
Brief Announcement:
Self-stabilizing Systems in Spite of High Dynamics*

Karine Altisen1, Stéphane Devismes1, Anaı̈s Durand2, Colette Johnen3, and Franck Petit4

1VERIMAG, Univ. Grenoble Alpes, Grenoble, France
2LIMOS, Univ. Clermont Auvergne, Clermont-Ferrand, France

3LaBRI, Univ. de Bordeaux, Bordeaux, France
4LIP6, Sorbonne Univ., Paris, France

Abstract

We initiate research on self-stabilization in highly dynamic identified message-passing systems
where dynamics is modeled using time-varying graphs (TVGs). More precisely, we address the self-
stabilizing leader election problem in three wide classes of TVGs: the class T CB(∆) of TVGs with
temporal diameter bounded by ∆, the class T CQ(∆) of TVGs with temporal diameter quasi-bounded
by ∆, and the class T CR of TVGs with recurrent connectivity only, where T CB(∆) ⊆ T CQ(∆) ⊆
T CR. We first study conditions under which our problem can be solved. Precisely, we introduce the
notion of size-ambiguity to show that the assumption on the knowledge of the number n of processes
is central. Our results reveal that, despite the existence of unique process identifiers, any deterministic
self-stabilizing leader election algorithm working in the TVG class T CQ(∆) or T CR cannot be
size-ambiguous, justifying why our solutions for those classes assume the exact knowledge of n. We
then present three self-stabilizing leader election algorithms for the TVG classes T CB(∆), T CQ(∆),
and T CR, respectively.

Keywords: Self-stabilization, time-varying graphs, leader election, speculation.

1 Introduction

Starting from an arbitrary configuration, a self-stabilizing algorithm [6] makes a distributed system
reach within finite time a configuration from which its behavior is correct. Essentially, self-stabilizing
algorithms tolerate transient failures, since by definition such failures last a finite time (as opposed to
crash failures, for example) and their frequency is low (as opposed to intermittent failures). Even though
self-stabilization is not inherently suited to handle intermittent and permanent failures, several works
show that in many cases self-stabilization can still be achieved despite such faults occur. Indeed, strong
forms of self-stabilization have been proposed to tolerate permanent failures, e.g., fault-tolerant self-
stabilization [2] to cope with process crashes, and strict stabilization [11] to withstand Byzantine failures.
Furthermore, several self-stabilizing algorithms, e.g., [5], withstand intermittent failures such as frequent
lost, duplication, or reordering of messages. All these aforementioned works assume static communication
networks. Nevertheless, self-stabilizing algorithms dedicated to arbitrary network topologies tolerate, up
to a certain extent, some topological changes. Precisely, if topological changes are eventually detected
locally at involved processes and if the frequency of such events is low enough, then they can be considered

*This study was partially supported by the French ANR projects ANR-16-CE40-0023 (DESCARTES) and ANR-16
CE25-0009-03 (ESTATE).

1



as transient faults. Actually, a number of works, e.g., [4], use this kind of argument to claim that they are
suited for the dynamic context. Furthermore, several approaches, like superstabilization [7] and gradual
stabilization [1], aims at additionally providing specific countermeasures to efficiently treat topological
changes when they are both spatially and timely sparse. However, all these aforementioned approaches,
e.g., [1, 4, 7], become totally ineffective when the frequency of topological changes drastically increase, in
other words when topological changes are intermittent rather than transient. Actually, in the intermittent
case, the network dynamics should be no more considered as an anomaly but rather as an integral part of
the system nature.

Contribution. We study self-stabilizing leader election in highly dynamic identified message-passing
systems where the dynamics is modeled using Time-Varying Graphs [3] (TVGs, for short) to obtain
solutions tolerating both transient faults and high dynamics. We consider three wide classes of TVGs,
respectively denoted by T CB(∆), T CQ(∆), and T CR, where T CB(∆) ⊆ T CQ(∆) ⊆ T CR: T CB(∆)
is the class of TVGs with temporal diameter bounded by ∆ [9], T CQ(∆) is the class of TVGs with
temporal diameter quasi-bounded by ∆ (introduced here), and T CR is the class of TVGs with recurrent
temporal connectivity [3].

We first study conditions under which our problem can be solved. Actually, our results show that the
assumption on the knowledge of the number n of processes is central. To see this, we introduce the notion
of size-ambiguity, which formalizes the fact that some subsets of processes do not share enough initial
knowledge on n to detect that the system is not limited to themselves. In other words, such an ambiguity
comes from the fact that n is only partially known by the processes. Our results show that, despite
the existence of unique process identifiers, any deterministic self-stabilizing leader election algorithm
working in the class T CQ(∆) or T CR cannot be size-ambiguous. Hence, to make the problem solvable
in those classes, we assume each process knows exactly n.

We then propose self-stabilizing leader election algorithms for the three considered classes. In more
detail, we present a self-stabilizing leader election algorithm for Class T CB(∆) with a stabilization time
of at most 3∆ rounds, assuming every process knows ∆, yet using no information on n. This in particular
shows that our necessary condition is tight. Then, we propose a self-stabilizing leader election algorithm
for Class T CQ(∆) assuming every process knows ∆ and n. In general, stabilization time cannot be
bounded in T CQ(∆); nevertheless its stabilization time in T CB(∆) is at most 2∆ rounds. In other words,
this algorithm is speculative (in the sense of [8]) since it exhibits better performances in a subset of more
probable executions. Finally, we propose a self-stabilizing leader election algorithm for Class T CR,
where only n is known, yet requiring unbounded local memories. Again, in general, stabilization time
cannot be bounded in T CR, yet the algorithm is speculative since its stabilization time in T CB(∆) is at
most ∆ + 1 rounds.

Roadmap. Due to the lack of space, we only present here our three algorithms. All our results are
available in an online technical report.1 In Section 2, we briefly present the model. In Section 3, we
outline our algorithms. We give perspectives in Section 4.

2 Preliminaries

Time-varying Graphs. A time-varying graph [3] (TVG for short) is a tuple G = (V,E, T , ρ) where
V is a set of nodes, E is a set of arcs between pairwise nodes, T is an interval over N∗, and ρ : E ×T →
{0, 1} is the presence function that indicates whether or not a given arc exists at a given time. We denote
by oT = min T the first instant in T . The snapshot of G at time t ∈ T is the graph Gt = (V, {e ∈
E : ρ(e, t) = 1}). A journey is a sequence of ordered pairs J = (e1, t1), (e2, t2), . . . , (ek, tk) where

1https://hal.archives-ouvertes.fr/hal-02376832/

2



∀i ∈ {1, . . . , k}, ei = (pi, qi) ∈ E satisfies ρ(ei, ti) = 1 and i < k ⇒ qi = pi+1 ∧ ti < ti+1. The
temporal length of a journey J = (e1, t1), (e2, t2), . . . , (ek, tk) is equal to tk − t1 + 1. The temporal
distance from p to q at time t is the first arrival time of a journey from p to q whose starting time is at the
earliest time t. The temporal diameter of G, is the maximum temporal distance between any two nodes of
G at any time.

TVG Classes. We consider the following TVG classes.
Class T CR (Recurrent Temporal Connectivity): at any point in time, every node can reach all the others
through a journey.
Class T CQ(∆) with ∆ ∈ N∗ (Quasi Bounded Temporal Diameter): at any point in time, every node can
eventually reach each other node through a journey of temporal length at most ∆.
Class T CB(∆) with ∆ ∈ N∗ (Bounded Temporal Diameter): at any point in time, the temporal distance
between any pair of two nodes is at most ∆, i.e., the temporal diameter is bounded by ∆.

Notice that, ∀∆ ∈ N∗, T CB(∆) ⊆ T CQ(∆) ⊆ T CR.

Computational Model. We assume a distributed system made of a set of n processes, denoted by
V . Each process p has a unique identifier denoted by id(p) and taken in an arbitrary domain IDSET
totally ordered by <. We denote by ` the process of minimum identifier. A distributed algorithm A is
a collection of n local algorithms A(p), one per process p ∈ V . The state in A of each process p ∈ V
is defined by the values of its variables in A(p). Some variables may be constants in which case their
values are predefined. A configuration of A for V is a vector of n components (s1, s2, . . . , sn), where s1
to sn represent the states of the processes in V .

Processes execute their local algorithms in synchronous rounds. For every i > 0, the communication
network at Round i is defined by GoT +i−1, i.e., the snapshot of G after i − 1 instants elapse from the
initial time oT . For any (synchronous) round i ≥ 1, the system moves from the current configuration
γi−1 to some configuration γi. Such a move is atomically performed by every process p ∈ V according
to the following three steps, defined in its local algorithm A(p): (1) p sends a message consisting of all
or a part of its local state in γi−1, (2) p receives all messages sent by its neighbors in GoT +i−1, and (3) p
computes its state in γi.

Self-stabilizing Leader Election. In identified networks, leader election usually consists in making
the processes agree on one of the identifiers held by processes. The identifier of the elected process is
stored at each process p in an output variable, denoted here by lid(p). In the self-stabilizing context,
variables lid may be initially corrupted; in particular some of them may be initially assigned to fake IDs,
a value v ∈ IDSET such that v is not assigned as a process identifier in the system. Despite such fake
IDs, the goal of a self-stabilizing algorithm is to make the system converge to a configuration from which
a unique process is forever adopted as leader by all processes. Our solutions always elect the process of
lowest ID, `. To that goal, our algorithms implement two main mechanisms: one for removing all fake
IDs from the system, and the other for computing the minimum value among the remaining IDs.

3 Algorithms

Algorithm for T CB(∆). Recall that we assume every process knows ∆. Then, each process pmaintains
two variables: the output lid(p) eventually contains the ID of the leader; ttl(p) represents the degree of
mistrust of p in lid(p) and allows to eliminate messages containing fake IDs. The value ttl(p) increases
at each round if p does not receive a message; otherwise it is updated thanks to the received messages.
ttl(p) can increase up to 2∆− 1. Process p never increases ttl(p) from 2∆− 1 to 2∆; instead it locally
resets and declares itself as the leader: lid(p) := id(p) and ttl(p) := 0.

3



At each round i, p first sends its leader ID together with its degree of mistrust. Then, p selects the
received message 〈id, ttl〉 which is minimum using the lexicographic order (i.e., the message with the
lowest ID and with the lowest ttl to break ties, if any). If id is smaller than lid(p), p updates its leader
lid(p). If id = lid(p), it updates the ttl(p) by taking the smallest value between ttl(p) and ttl (in this
way, p may decrease its mistrust in lid(p)). In either case, ttl(p) is then incremented if lid(p) 6= id(p).
Finally, if lid(p) ≥ id(p), p systematically resets. So, if p believes to be the leader at the end of Round i
(i.e., lid(p) = id(p)), then it sends its own ID together with a degree of mistrust 0 at the beginning of the
next round, i+ 1.

The resets allow to remove all fake IDs within at most 2∆ rounds. From that time, (lid(`), ttl(`)) =
(id(`), 0) forever. So, after 2∆ rounds, ` sends 〈id(`), 0〉 at each round and all processes will receive
messages 〈id(`), d〉, with d ≤ ∆ < 2∆ (since ∆ ∈ N∗), at least every ∆ rounds since the temporal
diameter is upper bounded by ∆. Thus, within at most ∆ additional rounds, they will all adopt ` as
leader and never more reset, ensuring that ` will remain the leader forever. Hence, this algorithm is a
self-stabilizing leader election algorithm for T CB(∆) and its stabilization time is at most 3∆ rounds.

Algorithm for T CQ(∆). We assume now that every process knows both ∆ and n. Then, each process
p uses a variable members(p) to collect IDs. Actually, members(p) is a FIFO queue containing at most
n pairs 〈id, t〉, where id is an identifier and t is a timestamp, i.e., an integer value less than or equal to ∆.
At each round i, p sends all pairs 〈id, t〉 of members(p) such that t < ∆ at the end of Round i− 1. (The
timestamps allow to eventually remove all fake IDs.) Then, p updates members(p) by calling function
insert on each received pair 〈id, t〉 such that id 6= id(p).

The insertion function insert works as follows: if id already appears in members(p), then the old
pair tagged with id is removed first from the queue and in either case, 〈id, t〉 is appended at the tail of the
queue. In particular, since the size of members(p) is limited, if the queue is full, its head is removed to
make room for the new value. Using this FIFO mechanism, initial spurious values eventually vanish from
members(p).

After all received pairs have been managed, the timestamps of all pairs in the queue are incremented
and then, 〈id(p), 0〉 is systematically inserted at the tail of the queue. This mechanism ensures two main
properties. First, every timestamp associated to a fake ID in a variable members is eventually forever
greater than or equal to ∆; and consequently, eventually no message containing fake IDs is sent. Second,
by definition of T CQ(∆), for every two distinct processes p and q, there are journeys of length at most ∆
infinitely often, so each process p regularly receives messages containing id(q) with timestamps smaller
than ∆. Thus, eventually members(p) exactly contains all IDs of the networks. Now, at the end of each
round, p updates its leader variable with the smallest ID in members(p). Hence, the process of lowest
ID, `, is eventually elected. Thus, this algorithm is a self-stabilizing leader election for T CQ(∆).

In general, stabilization time cannot be bounded in T CQ(∆). Yet, if our algorithm is deployed on a
TVG of class T CB(∆), then after ∆ rounds, processes no more receives messages with fake IDs. For that
point, the identity of every process will be inserted into queue of all processes within at most ∆ rounds,
which ensures stabilization time of at most 2∆ rounds. Therefore, this algorithm is speculative.

Algorithm for T CR. Similarly to the previous algorithm, each process p uses a variable members(p)
to collect IDs. However, this time, only n is known and members(p) is a map that can contain up to n
IDs, each of them being associated with a timestamp.

At each round i, p sends the content of members(p). Then, p updates members(p) by calling
function insert on each received pair 〈id, t〉 such that id 6= id(p). The function insert works as follows:
if id already appears in members(p), then the associated timestamp is updated by keeping the smallest
value. Otherwise, p tries to insert 〈id, t〉 in the map. Actually, 〈id, t〉 is inserted in the map if the map is
not full or t is smaller than the greatest timestamp in the map. In this latter case, 〈id, t〉 overwrites any
value having this timestamp in members(p). This overwriting mechanism allows to eventually remove

4



all fake IDs from members(p), since their timestamps will regularly increase. After members(p) has
been updated, all timestamps of members(p) are incremented and then, 〈id(0), 0〉 is systematically
inserted in the map.

Actually, our algorithm guarantees two main properties. First, at the beginning of any round i, any
timestamp associated to a fake ID is greater than or equal to i − 1. Second, by definition of T CR, at
any point in time, every process can reach all the others through a journey. The key property is then to
show that if some broadcast initiated by process p reaches a process q at Round i, then the value of the
timestamp in the message is small enough to ensure the insertion of id(p) into members(q). These two
properties ensure that eventually members(p) exactly contains all IDs of the network. Now, at the end
of each round, p updates its leader variable with the smallest ID in members(p). Hence, ` is eventually
elected. Thus, this algorithm is a self-stabilizing leader election for T CR.

In general, stabilization time cannot be bounded in T CR. Yet, assume that the algorithm is deployed
on a TVG of class T CB(∆). After the first round, every process p sends the pair 〈id(p), 0〉 at each round.
Thus, any process q receives a pair 〈id(p), t〉 with t < ∆ not later than Round ∆ + 1. Now, when this
event occurs, each fake ID in members(q) has a timestamp greater than t. So, id(p) is definitely inserted
into members(q). Hence, the algorithm is speculative since its stabilization time in T CB(∆) is at most
∆ + 1 rounds.

4 Perspectives

Beyond extending our results to other particular problems, our future work will focus on studying
expressiveness of self-stabilization in TVGs. To that goal, we plan to first investigate broadcast problems,
again in very general TVG classes. Indeed, coupled with our leader election solutions, they should allow
to build generic transformers, following, for example, the approach proposed in [10].

References

[1] Karine Altisen, Stéphane Devismes, Anaı̈s Durand, and Franck Petit. Gradual stabilization. JPDC,
123:26–45, 2019.

[2] Joffroy Beauquier and Synnöve Kekkonen-Moneta. On FTSS-solvable distributed problems. In
PODC, page 290, 1997.

[3] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying graphs
and dynamic networks. IJPEDS, 27(5):387–408, 2012.

[4] Ajoy K. Datta and Lawrence L. Larmore. Self-stabilizing leader election in dynamic networks.
Theory Comput. Syst., 62(5):977–1047, 2018.

[5] Sylvie Delaët, Bertrand Ducourthial, and Sébastien Tixeuil. Self-stabilization with r-operators
revisited. JACIC, 3(10):498–514, 2006.

[6] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974.

[7] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed systems. Chicago
Journal of Theoretical Computer Science, 1995.

[8] S. Dubois and R. Guerraoui. Introducing speculation in self-stabilization: an application to mutual
exclusion. In PODC, pages 290–298, 2013.

5



[9] Carlos Gómez-Calzado, Arnaud Casteigts, Alberto Lafuente, and Mikel Larrea. A connectivity
model for agreement in dynamic systems. In Euro-Par, pages 333–345, 2015.

[10] Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions for message-passing systems.
Distributed Computing, 7(1):17–26, 1993.

[11] Mikhail Nesterenko and Anish Arora. Dining philosophers that tolerate malicious crashes. In
ICDCS, pages 191–198, 2002.

6


