem consists in distinguishing a single process in
the system. In identified networks, the election usually consists in making the processes agree on one of the
identifiers held by processes. The identifier of the elected process is then stored at each process p as an output
variable, denoted here by lid(p).

In the following, we call fake ID any value v ∈ IDSET (recall that IDSET is the definition domain of
the identifiers) such that v is not assigned as a process identifier in the system, i.e., there is no process p ∈ V
such that id(p) = v. In the stabilizing context, the output variables lid may be initially corrupted; in particular
some of them may be initially assigned to fake IDs. Despite such fake IDs, the goal of a self-stabilizing
algorithm is to make the system converge to a configuration from which a unique process is forever adopted
as leader by all processes, i.e., ∃p ∈ V such that ∀q ∈ V, lid(q) = id(p) forever. Similarly, the goal of
pseudo-stabilizing algorithm is to ensure the existence of an execution suffix where a unique process is
forever adopted as leader by all processes. Hence, the leader election specification SPLE can be formulated
as follows: a sequence of configurations γ1, γ2, . . . satisfies SPLE if and only if ∃p ∈ V such that ∀i ≥ 1,
∀q ∈ V , the value of lid(q) in Configuration γi is id(p).

In the sequel, we say that an algorithm is a self- (resp. pseudo-) stabilizing leader election algorithm for
the recurring DG class C if and only if it is self- (resp. pseudo-) stabilizing for SPLE on C.

10

3 Impossibility Results

In this section, we present several impossibility results. We will first show that there are important recurring
DG classes where pseudo- or only self- stabilizing leader election cannot be deterministically solved. Then,
we will discuss about time and space complexities of stabilizing leader election algorithms in remaining
cases.

All results of this section are based on the notion of indistinguishable executions [12]. The principle of
this proof scheme is as follows. First, we assume, by the contradiction, that a deterministic leader election
algorithm has a given property (related to pseudo- or self- stabilization) in a particular DG class. Then, we
consider two sets of processes of same cardinality that differ by only few processes (in the usual case, they
differ by only one process). We exhibit two particular executions, one for each set, on two well-chosen DGs
of the class. The stabilizing election succeeds in the first one. Moreover, all or a part of processes common
to both sets behave exactly the same in both executions: we chose the DG and the initial configuration of
the second execution in such way that these processes start with the same local states and receive the sames
messages at the same times in both executions; justifying then the term “indistinguishable”. Now, the behavior
of those processes make the stabilizing election fail in the second execution, leading to a contradiction.

3.1 Impossibility Results for the Design of Stabilizing Leader Election

On the impossibility of solving deterministic self-stabilizing leader election in DG classes with a source.
In this first part, we show that no deterministic algorithm can solve the self-stabilizing leader election in DG
classes with a source. To that goal, we first introduce some DGs and an helpful intermediate result (Lemma 1)
that will be used in several impossibility proofs. Then, we prove the result for Class J B

1,∗(Δ) and finally
extend it to other classes with a source as a direct consequence of Theorem 1 and Figure 2.

Definition 3. Let PK(X, y) be the directed graph with vertex set X and edge set {(p, q) : p ∈ X \{y}∧q ∈
X ∧ p �= q}. PK(X, y) is quasi-complete in the sense that only links outgoing from y are missing.

Let PK(X, y) be the dynamic graph PK(X, y), PK(X, y), ... with vertex set X such that |X| ≥ 2 and
y ∈ X .

Remark 3. By definition, every dynamic graph PK(X, y) belongs to J B
1,∗(Δ), for every Δ ∈ N∗. Indeed,

all processes, except y, are timely sources that can always reach all other processes in one round. In contrast,
y can never transmit information to any other process.

The following lemma formally establishes that in PK(V, p), p cannot be finally elected since the other
processes have no mean to detect that id(p) is not a fake ID. Indeed, by definition of PK(V, p), they never
receive any message from p.

Lemma 1. Let V be a set of at least two processes. Let p ∈ V and Δ ∈ N∗. Let A be any deterministic
pseudo-stabilizing leader election algorithm for J B

1,∗(Δ). Let γ1 be any configuration of A for V where
∀q ∈ V , lid(q) = id(p).

Then, in the execution e = γ1, γ2, ... of A in PK(V, p), at least one process eventually modifies the value
of its lid variable.

Proof. Assume, by the contradiction, that ∀i ∈ N∗, ∀q ∈ V , we have lid(q) = id(p) in γi.
Let v be any process such that v /∈ V (in particular, id(v) �= id(q), ∀q ∈ V). Let V � = V \ {p} ∪ {v}

and γ�1 be any configuration of A for V � such that

1. v has any local state in γ�1, and

11

2. ∀q ∈ V � \ {v}, the local state of q is the same in γ�1 and γ1.

The only difference between γ1 and γ�1 is that p has been replaced by v (with an arbitrary local state). We now
consider the execution e� = γ�1, γ

�
2, ... of A in PK(V �, v) (recall that PK(V �, v) ∈ J B

1,∗(Δ); see Remark 3).

Claim 1.*: ∀q ∈ V � \ {v}, ∀i ∈ N∗, q has the same local state in γ�i and γi.

Proof of the claim: By induction on i. The base case i = 1 is trivial, by construction of γ�1. Let i ≥ 1.
By induction hypothesis, ∀q ∈ V � \ {v}, q has the same local state in γ�i and γi. Let x be any process
in V � \ {v}. Since by construction V � \ {v} = V \ {p}, the in-neighborhood of x is V � \ {v} at the
beginning of Round i both in e and e�. So, x receives the same set of messages and takes the same
state in Round i of both e and e�, since A is deterministic. Hence, ∀q ∈ V � \ {v}, q has the same local
state in γ�i+1 and γi+1.

By Claim 1.*, ∀q ∈ V � \ {v}, lid(q) is constantly equal to id(p) in e�. Now, p /∈ V � (in other words,
id(p) is a fake ID for V �). So, e� has no suffix satisfying SPLE : A is not a pseudo-stabilizing leader election
algorithm for J B

1,∗(Δ), a contradiction.

The next theorem is a direct consequence of Lemma 1. Indeed, consider for the purpose of contradiction
a legitimate configuration γ. Then, one process, say �, is elected in that configuration. Now, during the
execution starting from γ in PK(V, �), at least one process will change is lid variable (since self-stabilization
implies pseudo-stabilization, Lemma 1 applies), leading to a contradiction.

Theorem 2. Let Δ ∈ N∗. There is no deterministic self-stabilizing leader election algorithm for J B
1,∗(Δ).

Proof. We proceed by contradiction. Let A be a deterministic self-stabilizing leader election algorithm for
J B
1,∗(Δ). Let V be any set of at least two processes. Let γ1 be any legitimate configuration of A for J B

1,∗(Δ).
Let � ∈ V be the elected leader in γ1, i.e., ∀q ∈ V , lid(q) = id(�) in γ1. Consider now the execution
e = γ1, γ2, ... of A in PK(V, �) (recall that PK(V, �) ∈ J B

1,∗(Δ); see Remark 3). By Remark 2, Lemma 1
applies: there exist a process p ∈ V and a round i ∈ N∗, such that lid(p) = id(�) at the beginning of Round
i, but lid(p) �= id(�) at the end of Round i. Hence, SPLE(e) does not hold, a contradiction to the correctness
property of Definition 1.

From Theorem 1 and Figure 2, we have the following corollaries.

Corollary 1. Let Δ ∈ N∗. There is no deterministic self-stabilizing leader election algorithm for J Q
1,∗(Δ).

Corollary 2. There is no deterministic self-stabilizing leader election algorithm for J1,∗.

On the impossibility of solving deterministic pseudo-stabilizing leader election in J Q
1,∗(Δ) and J1,∗.

We now show that no deterministic algorithm solves the pseudo-stabilizing leader election in Classes J Q
1,∗(Δ)

and J1,∗. We first prove the result for Class J Q
1,∗(Δ) and then extend it to J1,∗ as a direct consequence of

Theorem 1 and Figure 2.
In the next theorem we proceed by the contradiction. The principle is to consider a set of at least two

processes and to construct on the fly an execution together with its associated DG of J Q
1,∗(Δ) in such a

way that the leader election fails. We start in a configuration where no leader is elected and let the pseudo-
stabilizing leader election algorithm execute in a complete graph until a leader is elected (it will happen since
the algorithm is assumed to be pseudo-stabilizing). Once a leader, say �, is elected, we disturb the network by

12

making the execution continue in the graph PK(V, �) until a process changes its leader (since J B
1,∗(Δ) ⊂

J Q
1,∗(Δ), Lemma 1 applies) and then switch back to a complete graph, and so on. Hence, there is never a

permanent leader in the execution. Moreover, since the constructed graph contains infinitely many complete
graphs, it trivially belongs to J Q

1,∗(Δ), for every Δ ∈ N∗.

Theorem 3. Let Δ ∈ N∗. There is no deterministic pseudo-stabilizing leader election algorithm for J Q
1,∗(Δ).

Proof. We proceed by the contradiction. Let A be a pseudo-stabilizing leader election algorithm for J Q
1,∗(Δ).

Let V be a set of at least two processes.

Claim 3.*: Let γ1 be a configuration of A for V where there is a unique leader � ∈ V . Let e = γ1, ... the
execution e of A starting from γ1 in PK(V, �). Then, there exists i ∈ N∗ such that � is not the leader
in γi.

Proof of the claim: Since J B
1,∗(Δ) ⊂ J Q

1,∗(Δ), the claim is immediate from Lemma 1.

Let G = G1, G2, ... be a dynamic graph with vertex set V and e = γ1, γ2, ... be the execution of A in G
starting from γ1 constructed as follows: γ1 is a configuration where there is no unique leader and G1 = K(V);
then, ∀i ∈ N∗,

1. if there is one and the same leader � in both γi and the configuration γi+1 computed from γi and Gi,
then Gi+1 = PK(V, �);

2. otherwise, Gi+1 = K(V).

By construction and Claim 3.*, e has no suffix satisfying SPLE . Moreover, by Claim 3.* again, G contains
K(V) infinitely many times. Hence, G ∈ J Q

1,∗(Δ). Consequently, A is not a deterministic pseudo-stabilizing
leader election algorithm for J Q

1,∗(Δ), a contradiction.

From Theorem 1 and Figure 2, we have the following corollary.

Corollary 3. There is no deterministic pseudo-stabilizing leader election algorithm for J1,∗.

On the impossibility of solving deterministic pseudo-stabilizing leader election algorithm in classes
with a sink. We now introduce some DGs allowing us to show that no pseudo-stabilizing leader election
algorithm for J B

∗,1(Δ) exists. Then, we extend this result to every classes with a sink and self-stabilizing
algorithms (as direct consequences of Theorem 1, Figure 2, and Remark 2).

Definition 4. Let X be any vertex set such that |X| ≥ 2. For every y ∈ X , let S(X, y) be the directed graph
with vertex set X and edge set {(p, y) : p ∈ X \ {y}}; see, for example, the star graph T in Figure 4. Let
S(X, y) be the dynamic graph S(X, y), S(X, y), ... with vertex set X .

Remark 4. By definition, every dynamic graph S(X, y) belongs to J B
∗,1(Δ), for every Δ ∈ N∗. Indeed, y

is a timely sink that can always be reached from all other processes in one round. However, y can never
transmit information to any other process.

To show the next theorem, the overall idea is quite simple: if we consider an set V of at least three
processes, one process p of V , and the DG S(V, p), then every leaf of the star (at least two) will eventually
choose itself as leader since it has no mean to guess any identifier of some other process. Indeed, using
S(V, p), no process, except p, can receive messages.

13

Theorem 4. Let Δ ∈ N∗. There is no deterministic pseudo-stabilizing leader election algorithm for J B
∗,1(Δ).

Proof. We proceed by the contradiction. Let V be a set of at least three processes and p ∈ V . Let A be a
deterministic pseudo-stabilizing leader election algorithm for J B

∗,1(Δ). Let e = γ1, γ2, ... be any execution
of A in S(V, p).

To obtain the contradiction, we show below that for every process q ∈ V \ {p}, eventually q.lid = id(q)
forever in e. Since |V \ {p}| ≥ 2, we immediately obtain the contradiction.

Let q ∈ V \{p}. Since A is a deterministic pseudo-stabilizing leader election algorithm for J B
∗,1(Δ), there

exist i ∈ N∗ and v ∈ V , such that ∀j ≥ i, lid(q) = id(v) in γj . Assume, by the contradiction, that v �= q.
Let w be any process such that w /∈ V (in particular, id(w) �= id(x), ∀x ∈ V). Let V � = V \ {v} ∪ {w}.
Let γ�1 be any configuration of A for V � such that

1. w has any local state in γ�1, and

2. ∀x ∈ V � \ {w}, the local state of x is the same in γ�1 and γi.

The only difference between γi and γ�1 is that v has been replaced by w (with an arbitrary local state). We
now consider the execution e� = γ�1, γ

�
2, ... of A in S(V �, w) (recall that S(V �, w) ∈ J B

∗,1(Δ); see Remark 4).

Claim 4.*: ∀j ∈ N∗, the local state of q is the same in γ�j and γi+j−1.

Proof of the claim: By induction on j. The base case j = 1 is trivial, by construction of γ�1. Let j ≥ 1.
By induction hypothesis, γ�j(q) = γi+j−1(q). By construction, the in-neighborhood of q is empty at
the beginning of both Round i+ j − 1 in e and Round j in e�. So, q receives no message and takes the
same state in both Round i+ j − 1 of e and Round j of e�, since A is deterministic. Hence, the local
state of q is the same in γ�j+1 and γi+j .

By Claim 4.*, lid(q) = id(v) forever in e�. Now, id(v) /∈ V � (in other words, id(v) is a fake ID for V �).
So, e� has no suffix satisfying SPLE : A is not a deterministic pseudo-stabilizing leader election algorithm for
J B
∗,1(Δ), a contradiction.

From Theorem 1 and Figure 2, we have the following corollaries.

Corollary 4. Let Δ ∈ N∗. There is no deterministic pseudo-stabilizing leader election algorithm for
J Q
∗,1(Δ).

Corollary 5. There is no deterministic pseudo-stabilizing leader election algorithm for J∗,1.

From Remark 2, we have the following corollaries.

Corollary 6. Let Δ ∈ N∗. There is no deterministic self-stabilizing leader election algorithm for J B
∗,1(Δ).

Corollary 7. Let Δ ∈ N∗. There is no deterministic self-stabilizing leader election algorithm for J Q
∗,1(Δ).

Corollary 8. There is no deterministic self-stabilizing leader election algorithm for J∗,1.

14

3.2 Time Complexity

On time complexity of deterministic pseudo-stabilizing leader election in J B
1,∗(Δ). Below, we show

that the length of the pseudo-stabilization phase of any deterministic pseudo-stabilizing leader election
algorithm for J B

1,∗(Δ) cannot be bounded.

Definition 5. Let K(X) = (X,E) the directed complete graph, i.e., E = {(p, q) : p, q ∈ X ∧ p �= q}. Let
K(X) be the dynamic graph with vertex set X K(X),K(X), ...

For the next theorem, we again proceed by the contradiction. We consider an execution which begins in
an arbitrary configuration while the network is complete. The network remains complete until the end of
Round f(n,Δ). By hypothesis, a leader, say �, is elected at that time. Then, we disturb the system by making
the execution continue in the graph PK(V, �). Now, in one hand, we know (from Lemma 1) that a process
will eventually change its leader, falsifying the specification after Round f(n,Δ); and in the other hand any
DG starting with a finite number of complete graphs followed by PK(V, �) belong to J B

1,∗(Δ). Hence, we
obtain the contradiction.

Theorem 5. Let Δ ∈ N∗ and n ≥ 2. Let A be a deterministic pseudo-stabilizing leader election algorithm
for J B

1,∗(Δ). There exists no function f : N∗ × N∗ → N such that ∀G ∈ J B
1,∗(Δ) with a vertex set of n

processes, the length of the pseudo-stabilization phase of every execution of A in G is less than or equal to
f(n,Δ).

Proof. Assume by the contradiction that such a function f exists. By definition, K(V) ∈ J B
1,∗(Δ). Let

γ1, γ2, ... be any execution of A in K(V). Let i = f(n,Δ) + 1. By hypothesis, there exists � ∈ V such that
∀p ∈ V , γi(p).lid = id(�).

Let e be the execution of A in PK(V, �) starting from γi. By Lemma 1, at least one process eventually
modifies the value of its lid variable in e (this in particular means that SPLE(e) does not hold).

Now, G = (K(V))i−1,PK(V, �), i.e., the sequence made of i − 1 graphs K(V) followed by the
sequence of graphs in PK(V, �), is a dynamic graph with vertex set V that belongs to J B

1,∗(Δ). Moreover,
e� = γ1, γ2, ..., γi−1, e, i.e., the sequence made of γ1, γ2, ..., γi−1 followed the sequence of configurations in
e, is an execution of A in G where SPLE(e) does not hold. Hence, the length of the pseudo-stabilization
phase in e� is greater than f(n,Δ), a contradiction.

On time complexity of deterministic pseudo-stabilizing leader election in Class J Q
∗,∗(Δ). Below, we

show that the length of the pseudo-stabilization phase of a deterministic pseudo-stabilizing leader election
algorithm for classes J Q

∗,∗(Δ) cannot be bounded. Since J Q
∗,∗(Δ) ⊂ J∗,∗, we can generalize this result to

J∗,∗.
The idea behind the next impossibility result is that if we consider any DG G of J Q

∗,∗(Δ), then we can
construct another DG starting with a finite number of independent sets followed by G. This latter also belongs
to J Q

∗,∗(Δ). Now, the length of the finite prefix made of independent sets is unbounded and during this prefix
no process receive any message, by definition. Hence, they cannot coordinate together to elect a leader.

Theorem 6. Let Δ ∈ N∗ and n ≥ 2. Let A be a deterministic pseudo-stabilizing leader election algorithm
for J Q

∗,∗(Δ). There exists no function f : N∗ × N∗ → N such that ∀G ∈ J Q
∗,∗(Δ) with a vertex set of n

processes, the length of the pseudo-stabilization phase of every execution of A in G is less than or equal to
f(n,Δ).

15

Proof. Assume by the contradiction that such a function f exists. Let G = G1, G2, ... be any dynamic graph
of J Q

∗,∗(Δ) with vertex set V such that |V | = n and whose prefix of length f(n,Δ) is only constituted of
independent sets (no edge). Such a graph exists in J Q

∗,∗(Δ), by definition.
Let e = γ1, γ2, ... be any execution of A in G. By hypothesis, there exists a unique leader since γf(n,Δ)+1.

Let � ∈ V be that leader process.
Let v be any process such that v /∈ V (in particular, id(v) �= id(p), ∀p ∈ V). Let V � = V \ {�} ∪ {v}.

Let γ�1 be any configuration of A for V � such that

1. v has any local state in γ�1, and

2. ∀p ∈ V � \ {v}, the local state of p is the same in γ�1 and γ1(p).

The only difference between γ1 and γ�1 is that � has been replaced by v (with an arbitrary local state).
We now consider the execution e� = γ�1, γ

�
2, ... of A in the dynamic graph G� = G�

1, G
�
2, ... which is

identical to G except that � has been replaced by v. Formally, for every i ∈ N∗, V (G�
i) = V � and

E(G�
i) = {(p, q) ∈ E(Gi) : p �= � ∧ q �= �} ∪ {(p, v) : (p, �) ∈ E(Gi)} ∪ {(v, q) : (�, q) ∈ E(Gi)}. Of

course, G� ∈ J Q
∗,∗(Δ) since G ∈ J Q

∗,∗(Δ).

Claim 6.*: ∀p ∈ V � \ {v}, ∀i ∈ {1, ..., f(n,Δ) + 1}, the local state of p is the same in γ�i and γi.

Proof of the claim: By induction on i. The base case i = 1 is trivial, by construction of γ�1. Let
i ∈ {1, ..., f(n,Δ)}. By induction hypothesis, ∀p ∈ V � \ {v}, the local state of p is the same in γ�i
and γi. Let q be any process in V � \ {v}. By construction, the in-neighborhood of q is empty at the
beginning of Round i both in e and e�. So, q receives no message and takes the same state in Round i
of e and e�, since A is deterministic. Hence, the local state of q is the same in γ�i+1 and γi+1.

By Claim 6.*, ∀q ∈ V � \ {v}, lid(q) = id(�) at the beginning of Round f(n,Δ) + 1 in e�. Now, id(�) /∈ V �

(in other words, id(�) is a fake ID for V �). So, the suffix of e� starting from γ�f(n,Δ)+1 does not satisfy SPLE ,

i.e., the length of the pseudo-stabilizing phase of the execution e� in the dynamic graph G� ∈ J Q
∗,∗(Δ) is

greater than f(n,Δ), a contradiction.

From Remark 2, we have the following corollary.

Corollary 9. Let Δ ∈ N∗ and n ≥ 2. Let A be a deterministic self-stabilizing leader election algorithm
for J Q

∗,∗(Δ). There exists no function f : N∗ × N∗ → N such that ∀G ∈ J Q
∗,∗(Δ) with a vertex set of n

processes, the length of the stabilization phase of every execution of A in G is less than or equal to f(n,Δ).

Corollary 10. Let n ≥ 2. Let A be a deterministic pseudo-stabilizing leader election algorithm for J∗,∗.
There exists no function g : N∗ → N such that ∀G ∈ J∗,∗ with a vertex set of n processes, the length of the
pseudo-stabilization phase of every execution of A in G is less than or equal to g(n).

Proof. Assume, by the contradiction, that the corollary is false. Then, there exists a function g : N∗ → N

such that ∀G ∈ J∗,∗ with a vertex set of n processes, the length of the pseudo-stabilization phase of every
execution of A in G is less than or equal to g(n). For every Δ ∈ N∗, since J Q

∗,∗(Δ) ⊂ J∗,∗, this claim also
holds for J Q

∗,∗(Δ). Let f(n,Δ) = g(n). We have then ∀G ∈ J Q
∗,∗(Δ) with a vertex set of n processes, the

length of the pseudo-stabilization phase of every execution of A in G is less than or equal to f(n,Δ), which
contradicts Corollary 9.

From Remark 2, we have the following corollary.

16

Corollary 11. Let n ≥ 2. Let A be a deterministic self-stabilizing leader election algorithm for J∗,∗. There
exists no function f : N∗ → N such that ∀G ∈ J∗,∗ with a vertex set of n processes, the length of the
stabilization phase of every execution of A in G is less than or equal to f(n).

3.3 Memory Requirement

The following theorem shows that, if A a pseudo-stabilizing leader election algorithm for J B
1,∗(Δ), then to be

finite, the number of configurations of A for a given set of process V should in particular depend on Δ. As a
consequence, the process local memories may be finite only if their size in particular depends on Δ too.

The proof of the next theorem is done by contradiction and follows almost the same scheme as the
proof of Theorem 3. The only difference is that we use the assumption which claims that the number of
configurations is bounded by f(n) to show that the DG constructed on the fly has never more than M0 − 1
consecutive graphs in G different from K(V), where M0 = max{Δ0, f(n) + 1}. Hence, we obtain a DG
that belongs to J B

1,∗(M0).

Theorem 7. Let A be a deterministic distributed algorithm. Let f : N∗ → N be any function (that will be
used to measure the number of configurations). Let V a set of vertices of size n ≥ 2.

For every Δ0 ∈ N∗, there exists Δ ≥ Δ0 if A is a pseudo-stabilizing leader election algorithm for
J B
1,∗(Δ), then A has more than f(n) configurations when executing in a DG of J B

1,∗(Δ) with V as vertex set.

Proof. We proceed by the contradiction. Let Δ0 ∈ N∗, f : N∗ → N, V a set of n ≥ 2 processes, and A is a
deterministic distributed algorithm.

Assume that, ∀Δ ≥ Δ0, A is a pseudo-stabilizing leader election algorithm for J B
1,∗(Δ) and A has at

most f(n) configurations when executing in a DG of J B
1,∗(Δ) with V as vertex set.

Let M0 = max{Δ0, f(n) + 1}.

Claim 7.*: Let γ1 be any configuration of A for V where there is a unique leader � ∈ V . Let γ1, ..., γM0 be
the prefix of length M0 of the execution e of A starting from γ1 in PK(V, �).

Then, there exist i ∈ {2, ...,M0} and p ∈ V such that γi(p).lid �= id(�).

Proof of the claim: By definition of M0, there exist x, y such that 1 ≤ x < y ≤ M0 such that γx = γy.
So, e = γ1, γx−1, (γx, ..., γy−1)

ω since A is deterministic and the topology is fixed in PK(V, �).
Hence, if the claim is wrong, then � is the unique leader forever in e, contradicting Lemma 1.

Let G = G1, G2, ... be the dynamic graph with vertex set V and e = γ1, γ2, ... be the execution of A in G
starting from γ1 constructed as follows. γ1 is a configuration where there is no unique leader and G1 = K(V).
Then, ∀i ∈ N∗,

1. if there is one and the same leader � in both γi and the configuration γi+1 computed from γi and Gi,
then Gi+1 = PK(V, �);

2. otherwise, Gi+1 = K(V).

By construction and Claim 7.*, e has no suffix satisfying SPLE . Moreover, by Claim 7.* again, there is
never more than M0− 1 consecutive graphs in G different from K(V). Hence, G ∈ J B

1,∗(M0). Consequently,
A is not a deterministic pseudo-stabilizing leader election algorithm for J B

1,∗(M0), a contradiction since
M0 ≥ Δ0.

17

4 Pseudo-stabilizing Leader Election in J B
1,∗(Δ)

We denote by LE our pseudo-stabilizing leader election algorithm for J B
1,∗(Δ). Its code is given in Algorithms

1 and 2.

Algorithm 1: Algorithm LE , macros and variables for each process p
Inputs:
Δ ∈ N∗ : upper bound on the temporal distance from a timely source to any other process
id(p) ∈ IDSET : ID of p

Variable Type:
MapType : map containing tuples �id, susp, ttl� ∈ IDSET ×N× {0, . . . ,Δ}

Local Variables:
lid(p) ∈ IDSET : ID of the leader
Lstable(p) ∈ MapType : locally stable processes for p
Gstable(p) ∈ MapType : globally stable processes collected by p
msgs(p) : set containing records

�id, LSPs, ttl� ∈ IDSET ×MapType× {0, . . . ,Δ}

Macros:
minSusp(p) = min{Gstable(p)[q].susp : q ∈ Gstable(p)}

Overview. The goal of Algorithm LE is to elect what we call a stable process. Intuitively, a process p is
stable if eventually all other processes receive (maybe indirectly) information about p at least every Δ rounds.

Basically, in the algorithm all processes initiate a broadcast at each round. So, since there exist timely
sources in the class we consider (J B

1,∗(Δ)), there are stable processes in the system, namely the timely sources
themselves.

To evaluate the stability of a process p, we use a so-called counter of suspicion. The suspicion counter of
p is maintained by p itself and is incremented each time p learns that some other process does not consider it
as stable. In the following, we call suspicion value of p the current value of the suspicion counter of p.

Due to initial inconsistencies, a suspicion counter may be reset once during the first round. Yet, after the
first round, each counter is monotonically nondecreasing. Moreover, the counter of each timely source is
eventually constant since it is stable, by definition. Finally, each process aims at electing a process with the
minimum suspicion value (we use identifiers to break ties) since such a process will be a stable process.

To implement this principle, each process p maintains four variables: lid(p), msgs(p), Lstable(p), and
Gstable(p). Variable lid(p) is the output of the algorithm, it eventually contains the identifier of the elected
process. The three other variables are more complex data structures. Basically, Process p stores in msgs(p)
the messages that it will send at the beginning of the next round; see Line 2. Lstable(p) and Gstable(p) are
used to detect stable processes. They are both of type MapType.

The type MapType. The main objective of Algorithm LE is to identify a set of stable processes. To
achieve this, processes exchange information about each process they heard about. This information is stored
in data structures of type MapType, i.e., maps containing tuples of three elements:

• an identifier id ∈ IDSET ,

• a natural number susp, representing the (maybe outdated) suspicion value of the process identified by
id, and

18

Algorithm 2: Algorithm LE , code for each process p

1: Repeat Forever
2: SEND({msg ∈ msgs(p) : msg.ttl > 0 ∧msg.id ∈ msg.LSPs})
3: mailbox := RECEIVE()

// Reset
4: if �id(p),−,Δ� /∈ Lstable(p) then insert �id(p), 0,Δ� in Lstable(p)
5: if �id(p),−,Δ� /∈ Gstable(p) ∨ Gstable(p)[id(p)].susp �= Lstable(p)[id(p)].susp then
6: insert Lstable(p)[id(p)] in Gstable(p)

// Update of the timers
7: forall id ∈ Lstable(p) do
8: if id �= id(p) ∧ Lstable(p)[id].ttl �= 0 then Lstable(p)[id].ttl −−
9: forall id ∈ Gstable(p) do
10: if id �= id(p) ∧ Gstable(p)[id].ttl �= 0 then Gstable(p)[id].ttl −−

// Handling the messages
11: forall tuples msg = �id, LSPs, ttl� in a message of mailbox do
12: if id �= id(p) then
13: if �id,−, ttl� /∈ msgs(p) then insert msg = �id, LSPs, ttl� in msgs(p)
14: if �id,−,−� /∈ Lstable(p) ∨ (�id,−, ttl�� ∈ Lstable(p) with ttl� < ttl) then
15: insert �id, LSPs[id].susp, ttl� in Lstable(p);

16: forall �id�, susp,−� ∈ LSPs : id� �= id(p) do
17: insert �id�, susp,Δ� in Gstable(p)

18: if id(p) /∈ LSPs then Lstable(p)[id(p)].susp++; Gstable(p)[id(p)].susp++;

// Expired timers
19: forall id ∈ Lstable(p) do
20: if Lstable(p)[id].ttl = 0 then remove the tuple associated to id in Lstable(p)

21: forall id ∈ Gstable(p) do
22: if Gstable(p)[id].ttl = 0 then remove the tuple associated to id in Gstable(p)

// Update messages
23: forall msg ∈ msgs(p) do
24: if msg.ttl = 0 ∨msg.id /∈ msg.LSPs then remove msg from msgs(p)
25: else msg.ttl −−
26: insert �id(p), Lstable(p),Δ� in msgs(p)

// Choice of the leader
27: lid(p) := min{id ∈ Gstable(p), Gstable(p)[id].susp = minSusp(p)}

19

• a timer value ttl ∈ {0, . . . ,Δ} (ttl stands for ”time to live”).

A map of type MapType is indexed by the first element id of each tuple it contains. So, there exists
at most one tuple �id,−,−� in any variable of type MapType, where ”−” is a wildcard, i.e., ”−” is any
possible value. (For example, in Line 13, �id,−, ttl� represents any tuple with id and ttl as first and third
fields, whatever the value of the second field is.) We simply denote by M [id] the tuple of index id in the map
M . Moreover, for sake of simplicity, we write id ∈ M to mean that the tuple M [id] exists, i.e., M contains a
tuple of index id: �id,−,−� ∈ M ; see Line 7 for example.

Of course, the insertion function keeps the uniqueness of each index. Assume, for example, that a tuple
�id, s, t� is inserted into the map M . If M [id] already exists right before the insertion, then M [id] is just
refreshed with the new values s and t. Similarly, right after the removal of M [id] from M , M contains no
tuple �id,−,−�.

Locally Stable Processes. Every process p stores into Lstable(p) information —precisely, an identifier, a
suspicion value, and a timer value— for each process that is locally stable at p, i.e., for each process q that p
currently considers as a good candidate for the leader election because it receives information from q at most
Δ rounds ago. Variable Lstable(p) is of type MapType.

Globally Stable Processes. For every process p, Gstable(p) is also of type MapType. The map Gstable(p)
contains information —i.e., tuples made of an identifier, a suspicion value, and a timer value— related to
globally stable processes, meaning processes that are locally stable at any process (and so not only at p).
Eventually all stable processes (in particular, the timely sources) should forever belong to Gstable(p), for
every process p. Moreover, at each round every process selects the value of its output lid(p) among identifiers
stored into Gstable(p). Precisely, p chooses an ID in Gstable(p) associated with the minimum suspicion
value (we use IDs to break ties); see Line 27 and macro minSusp(p).

Messages. Processes exchange information stored into what we call records. Actually, a record R is a tuple
�id, LSPs, ttl�, where R.id ∈ IDSET , R.LSPs is a map of type MapType, and R.ttl ∈ {0, . . . ,Δ} is a
timer value. The variable msgs(p) is used to store the records that will be sent by Process p at the beginning
of the next round. Actually, msgs(p) is a set (and so not a map) meaning in particular that it may contain
several records tagged with the same identifier.

At each round, each process p initiates the broadcast of a record �id(p), Lstable(p),Δ� by inserting
it into msgs(p); see Line 26. Notice that in each record �id(p), Lstable(p),Δ� initiated by p, we have
id(p) ∈ Lstable(p) (if necessary, id(p) is added in Lstable(p) at Line 4, and then never removed). Then,
the timer in the record is used to relay the record during Δ rounds. The goal of this broadcast is to inform
other processes about the current list of processes that are locally stable at p with their associated suspicion
value known by p (n.b., those suspicion values may be outdated).

At each round, received records that should be relayed are collected into msgs(p) and their associated
timer is decremented; see Lines 13 and 25. Only well-formed records R (i.e., satisfying R.id ∈ R.LSPs)
with non-zero timer will be sent during the next round; see Lines 2 and 24. The condition R.id ∈ R.LSPs
allows to eliminate some spurious messages. The timer mechanism, in particular, ensures that records tagged
with fake IDs are eventually no more relayed since such records are never initiated.

Management of Lstable(p). Recall that Lstable(p) contains the identifiers and known suspicion values
of processes that are currently considered by p to be locally stable. First, p always considers itself as

20

a locally stable process. Thank to Line 4, a tuple �id(p),−,Δ� forever belongs to Lstable(p) after the
first round. Then, p supplies Lstable(p) using records it receives from other processes. Upon receiving
a record �id, LSPs, ttl�, p inserts �id, LSPs[id].susp, ttl� into Lstable(p) if either id does not appear in
Lstable(p), or ttl is greater than the current timer associated to id in Lstable(p); see Lines 14-15. Notice
that LSPs[id].susp is meant to be the suspicion value of the initiator at the time it started to broadcast the
record.

The timer values of each record in Lstable(p) is decremented at each round; see Lines 7-8. Every record
whose timer value reaches 0 is removed from Lstable(p); see Lines 19-20.

Hence, an identifier id different from id(p) remains in Lstable(p) only if p receives at least every Δ
rounds a record �id,−,−� initiated by the process whose ID is id. Notice that, since records tagged with
fake IDs are eventually never more received, they also eventually vanish from all Lstable maps.

Management of Gstable(p). Similarly to Lstable(p), p always considers itself as a globally stable process.
Thank to Line 5, a tuple �id(p),−,Δ� forever belongs to Gstable(p) after the first round. Then, p supplies
Gstable(p) with the map R.LSPs attached to records R it receives from other processes. At each round,
each identifier different from id(p) present in a map of some received record is meant to be the identifier of a
locally stable process at some other process. So, it is meant to identify a globally stable process. Such an
identifier and its associated suspicion value is then stored into Gstable(p) with a timer initialized to Δ; see
Lines 17-18.

Similarly to Lstable(p), the timer values of each record in Gstable(p) is decremented at each round; see
Lines 9-10. Every record whose timer value reaches 0 is removed from Gstable(p); see Lines 21-22.

Hence, an identifier id different from id(p) remains in Gstable(p) only if p receives at least every Δ
rounds a record from some other process notifying that a process identified by id is one of its locally stable
processes. Remark that, since fake IDs eventually vanish from all Lstable maps, fake IDs also eventually
vanish from all Gstable maps.

Suspicion value. The suspicion value of each process p is stored in both Lstable(p)[id(p)].susp and
Gstable(p)[id(p)].susp (this choice allows to simplify a bit the algorithm design). Hence, the values
Lstable(p)[id(p)].susp and Gstable(p)[id(p)].susp are kept equal; see Lines 5, 6, and 18. Moreover, after
the first round, the suspicion value of p is monotonically nondecreasing.

Actually, p increments its suspicion value each time it realizes that it is not part of the locally stable
processes of some other process q, i.e., each time it receives a record R initiated by q such that id(p) /∈
R.LSPs; see Line 18.

Using the broadcasts it initiates at each round, p aims at continuously propagating its latest suspicion
value to all other processes.

Fake IDs. We have seen that records tagged with fake IDs are eventually no more sent. Furthermore, by a
domino effect, fake IDs are eventually removed from all Lstable and Gstable maps. Actually, we were able
to prove that no fake ID exists in the system after at most 4Δ rounds; see Lemma 8 for details.

Pseudo-stabilization. We have seen that every process p collects in Lstable(p) the list of processes that it
currently considers to be locally stable, including itself. In particular, an identifier id different from id(p)
remains in Lstable(p) only if p received at least every Δ rounds a record �id,−,−� initiated by the process
identified by id. Hence, if the temporal distance between two processes p and q is always at most Δ, then
eventually id(q) ∈ Lstable(p) forever. A direct consequence of this property is that the identifier of every

21

timely source eventually constantly belongs to the Lstable map of every process. Actually, we can show that
the identifier of each timely source forever belongs to any Lstable map after at most 2Δ + 1 rounds; see
Lemmas 10 and 11.

Gstable maps are managed similarly to Lstable maps using timers. Each process p forever appears in its
own Gstable map after at most one round. Then, p tries to fill it with information (including the suspicion
value) about the local stable processes at all other processes. Notice that eventually each received suspicion
value is either up-to-date or an old one.

Again, since p receives records initiated by each timely source at least every Δ rounds, almost up to
date information about the processes locally stable at each timely source are eventually always present in
Gstable(p). Notably, identifiers that are eventually forever present in Lstable maps of all timely sources, in
particular their own identifiers, are eventually forever present in each Gstable map (actually, after at most
3Δ+ 2 rounds by Lemma 12).

Recall that after the first round, the suspicion value of every process is monotonically nondecreasing.
Moreover, the suspicion value of a process p is incremented only when p receives a record with a list of
locally stable processes that does not include its own identifier. Hence, from the previous discussion, we know
that each timely source only increments its suspicion value a finite number of times. Moreover, eventually all
processes store forever in their Gstable map both the identifiers and the final suspicion values of all timely
sources.

Consider now a process q whose identifier is infinitely often absent from Gstable(p), for some process p.
In this case, there are infinitely many period of Δ rounds where p does not receive any record including id(q)
into its list of locally stable processes. This means, in particular, that every timely source broadcasts infinitely
many records that do not include id(q) into the attached list of locally stable processes. Since initiated by
timely sources, such records reach q infinitely often, and consequently the suspicion counter of q grows
infinitely often. Moreover, from the previous discussion, if q is also inserted infinitely often in some Gstable
map, then its suspicion value in the map grows infinitely often.

Overall, the Gstable map of every process eventually forever contains the identifiers and final suspicion
values of all processes (including timely sources) whose suspicion value is eventually constant. Moreover,
every other process which regularly appears in the map do so with an associated suspicion value that increases
again and again. Now, at the end of each round, each process p selects an identifier in its Gstable map
with the minimum attached suspicion value (the order on identifiers may be used to break ties). Hence, all
processes eventually forever elect the same process.

Speculation. The pseudo-stabilization time of Algorithm LE cannot be bounded in J B
1,∗(Δ) by Theorem 5.

However, Algorithm LE is speculative in the sense that its pseudo-stabilization time in J B
∗,∗(Δ) ⊂ J B

1,∗(Δ)

is bounded. This result is due to the fact that all processes are timely sources in J B
∗,∗(Δ).

In more detail, the suspicion value of each process becomes constant after executing at most 2Δ + 1
rounds in a DG of J B

∗,∗(Δ); see Lemma 12. Then, we can show that during the next 4Δ rounds, all fake
IDs vanish (Lemma 8) and all nodes are inserted forever into all Gstable map (Lemma 10) with their final
suspicion values (Lemma 16 and Remark 5.(b)). Hence, at the beginning of the next round (i.e., after at most
6Δ+ 2 rounds), a unique leader is forever elected by all processes.

5 Correctness

Let Δ ∈ N∗. Let G = G1, G2, ... be a dynamic graph with vertex set V of Class J B
1,∗(Δ). We study the

execution of Algorithm LE in G; we denote this execution by ex = γ1, γ2, ...

22

Let i ∈ N∗ and p be a process. If var(p) is a variable of p, we denote by var(p)i the value of var(p) at
Configuration γi, i.e., at the beginning of Round i.

According to the computational model, the step between Configurations γi and γi+1 is performed on the
communication network described by the graph Gi. At the end of Round i (which is also the beginning of
Round i+ 1), i.e., at Configuration γi+1, the variable var(p) takes its next value var(p)i+1.

Remark 5. Let p ∈ V . The following remarks are local observations, directly deduced from the code of p.

(a) If �id(p),−,Δ� /∈ Lstable(p), p executes Line 4 and inserts �id(p), 0,Δ� into Lstable(p). Afterwards,
this tuple is never removed from Lstable(p) since Lstable(p)[id(p)].ttl never decreases.

Thus, ∀i > 1, id(p) ∈ Lstable(p)i.

(b) If �id(p),−,Δ� /∈ Gstable(p) or Gstable(p)[id(p)].susp �= Lstable(p)[id(p)].susp, p executes
Line 6 and inserts Lstable(p)[id(p)] into Gstable(p). Afterwards, this tuple is never removed from
Gstable(p) since Gstable(p)[id(p)].ttl never decreases. Moreover, each time Lstable(p)[id(p)].susp
is incremented, Gstable(p)[id(p)].susp is incremented too, and conversely; see Line 18.

Thus, ∀i > 1, id(p) ∈ Gstable(p)i and Gstable(p)i[id(p)].susp = Lstable(p)i[id(p)].susp.

(c) Any message msg such that msg.id /∈ msg.LSPs is never sent; see Line 2. Moreover, at each round,
every process q ∈ V removes such messages from msgs(q); Line 24.

Thus, ∀i > 1, ∀msg ∈ msgs(p)i, msg.id ∈ msg.LSPs.

(d) Let i ∈ N∗. p receives a message msg during Round i (i.e., msg is in its mailbox at Round i) if and
only if there exists a process q ∈ IN (p)i such that msg ∈ msg(q)i (at the beginning of Round i),
msg.ttl > 0 and msg.id ∈ msg.LSPs.

5.1 Communication Exchanges

We first show some properties on the communication exchanges between processes. Lemma 2 gives conditions
to ensure that a message msg = �id, LSPs,Δ−X� in a process mailbox at Round i has been effectively
produced by the process identified by id at Round i−X−1. Lemma 3 establishes that the message produced
by a given process p at Round i ∈ N∗ (and so sent at Round i + 1) is received at Round i + d̂p,i+1(q) by
each process q such that d̂p,i+1(q) ≤ Δ.

Lemma 2. Let q be a process in V . Let X and i be two integers such that 0 ≤ X < Δ and i > X + 1. Let
msg be a message such that msg.ttl = Δ−X .

If msg ∈ msgs(q)i (i.e., at the beginning of Round i), then msg was initiated during Round i−X − 1
by a process p ∈ V such that msg.LSPs = Lstable(p)i−X and msg.id = id(p).

Proof. The fact that if a message msg is initiated (Line 26) by some process p in V during the k-th round
with k ∈ N∗, then msg.id = id(p) and msg.LSPs = Lstable(p)k+1 is direct from the code (note that
msg.LSPs is never modified).

Hence, it remains to show the first part: precisely, we show by induction on X ∈ {0, ...,Δ − 1} that
∀q ∈ V , ∀i > X + 1, if msg = �id, LSPs,Δ−X� is in msgs(q)i (i.e., in msgs(q) at the beginning of
Round i), then msg was initiated by some process p ∈ V during Round i−X − 1.

23

Base case (X = 0): Let q ∈ V and i > 1. Assume there exists a message msg ∈ msgs(q)i such that
msg.ttl = Δ.

If a message, msg�, is already in msgs(q)i−1, i.e., at the beginning of Round i − 1 or if q received
msg� during Round i− 1 (Line 13), q decrements the associated timer (Line 25) during Round i− 1.
Thus, at the beginning of Round i, the timer associated to msg� is lower than Δ. Since the timer of
msg is Δ, the only remaining possibility is that msg was initiated by q (Line 26) during Round i− 1.

Induction step (0 < X < Δ): Let q ∈ V and i > X + 1. Assume there exists a message msg =
�id, LSPs,Δ−X� ∈ msgs(q)i.

Notice that msg was not initiated by q (Line 26) during Round i− 1, otherwise the associated timer
would be Δ. Thus, there are two cases : either q received msg during Round i− 1 or msg was already
in msgs(q) at the beginning of Round i− 1. In both cases, q decrements the timer associated to the
message (Line 25) at the end of Round i− 1. So:

(a) Either q receives msg� = �id, LSPs,Δ−X + 1� during Round i − 1 and msg� was sent by
some process q�. Thus, msg� ∈ msgs(q�)i−1.

(b) Or, msg� = �id, LSPs,Δ−X + 1� ∈ msgs(q)i−1.

The induction hypothesis applies in both cases: there is some process p ∈ V such that id = id(p) that
initiated msg� (and so msg) during Round (i− 1)− (X − 1)− 1 = i−X − 1.

The next corollary follows from Lemma 2 and Remark 5.(d).

Corollary 12. Let q be a process in V . Let X and i be integers such that 0 ≤ X < Δ and i > X + 1.
If q receives a message msg = �id, LSPs,Δ−X� during Round i, then msg was initiated at Round

i−X − 1 by some process p ∈ V such that LSPs = Lstable(p)i−X and id = id(p).

Lemma 3. ∀p, q ∈ V , ∀i > 1, ∀d ≤ Δ, d̂i(p, q) = d implies that

(a) q receives a message �id(p), Lstable(p)i,Δ− d+ 1� during Round i+ d− 1 if q �= p; and

(b) �id(p), Lstable(p)i,Δ− d� ∈ msgs(q)i+d.

Proof. By induction on d ∈ {0, ...,Δ}.

Base case (d = 0): Let i > 1. Let p, q ∈ V such d̂i(p, q) = 0. Then p = q, by definition. Process p ends
each round, and in particular Round i, by inserting the tuple �id(p), Lstable(p)i,Δ� into msgs(p);
see Line 26. Hence, �id(p), Lstable(p)i,Δ� ∈ msgs(q)i.

Induction step (0 < d ≤ Δ): Let i > 1. Let p, q ∈ V such d̂i(p, q) = d (n.b., p �= q). By definition, there
is a journey J = (e1, t1), ...(ek, tk) ∈ J (p, q) such that t1 ≥ i, tk = i + d − 1 and ek = (q�, q) for
some q� ∈ V . Hence, d̂i(p, q�) = d� < d̂i(p, q) = d and we can apply the induction hypothesis to
q�: �id(p), Lstable(p)i,Δ− d�� ∈ msgs(q�)i+d� . During every round from Round i + d� to Round
i+ d− 1, the timer of this message decreases by one at each round (see Line 25). Hence, since the
timer is equal to Δ − d� at the beginning of Round i + d�, the timer is equal to Δ − d + 1 at the
beginning of Round i+ d− 1 (indeed, i+ d− 1− (i+ d�) = Δ− d� − (Δ− d+ 1)).

24

Notice that, meanwhile and since Δ− d+ 1 > 0, the message has not been discarded from msgs(q�)
(the first and second fields remaining unchanged).

As ek = (q�, q) is an edge of Gi+d−1 (by definition of J), the timer of the message (Δ − d + 1)
is positive, and id(p) ∈ Lstable(p)i (Remark 5.(a)), Remark 5.(d) applies: q receives a message
msg = �id(p), Lstable(p)i,Δ− d+ 1� during Round i+ d− 1; proving (a).

We now look at the algorithm of q during Round i+ d− 1: it treats the message msg using Line 13.

If �id(p),−,Δ− d+ 1� /∈ msgs(q)i+d−1 then msg is inserted into msgs(q). As Δ − d + 1 > 0
and id(p) ∈ Lstable(p)i (Remark 5.(a)), its timer is decreased; see Line 25. Hence, we have
�id(p), Lstable(p)i,Δ− d� ∈ msgs(q)i+d.

Otherwise, there exists some map M such that �id(p),M,Δ− d+ 1� ∈ msgs(q)i+d−1. We can apply
Lemma 2 with ”X”= d − 1 ∈ {0, ...,Δ − 1} and ”i”= i + d − 1 since i + d − 1 > d − 1 + 1: we
deduce that M = Lstable(p)i+d−1−(d−1) = Lstable(p)i. The conclusion is the same as in the former
case, and we are done with (b).

5.2 Properties on Locally and Globally Stable Processes

A process q is memorized into Lstable(p) at Round i+Δ+ 1 (i.e., q ∈ Lstable(p)i+Δ+1) if and only if a
message from q was received by p during the time interval [i+ 1, i+Δ] (Corollary 13 and Lemma 6). A
process q is memorized into Gstable(p) at Round i +Δ + 1 (i.e., q ∈ Gstable(p)i+Δ+1) if and only if a
message �−, LSPs,−� such that id(q) ∈ LSPs was received by p during the time interval [i+ 1, i+Δ]
(Lemma 5 and Lemma 7).

Lemma 4. Let i > 1. Let p be a process of V . If no tuple �id,−,−� is inserted in Lstable(p) by p at Line 15
during Δ consecutive rounds starting at Round i (i.e., from Round i to i+Δ− 1), then id /∈ Lstable(p)i+Δ

or id = id(p).

Proof. Let i > 1 and p ∈ V . Let id ∈ IDSET such that id �= id(p). Assume that no tuple �id,−,−� is
inserted into Lstable(p) by p at Line 15 during Round i, ..., i+Δ− 1.

Since id �= id(p), Line 15 is the only way for p to insert �id,−,−� into Lstable(p). So, if no tuple
�id,−,−� exists in Lstable(p)i, we are done.

Otherwise, some tuple �id,−, ttl� exists in Lstable(p)i (i.e., at the beginning of and during Round i) with
ttl ∈ {0, ...,Δ}. Now, as ttl ≤ Δ, Lstable(p)[id].ttl necessarily reaches 0 during Round i+max(0, ttl−1)
since if positive, it decreases by one at each round (Line 8). Then, the tuple corresponding to id is removed
from Lstable(p); see Line 20. Therefore, no tuple �id,−,−� exists in Lstable(p)i+max(1,ttl). As such tuple
can neither be inserted until Round i+Δ, this proves that no tuple �id,−,−� exists in Lstable(p)i+Δ.

For the previous lemma, we have the following corollary.

Corollary 13. Let i > 1. Let p be a process of V . If p receives no message �id,−,−� during Δ consecutive
rounds starting at Round i (i.e., from Round i to i+Δ− 1), then id /∈ Lstable(p)i+Δ or id = id(p).

The following result about globally stable processes is very similar to the previous lemma; and so is the
proof.

25

Lemma 5. Let i > 1. Let p be a process of V and id ∈ IDSET . If p receives no message �−, LSPs,−�
with id ∈ LSPs during Δ consecutive rounds starting from Round i (i.e., from Round i to i+Δ− 1), then
id /∈ Gstable(p)i+Δ or id = id(p).

Proof. Let i > 1, p ∈ V , and id be a process identifier distinct from id(p). Assume that p receives no
message �−, LSPs,−� with id ∈ LSPs from Round i to i+Δ− 1.

The only way to insert a tuple �id,−,−� into Gstable(p) is by Line 6 (this inserts Lstable(p)[id(p)] but
Lstable(p)[id(p)].id = id(p) �= id) or by receiving some message �id�, LSPs,−� with id� �= id(p) (see
Line 17): this line inserts every tuple �id��, susp,Δ� such that �id��, susp,−� ∈ LSPs and id�� �= id(p). So,
as no message �−, LSPs,−� with id ∈ LSPs is received, no message �id,−,−� is inserted into Gstable(p)
during Round i, ..., i+Δ− 1.

If no tuple �id,−,−� exists in Gstable(p)i, we are done. Otherwise, some tuple �id,−, ttl� exists
in Gstable(p)i (i.e., at the beginning of and during Round i) with ttl ∈ {0, ...,Δ}. Now, as ttl ≤ Δ,
Gstable(p)[id].ttl necessarily reaches 0 during Round i+max(0, ttl − 1) since if positive, it decreases by
one at each round; see Line 10. Then, the tuple corresponding to id is removed from Gstable(p); see Line 22.
Therefore, no tuple �id,−,−� exists in Gstable(p)i+max(1,ttl). As such tuple can neither be inserted until
Round i+Δ, this proves that no tuple �id,−,−� exists in Gstable(p)i+Δ.

Lemma 6. Let i > 1 and j ∈ {i, ..., i+Δ− 1}. Let p be a process of V . Let id ∈ IDSET distinct from
id(p). If p receives a message �id,−,Δ+ i− j� during Round j, then id ∈ Lstable(p)i+Δ.

Proof. Let i > 1 and j ∈ {i, ..., i +Δ − 1}, p ∈ V , id ∈ IDSET such that id �= id(p). Assume that p
receives a message �id,−,Δ+ i− j� during Round j.

According to Line 14 and 15, �id,−, ttl� ∈ Lstable(p)j+1 with ttl ≥ Δ + i − j (it is not removed at
Line 20 since Δ + i − j > 0). The timer associated to id in Lstable(p) is decremented at most by one
(Line 8) during a round (n.b., when the tuple �id,−,−� is updated in Lstable(p), its timer does not decrease;
see Lines 14-15) and a tuple �id,−, ttl�� is removed from Lstable(p) at some round only if ttl� reaches 0
during that round (Line 20). As the timer of id in Lstable(p)j+1 is: ttl ≥ Δ + i − j, a tuple �id,−,−�
remains in Lstable(p) during at least Δ+ i− j − 1 rounds, i.e., from Round j + 1 to Round Δ+ i (since
j + 1 + (Δ+ i− j)− 1 = Δ+ i).

Lemma 7. Let i > 1 and p ∈ V . Let id ∈ IDSET distinct from id(p) and LSPs ∈ MapType such
that id ∈ LSPs. If p receives a tuple �−, LSPs,−� during Round i, then ∀j ∈ {i + 1, ..., i + Δ},
id ∈ Gstable(p)j .

Proof. Let i > 1. Let p ∈ V . Let id ∈ IDSET such that id �= id(p) and LSPs ∈ MapType such that
id ∈ LSPs. Assume that p receives a tuple �−, LSPs,−� during Round i.

According to Line 17, Process p inserts �id,−,Δ� into Gstable(p) during Round i. So �id,−,Δ� ∈
Gstable(q)i+1 (it is not removed at Line 22 since Δ > 0). The timer associated to id in Gstable(p) is
decremented at most by one (Line 10) during a round (n.b., when the tuple �id,−,−� is updated Gstable(p),
its timer is not decremented; see Line 17), and a tuple �id,−, ttl� ∈ Gstable(p) is removed during a round
only if ttl reaches 0 during that round; see Line 22. As the timer of id in Gstable(p)i+1 is Δ, a tuple
�id,−,−� remains in Gstable(p) during at least Δ− 1 rounds, i.e., from Round i+1 to Round Δ+ i (since
i+ 1 +Δ− 1 = Δ+ i).

26

5.3 Removing Fake IDs

Lemma 8. Let f be a fake ID, p ∈ V , i > 4Δ, msg ∈ msgs(p)i be a message. We have: (a) msg.id �= f ,
(b) f /∈ Lstable(p)i (c) f /∈ msg.LSPs, and (d) f /∈ Gstable(p)i.

Proof. Let f be a fake ID.
(a) First, any process only initiates messages with its own ID (Line 26). So no message �f,−,−� are

ever initiated. Then, if some msgs(q) with q ∈ V contains some message �f,−, ttl� at the beginning of the
execution, then thanks to the timer mechanism, the timer in this message and in all its copies broadcasted into
the network will reach 0 within at most Δ rounds. Then, those messages will not be sent (Line 2) and finally
will be removed from every msgs set where they appear (Line 24). Hence, ∀i1 > Δ, msgs(p)i1 contains no
message �f,−,−�, for every p ∈ V .

(b) Let p ∈ V . By Corollary 13, for every Round i2 ≥ i1 +Δ > 2Δ, f /∈ Lstablei2(p).
(c) Let p ∈ V . Let msg = �id, LSPs, ttl� be a message in msgs(p) at the beginning of Round

i3 > 3Δ. By Lemma 2, there is a process q ∈ V such that id = id(q) and LSPs = Lstable(q)i3−Δ+ttl. As
i3 −Δ+ ttl > 2Δ, we apply (b): f /∈ Lstable(q)i3−Δ+ttl = LSPs.

(d) Let p ∈ V . Since (c) holds, p receives no message �−, LSPs,−� such that f ∈ LSPs, from Round
i3; we can apply Lemma 5: for every Round i4 ≥ i3 +Δ > 4Δ, f /∈ Gstable(p)i4 .

5.4 Stable Memorization of some Processes in the Map Gstable

Let TSources be the set of timely sources of G. Timely sources (and may be some other processes) increment
their suspicion variable only finitely many times (Lemma 10). Let p be a process whose suspicion value is
constant from Round tp (i.e., a process of ♦Const); We show that p is memorized forever by every process q
at least from Round i ≥ tp +Δ+ 2 (i.e., p ∈ Gstable(q)i); see Lemma 12. In Subsection 5.5, we establish
that the finally elected process is a process of ♦Const.

Definition 6. We define TSources as the set of timely sources of G. Namely, for a process r ∈ V ,

r ∈ TSources if and only if ∀p ∈ V, ∀i ∈ N∗, d̂i(r, p) ≤ Δ

Note that TSources �= ∅ since G ∈ J B
1,∗(Δ).

Lemma 9. Let r ∈ TSources. ∀k > Δ+ 1, ∀p ∈ V , id(r) ∈ Lstable(p)k.

Proof. The proof is done with k = i+Δ, for some i > 1. Let i > 1, r ∈ TSources and p ∈ V . According
to Remark 5.(a), id(r) ∈ Lstable(r)i+Δ. Assume that p �= r and d̂i(r, p) = d. As r is a source and p �= r,
we have 1 ≤ d ≤ Δ. By Lemma 3, p receives a message �id(r),−,Δ− d+ 1� during Round i + d − 1.
According to Lemma 6, we have id(r) ∈ Lstable(p)i+Δ.

Definition 7. For every i ∈ N∗ and p ∈ V , let suspicion(p)i be defined as follows:

suspicion(p)i =

�
−∞ if id(p) /∈ Lstable(p)i,
Lstable(p)i[id(p)].susp otherwise.

Notice that, by Remark 5.(a), suspicion(p)i �= −∞ for every i > 1.

Definition 8. We define the set ♦Const of processes in V . Let p be a process of V .

p ∈ ♦Const if and only if ∃maxSuspicion(p) ∈ N, ∃tp ∈ N∗, ∀i ≥ tp, suspicion(p)i = maxSuspicion(p).

Namely, ♦Const is the set of processes whose suspicion counter is eventually constant.

27

Lemma 10. TSources ⊆ ♦Const �= ∅ and ∀p ∈ TSources, tp ≤ 2Δ+ 1.

Proof. Let r ∈ TSources. Let i > 2Δ + 1. We first show that for every processes q and p, if
�id(q), LSPs, ttl� ∈ msgs(p)i for some ttl ∈ {0, ...,Δ} and LSPs ∈ MapType, then r ∈ LSPs. Indeed,
by Lemma 2, this message was initiated by Process q and LSPs = Lstable(q)i−X with X = Δ − ttl.
Lemma 9 allows us to conclude that r ∈ LSPs, since i−X > Δ+ 1.

Therefore, every message received by r during any Round i > 2Δ + 1 contains r in its source field.
So r does not augment its suspicion value during any Round i > 2Δ + 1 (see Line 18); hence ∀i >
2Δ+ 1, suspicion(r)i = suspicion(r)2Δ+1.

Lemma 11. Let p ∈ ♦Const. ∀i > tp, ∀r ∈ TSources, id(p) ∈ Lstable(r)i.

Proof. Let p ∈ ♦Const. Let r ∈ TSources. Assume, by the contradiction, that id(p) /∈ Lstable(r)i with
i > tp. Note that p �= r, by Remark 5.(a). We have d̂i(r, p) = d ∈ {1, ...,Δ} since p �= r and r ∈ TSources.
By Lemma 3, p receives the message �id(r), Lstable(r)i,Δ− d+ 1� during Round j = i + d − 1. As
id(p) /∈ Lstable(r)i, the value of Lstable(p)[p].susp is incremented (Line 18) during Round j. Since the
suspicion value of a process can never decrease, suspicioni(p) ≤ suspicionj < suspicion(p)j+1 and
j ∈ {i, ..., i+Δ− 1}, i.e., j ≥ i > tp. A contradiction to the definition of ♦Const.

Lemma 12. Let p ∈ ♦Const. ∀i ≥ tp +Δ+ 1, ∀q ∈ V , id(p) ∈ Gstable(q)i.

Proof. Let p ∈ ♦Const. Let q ∈ V .

• If q = p, since i > 1, id(p) ∈ Gstable(q)i; see Remark 5.(b).

• If q �= p and q ∈ TSources, by Lemma 11, we have that ∀j > tp, id(p) ∈ Lstable(q)j . Now, as
id(p) �= id(q), we use the contraposition of Corollary 13: let j > max(Δ+1, tp); there exists a round
k ∈ {j −Δ, ..., j − 1} during which q receives a message �id(p), LSPs, ttl�.
By Remark 5.(d), id(p) ∈ LSPs since k ≥ j −Δ > 1. Thus, by Lemma 7, ∀x ∈ {k + 1, ..., k +Δ},
id(p) ∈ Gstable(q)x. So id(p) ∈ Gstable(q)j whatever be the value of k (indeed, take x = k+(j−k)
since 1 ≤ j − k ≤ Δ). Thus, ∀j > max(Δ+ 1, tp), id(p) ∈ Gstable(q)j . Since, max(Δ+ 1, tp) ≤
tp +Δ, we have ∀j ≥ tp +Δ+ 1, id(p) ∈ Gstable(q)j .

• If q �= p and q /∈ TSources, let r ∈ TSources: ∀j ∈ N∗, d̂j(r, q) = d ≤ Δ.

Let j > tp. According to Lemma 3, q receives a message �id(r), Lstable(r)j ,Δ− d+ 1� during
Round j + d− 1. As j > tp, by Lemma 11, we have id(p) ∈ Lstable(r)j . According to Lemma 7,
∀k ∈ {j + d, ..., j + d− 1 +Δ}, we have id(p) ∈ Gstable(q)k. This result holds for every j > tp.
Thus, ∀i ≥ j + d ≥ j +Δ ≥ tp +Δ+ 1, id(p) ∈ Gstable(q)i.

Hence, and in any case, ∀i ≥ tp +Δ+ 1, p ∈ Gstable(q)i.

5.5 Accuracy of the memorized suspicion values

In this section, we establish that if id(p) ∈ Gstable(q) at Round t + 4Δ − 2, then the suspicion value of
p memorized by q at that round (i.e., Gstable(q)t+4Δ−2[p].susp) is the suspicion value of p at a previous
round not early than round t (Lemma 16). Then, using Lemma 12, we can deduce that at any round
t ≥ tp + 4Δ − 2, every process has memorized maxSuspicion(p) as the suspicion value of p, for every

28

p ∈ ♦Const. Finally, the suspicion value of processes not belonging to ♦Const never stop to increase
along the execution, ex. Hence, we can conclude that � = min{id(p) : p ∈ ♦Const∧maxSuspicion(p) =
minr∈♦Const{maxSuspicion(r)}} is eventually elected by every process forever (Theorem 8).

Lemma 13. Let q be a process of V . ∀i ≥ Δ + 1, for every tuple �id, LSPs,−� received by q during
Round i, ∃p ∈ V such that id = id(p), id(p) ∈ LSPs and ∃t ∈ {i −Δ + 1, ..., i}, LSPs[id(p)].susp =
suspicion(p)t .

Proof. Let q be a process of V . Let ttl ∈ {0, ...,Δ} and i ≥ Δ + 1. Assume that q receives a tuple
msg = �id, LSPs, ttl� during Round i. Hence ttl ≥ 1 and Corollary 12 applies: there exists a process p ∈ V
such that id = id(p), LSPs = Lstable(p)t with t = i−Δ+ttl. We have t ∈ {i−Δ+1, ..., i}. As t > 1, by
Remark 5.(a), id(p) ∈ Lstable(p)t = LSPs. Moreover, LSPs[id(p)].susp = Lstable(p)t[id(p)].susp =
suspicion(p)t, by definition.

Lemma 14. Let p and q be two distinct processes of V . ∀i ≥ 2Δ + 1, if id(p) ∈ Lstable(q)i, then there
exists t ∈ {i− 2Δ+ 1, ..., i− 1} such that Lstable(q)i[id(p)].susp = suspicion(p)t.

Proof. Let p, q ∈ V such that p �= q. Let i ≥ 2Δ+ 1. Let s ∈ N.
First, at least one tuple �id(p),−,−� is inserted into Lstable(q) by q at Line 15 during the last Δ round,

by Lemma 4. Such insertions are due to receptions at q of messages �id(p),−,−� during the same rounds.
Consider then any message �id(p), LSPs,−� received by q at some round X � ∈ {i − Δ, ..., i − 1}.

By Lemma 13, and since X � ≥ Δ + 1, id(p) ∈ LSPs and there exists t ∈ {X � − Δ + 1, ..., X �} (i.e.,
t ∈ {i − 2Δ + 1, ..., i − 1}) such that LSPs[id(p)].susp = suspicion(p)t. This is in particular true for
each of these messages that causes an insertion of into Lstable(q) for id(p). Since this is the only to modify
the suspicion value of p at q, we are done.

Lemma 15. Let q be a process of V . Let i ≥ 3Δ. For every message �−, LSPs,−� received by q at Round
i, if there exists a process p ∈ V such that id(p) ∈ LSPs, then there exists t ∈ {i− 3Δ+ 2, ...i} such that
LSPs[id(p)].susp = suspicion(p)t.

Proof. Let p, q ∈ V . Let i ≥ 3Δ. Assume that q receives a message �id, LSPs, ttl� during Round i with
id(p) ∈ LSPs. First, ttl ∈ {1, ...,Δ}, by definition of the algorithm. By Corollary 12 and as i > Δ, there is
a process x such that id = id(x) and LSPs = Lstable(x)t with t = i−Δ+ttl. Note that i−Δ+1 ≤ t ≤ i.

If p �= x, then since t ≥ i−Δ+ 1 ≥ 2Δ+ 1, we have LSPs[id(p)].susp = Lstable(x)t[id(p)].susp
= suspicion(p)t� with t� ∈ {t− 2Δ+ 1, ..., t− 1}, by Lemma 14.

If p = x then by Remark 5, LSPs[id(p)].susp = Lstable(x)t[id(p)].susp = suspicion(p)t� for t� = t.
Since t ∈ {i−Δ+ 1, . . . , i}, in both cases, we have t� ∈ {i− 3Δ+ 2, ..., i}, and we are done.

Lemma 16. Let p and q be two distinct processes. Let i ≥ 4Δ. If id(p) ∈ Gstable(q)i then there exists
t ∈ {i− 4Δ+ 2, ..., i− 1} such that Gstable(q)i[id(p)].susp = suspicion(p)t.

Proof. Let p and q be two distinct processes. Let i ≥ 4Δ. Assume id(p) ∈ Gstable(q)i.
By Lemma 5, since id(p) ∈ Gstable(q)i, id(p) �= id(q) and i −Δ > 1: there exists X ∈ {1, ...,Δ}

such that q receives some message �−, LSPs,−� with id(p) ∈ LSPs at Round i−X . We note

Xm = min{X : 1 ≤ X ≤ Δ and q receives some message �−,M,−� such that id(p) ∈ M during Round i−X}

(i.e., i−Xm is the latest round when q receives such a message until Round i).

29

Let �−, LSPs,−� be any message received by q during Round i −Xm such that id(p) ∈ LSPs. As
i − Xm ≥ 3Δ, we have LSPs[id(p)].susp = suspicion(p)t with t ∈ {i − Xm − 3Δ + 2, ..., i − Xm},
by Lemma 15. Hence, during Round i−Xm, Gstable(q)[id(p)].susp is set to suspicion(p)t; see Line 17.
Note that t ∈ {i− 4Δ+ 2, ..., i− 1}.

By construction of Xm, no message �−,M,−� such that id(p) ∈ M is received during Round i−Xm+1
to Round i − 1. Furthermore, since id(p) ∈ Gstable(q)i, the information of id(p) has not been removed
from Gstable(q) meanwhile. Hence, Gstable(q)i[p].susp = suspicion(p)t.

By definition of the ♦Const set, we have the following remark.

Remark 6. ∃T ∈ N∗ such that ∀i ≥ T ,

a) ∀p ∈ V \ ♦Const we have suspicion(p)i > minr∈♦Const{maxSuspicion(r)}
b) ∀p� ∈ ♦Const, we have suspicion(p�)i = maxSuspicion(p�)

Notice that T ≥ tp� , ∀p� ∈ ♦Const.

Theorem 8. ∀i ≥ T + 4Δ + 1, ∀q ∈ V , lid(q) = � = min{id(p) : p ∈ ♦Const ∧maxSuspicion(p) =
minr∈♦Const{maxSuspicion(r)}} at the beginning of Round i.

Proof. Let q be a process of V . Let i ≥ T + 4Δ+ 1. By Lemma 8, follows.

(a) For every id ∈ Gstable(q)i, there exists a process p ∈ V such that id(p) = id.

Then, we also have the following property.

(b) For every process p ∈ V , if id(p) ∈ Gstable(q)i, then there exists t ∈ {T, ..., i} such that
Gstable(q)i[id(p)].susp = suspicion(p)t.

Indeed, if p = q then by Remark 5.(b), Gstable(q)i[id(q)].susp = Lstable(q)i[id(q)].susp = suspicion(q)i,
as i ≥ 2. Otherwise, p �= q and by Lemma 16, Gstable(q)i[id(p)].susp = suspicion(p)t with i−4Δ+2 ≤
t ≤ i− 1.

Now, as the suspicion value of any process p cannot decrease after the first round, Gstable(q)i[id(p)].susp
≥ suspicion(p)t ≥ suspicion(p)T , for every id(p) ∈ Gstable(q)i. Hence, by definition of T , we have

(c) ∀p /∈ ♦Const, Gstable(q)i[id(p)].susp > minr∈♦Const{maxSuspicion(r)}.

Let p ∈ ♦Const. By Lemma 12, id(p) ∈ Gstable(q)i, since i ≥ tp + Δ + 1. Moreover, by (b), there
exists t ∈ {T, ..., i} such that Gstable(q)i[id(p)].susp = suspicion(p)t. Now, as t ≥ tp (by definition of
♦Const), suspicion(p)t = maxSuspicion(p), and follows.

(d) ∀p ∈ ♦Const, id(p) ∈ Gstable(q)i and Gstable(q)i[id(p)].susp = maxSuspicion(p).

Thus, at the beginning of Round i, Gstable(q)i

• only contains records tagged with identifiers of processes of V by (a);

• may contain records tagged with identifiers of non-members of ♦Const, but their associated suspicion
values are strictly greater than minr∈♦Const{maxSuspicion(r)}, by (c); and

• contains a record for each member p of ♦Const with an associated suspicion value equal to the
maximum suspicion value of p, by (d).

Hence, at the end of Round i− 1 (and so, at the beginning of Round i), the process elected by q, lid(q)i, is �;
see Line 27.

Corollary 14. Algorithm LE is a deterministic pseudo-stabilizing leader election algorithm for J B
1,∗(Δ).

30

5.6 Speculation

The pseudo-stabilization time of Algorithm LE cannot be bounded in J B
1,∗(Δ) by Theorem 5. However,

Algorithm LE is speculative in the sense that its pseudo-stabilization time in J B
∗,∗(Δ) ⊂ J B

1,∗(Δ) is bounded.
Indeed, by definition, in J B

∗,∗(Δ), ∀p ∈ V , p ∈ TSources (i.e., V \ ♦Const = ∅). Then, by Lemma 10,
∀p ∈ V , tp = 2Δ + 1. So, T = 2Δ + 1, and ∀i ≥ 6Δ + 2, lid(p) = � at the beginning of Round i, by
Theorem 8.

6 Conclusion

We have studied the expressive power, w.r.t. the (deterministic) leader election problem, of pseudo- and
self-stabilization in nine classes of dynamic graphs. Our results show that self-stabilizing leader election can
only be solved in the three classes studied in [2]. Furthermore, even pseudo-stabilizing leader election cannot
be solved in the remaining classes, except in the class where at least one process is a timely source.

We have defined those classes by analogy with classes mainly studied for the Ω problem in crash-prone
partially synchronous systems. We have simply skipped several dynamic patterns classically used in those
systems, e.g., patterns related to eventual timeliness and the notion of bi-source. Actually, as explained in [12],
the fact that the bound immediately holds (timeliness) or only eventually (eventually timeliness) has no
impact on stabilizing systems: just consider the first configuration from which the bound is guaranteed as the
initial point of observation. Similarly, dealing with dynamic graphs where at least one process is a bi-source
(i.e., a process which is both a source and a sink) is not an issue in the expressive point of view. Indeed, the
existence of a bi-source makes those dynamic graphs belonging to the class J∗,∗ since any bi-source acts as a
hub during a flooding.

Concerning now the efficiency of solutions, our results give a broad answer in terms of time complexity, in
particular about convergence time. However, the space complexity aspect remains widely open. In particular,
two of our stabilizing solutions, namely those for J∗,∗ (proposed in [2]) and J B

∗,1(Δ) (proposed here), use an
infinite memory. Actually, we conjecture that this drawback cannot be precluded.

References

[1] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. On imple-
menting omega in systems with weak reliability and synchrony assumptions. Distributed Comput.,
21(4):285–314, 2008.

[2] Karine Altisen, Stéphane Devismes, Anaı̈s Durand, Colette Johnen, and Franck Petit. Self-stabilizing
systems in spite of high dynamics. In ICDCN ’21: International Conference on Distributed Computing
and Networking, pages 156–165. ACM, 2021.

[3] Karine Altisen, Stéphane Devismes, Anaı̈s Durand, and Franck Petit. Gradual stabilization. JPDC,
123:26–45, 2019.

[4] Matthieu Barjon, Arnaud Casteigts, Serge Chaumette, Colette Johnen, and Yessin M. Neggaz. Main-
taining a distributed spanning forest in highly dynamic networks. Comput. J., 62(2):231–246, 2019.

[5] Marjorie Bournat, Ajoy K. Datta, and Swan Dubois. Self-stabilizing robots in highly dynamic environ-
ments. Theor. Comput. Sci., 772:88–110, 2019.

31

[6] Nicolas Braud-Santoni, Swan Dubois, Mohamed-Hamza Kaaouachi, and Franck Petit. The next 700
impossibility results in time-varying graphs. IJNC, 6(1):27–41, 2016.

[7] James E. Burns, Mohamed G. Gouda, and Raymond E. Miller. Stabilization and pseudo-stabilization.
Distributed Computing, 7(1):35–42, 1993.

[8] Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility under global fairness: On
space complexity of self-stabilizing leader election on a population protocol model. Theory Comput.
Syst., 50(3):433–445, 2012.

[9] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying graphs
and dynamic networks. Inter. J. of Parall., Emergent and Dist. Systems, 27(5):387–408, 2012.

[10] Bernadette Charron-Bost and Shlomo Moran. The firing squad problem revisited. In STACS, pages
20:1–20:14, 2018.

[11] Ajoy K. Datta and Lawrence L. Larmore. Self-stabilizing leader election in dynamic networks. Theory
Comput. Syst., 62(5):977–1047, 2018.

[12] Carole Delporte-Gallet, Stéphane Devismes, and Hugues Fauconnier. Stabilizing leader election in
partial synchronous systems with crash failures. JPDC, 70(1):45–58, 2010.

[13] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM, 17(11):643–
644, 1974.

[14] Shlomi Dolev. Optimal time self-stabilization in uniform dynamic systems. Parallel Process. Lett.,
8(1):7–18, 1998.

[15] Shlomi Dolev, Ariel Hanemann, Elad Michael Schiller, and Shantanu Sharma. Self-stabilizing end-
to-end communication in (bounded capacity, omitting, duplicating and non-fifo) dynamic networks -
(extended abstract). In SSS 2012, volume 7596, pages 133–147. Springer, 2012.

[16] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed systems. Chicago
Journal of Theoretical Computer Science, 1995.

[17] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization of dynamic systems assuming only
read/write atomicity. Dist. Comput., 7(1):3–16, 1993.

[18] S. Dubois and R. Guerraoui. Introducing speculation in self-stabilization: an application to mutual
exclusion. In PODC, pages 290–298, 2013.

[19] Carlos Gómez-Calzado, Arnaud Casteigts, Alberto Lafuente, and Mikel Larrea. A connectivity model
for agreement in dynamic systems. In Euro-Par, pages 333–345, 2015.

[20] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L. Wong. Zyzzyva: Speculative byzantine fault
tolerance. ACM Trans. Comput. Syst., 27(4):7:1–7:39, 2009.

[21] B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys in dynamic
networks. IJFCS, 14(02):267–285, 2003.

32

