
Concurrency in Snap-Stabilizing Local Resource
Allocation?

Karine Altisen, Stéphane Devismes, and Anaı̈s Durand

VERIMAG UMR 5104
Université Grenoble Alpes, France

firstname.lastname@imag.fr

Abstract. In distributed systems, resource allocation consists in managing fair
access of a large number of processes to a typically small number of reusable
resources. As soon as the number of available resources is greater than one, the
efficiency in concurrent accesses becomes an important issue, as a crucial goal
is to maximize the utilization rate of resources. In this paper, we tackle the con-
currency issue in resource allocation problems. We first characterize the maximal
level of concurrency we can obtain in such problems by proposing the notion
of maximal-concurrency. Then, we focus on Local Resource Allocation prob-
lems (LRA). Our results are both negative and positive. On the negative side, we
show that it is impossible to obtain maximal-concurrency in LRA without com-
promising the fairness. On the positive side, we propose a snap-stabilizing LRA
algorithm which achieves a high (but not maximal) level of concurrency, called
here strong-concurrency.

1 Introduction
Mutual exclusion [14, 25] is a fundamental resource allocation problem, which consists
in managing fair access of all (requesting) processes to a unique non-shareable reusable
resource. This problem is inherently sequential, as no two processes should access this
resource concurrently. There are many other resource allocation problems which, in
contrast, allow several resources to be accessed simultaneously. In those problems, par-
allelism on access to resources may be restricted by some of the following conditions:
1. The maximum number of resources that can be used concurrently, e.g., the `-

exclusion problem [19] is a generalization of the mutual exclusion problem which
allows use of ` identical copies of a non-shareable reusable resource among all
processes, instead of only one, as standard mutual exclusion.

2. The maximum number of resources a process can use simultaneously, e.g., the k-
out-of-`-exclusion problem [27] is a generalization of `-exclusion where a process
can request for up to k resources simultaneously.

3. Some topological constraints, e.g., in the dining philosophers problem [16], two
neighbors cannot use their common resource simultaneously.

For efficiency purposes, algorithms solving such problems must be as parallel as possi-
ble. As a consequence, these algorithms should be, in particular, evaluated at the light of
the level of concurrency they permit, and this level of concurrency should be captured
by a dedicated property. However, most of the solutions to resource allocation problems
simply do not consider the concurrency issue, e.g., [5, 7, 9, 20, 22, 24, 26]
? This work has been partially supported by the ANR Persyval Project DACRAW.

Now, as quoted by Fischer et al. [19], specifying resource allocation problems
without including a property of concurrency may lead to degenerated solutions, e.g.,
any mutual exclusion algorithm realizes safety and fairness of `-exclusion. To address
this issue, Fischer et al. [19] proposed an ad hoc property to capture concurrency in
`-exclusion. This property is called avoiding `-deadlock and is informally defined as
follows: “if fewer than ` processes are executing their critical section,1 then it is pos-
sible for another process to enter its critical section, even though no process leaves its
critical section in the meantime.” Some other properties, inspired from the avoiding
`-deadlock property, have been proposed to capture the level of concurrency in other
resource allocation problems, e.g., k-out-of-`-exclusion [11] and committee coordina-
tion [6]. However, until now, all existing properties of concurrency are specific to a
particular problem, e.g., the avoiding `-deadlock property cannot be applied to commit-
tee coordination.

In this paper, we first propose to generalize the definition of avoiding `-deadlock to
any resource allocation problems. We call this new property the maximal-concurrency.
Then, we consider the maximal-concurrency in the context of the Local Resource Al-
location (LRA) problem, defined by Cantarell et al. [9]. LRA is a generalization of re-
source allocation problems in which resources are shared among neighboring processes.
Dining philosophers, local reader-writers, local mutual exclusion, and local group mu-
tual exclusion are particular instances of LRA. In contrast, local `-exclusion and local
k-out-of-`-exclusion cannot be expressed with LRA although they also deal with neigh-
boring resource sharing.

Now, we show that algorithms for a wide class of instances of this important prob-
lem cannot achieve maximal-concurrency. This impossibility result is mainly due to
the fact that fairness of LRA and maximal-concurrency are incompatible properties:
it is impossible to implement an algorithm achieving both properties. As unfair re-
source allocation algorithms are clearly unpractical, we propose to weaken the property
of maximal-concurrency. We call partial-concurrency this weaker version of maximal
concurrency. The goal of partial-concurrency is to capture the maximal level of con-
currency that can be obtained in LRA without compromising fairness.

We propose a LRA algorithm achieving (strong) partial-concurrency in bidirectional
identified networks of arbitrary topology. As additional feature, this algorithm is snap-
stabilizing [8]. Snap-stabilization is a versatile property which enables a distributed
system to efficiently withstand transient faults. Informally, after transient faults cease,
a snap-stabilizing algorithm immediately resumes correct behavior, without external
intervention. More precisely, a snap-stabilizing algorithm guarantees that any compu-
tation started after the faults cease will operate correctly. However, we have no guaran-
tees for those executed all or a part during faults. By definition, snap-stabilization is a
strengthened form of self-stabilization [15]: after transient faults cease, a self-stabilizing
algorithm eventually resume correct behavior, without external intervention.

There exist many algorithms for particular instances of the LRA problem. Many
of these solutions have been proven to be self-stabilizing, e.g., [5, 7, 9, 20, 22, 24, 26].
In [7], Boulinier et al. propose a self-stabilizing unison algorithm which allows to solve
local mutual exclusion, local group mutual exclusion, and local reader-writers problem.

1 The critical section is the code that manages the access of a process to its allocated resources.

There are also many self-stabilizing algorithms for local mutual exclusion [5, 20, 24,
26]. In [22], Huang proposes a self-stabilizing algorithm solving the dining philoso-
phers problem. A self-stabilizing drinking philosophers algorithm is given in [26].
In [9], Cantarell et al. generalize the above problems by introducing the LRA prob-
lem. They also propose a self-stabilizing algorithm for that problem. To the best of our
knowledge, no other paper deals with the general instance of LRA and no paper pro-
poses snap-stabilizing solution for any particular instance of LRA. Finally, none of the
aforementioned papers (especially [9]) consider the concurrency issue. Finally, note that
there exist weaker versions of the LRA problem, such as the (local) conflict managers
proposed in [21] where the fairness is replaced by a progress property.

Roadmap. Next section introduces the computation model and the specification of the
LRA problem. In Section 3, we define the property of maximal-concurrency, show the
impossibility result, and then circumvent this impossibility by introducing the partial-
concurrency. Our algorithm is presented in Section 4. We outline the proofs of its cor-
rectness and (strong) partial-concurrency in Subsection 4.4. A detailed proof is available
in the technical report [3]. We conclude in Section 5.

2 Computational Model and Specifications

2.1 Distributed Systems
We consider distributed systems composed of n processes. A process p can (directly)
communicate with a subset Np of other processes, called its neighbors. These commu-
nications are assumed to be bidirectional, i.e., for any two processes p and q, q ∈ Np
if and only if p ∈ Nq . Hence, the topology of the network can be modeled by a simple
undirected graph G = (V,E), where V is the set of processes and E is the set of edges
representing (direct) communication relations. Moreover, we assume that each process
has a unique ID, a natural integer. By abuse of notation, we identify the process with its
own ID, whenever convenient.

2.2 Locally Shared Memory Model

We consider the locally shared memory model in which processes communicate using
a finite number of locally shared registers, called variables. Each process can read its
own variables and those of its neighbors, but can only write to its own variables. The
state of a process is the vector of values of all its variables. A configuration γ of the
system is the vector of states of all processes. We denote by γ(p) the state of a process
p in a configuration γ.

A distributed algorithm consists of one program per process. The program of a
process p is composed of a finite number of actions, where each action has the following
form: (〈priority〉) 〈label〉 : 〈guard〉 → 〈statement〉. The labels are used to identify
actions. The guard of an action in the program of process p is a Boolean expression
involving the variables of p and its neighbors. Priorities are used to simplify the guards
of the actions. The actual guard of an action “(j) L : G → S” at p is the conjunction
of G and the negation of the disjunction of all guards of actions at p with priority i < j.
An action of priority i is said to be of higher priority than any action of priority j > i.
If the actual guard of some action evaluates to true, then the action is said to be enabled

at p. By definition, a process p is not enabled to execute any (lower priority) action if
it is enabled to execute an action of higher priority. If at least one action is enabled at
p, p is also said to be enabled. We denote by Enabled(γ) the set of processes enabled
in configuration γ. The statement of an action is a sequence of assignments on the
variables of p. An action can be executed only if it is enabled. In this case, the execution
of the action consists in executing its statement.

The asynchronism of the system is materialized by an adversary, called the daemon.
In a configuration γ, if there is at least one enabled process (i.e.,Enabled(γ) 6= ∅), then
the daemon selects a non empty subset S of Enabled(γ) to perform an (atomic) step:
Each process of S atomically executes one of its enabled action in γ, leading the system
to a new configuration γ′. We denote by 7→ the relation between configurations such
that γ 7→ γ′ if and only if γ′ can be reached from γ in one (atomic) step. An execution
is a maximal sequence of configurations γ0, γ1, . . . such that ∀i > 0, γi−1 7→ γi.
The term “maximal” means that the execution is either infinite, or ends at a terminal
configuration γ in which Enabled(γ) is empty.

In this paper, we assume a distributed weakly fair daemon. “Distributed” means that
while the configuration is not terminal, the daemon should select at least one enabled
process, maybe more. “Weakly fair” means that there is no infinite suffix of execution in
which a process p is continuously enabled without ever being selected by the daemon.

2.3 Snap-Stabilizing Local Resource Allocation

In resource allocation problems, a typically small amount of reusable resources is
shared among a large number of processes. A process may spontaneously request for
one or several resources. When granted, the access to the requested resource(s) is done
using a special section of code, called critical section. The process can only hold re-
sources for a finite time: eventually, it should release these resources to the system, in
order to make them available for other requesting processes. In particular, this means
that the critical section is always assumed to be finite. In the following, we denote by
Rp the set of resources that can be accessed by a process p.

Local Resource Allocation. The Local Resource Allocation (LRA) problem [9] is
based on the notion of compatibility: two resources X and Y are said to be compat-
ible if two neighbors can concurrently access them. Otherwise, X and Y are said to be
conflicting. In the following, we denote by X
 Y (resp. X 6
 Y) the fact that X and
Y are compatible (resp. conflicting). Notice that
 is a symmetric relation.

Using the compatibility relation, the local resource allocation problem consists in
ensuring that every process which requires a resource r eventually accesses r while no
other conflicting resource is currently used by a neighbor. Notice that the case where
there are no conflicting resources is trivial: a process can always use a resource whatever
the state of its neighbors. So, from now on, we will always assume that there exists at
least one conflict, i.e., there are (at least) two neighbors p, q and two resources X , Y
such that X ∈ Rp, Y ∈ Rq and X 6
 Y .

Specifying the relation
, it is possible to define some classic resource allocation
problems in which the resources are shared among neighboring processes.

Example 1: Local Mutual Exclusion. In the local mutual exclusion problem, no two
neighbors can concurrently access the unique resource. So there is only one resource X
common to all processes and X 6
 X .

Example 2: Local Readers-Writers. In the local readers-writers problem, the processes
can access a file in two different modes: a read access (the process is said to be a reader)
or a write access (the process is said to be a writer). A writer must access the file in local
mutual exclusion, while several reading neighbors can concurrently access the file. We
represent these two access modes by two resources at every process: R for a “read
access” and W for a “write access.” Then, R
 R, but W 6
 R and W 6
W .
Snap-Stabilization. LetA be a distributed algorithm. A specification SP is a predicate
over all executions of A. In [8], snap-stabilization has been defined as follows: A is
snap-stabilizing w.r.t. SP if starting from any arbitrary configuration, all its executions
satisfy SP .

Of course, not all specifications — in particular their safety part — can be satisfied
when considering a system which can start from an arbitrary configuration. Actually,
snap-stabilization’s notion of safety is user-centric: when the user initiates a compu-
tation, then the computed result should be correct. So, we express a problem using a
guaranteed service specification [2]. Such a specification consists in specifying three
properties related to the computation start, computation end, and correctness of the de-
livered result. (In the context of LRA, this latter property will be referred to as “resource
conflict freedom.”)

To formally define the guaranteed service specification of the local resource alloca-
tion problem, we need to introduce the following four predicates, where p is a process,
r is a resource, and e = (γi)i≥0 is an execution:

– Request(γi, p, r) means that an application at p requires r in configuration γi. We
assume that if Request(γi, p, r) holds, it continuously holds until p accesses r.

– Start(γi, γi+1, p, r) means that p starts a computation to access r in γi 7→ γi+1.
– Result(γi . . . γj , p, r) means that p obtains access to r in γi−1 7→ γi and p ends

the computation in γj 7→ γj+1. Notably, p released r between γi and γj .
– NoConflict(γi, p) means that, in γi, if a resource is allocated to p, then none of

its neighbors is using a conflicting resource.
These predicates will be instantiated with the variables of the local resource alloca-

tion algorithm. Below, we define the guaranteed service specification of LRA.

Specification 1 (Local Resource Allocation) LetA be an algorithm. An execution e =
(γi)i≥0 of A satisfies the guaranteed service specification of LRA, noted SPLRA, if the
three following properties hold:
Resource Conflict Freedom: If a process p starts a computation to access a resource,

then there is no conflict involving p during the computation: ∀k ≥ 0, ∀k′ > k,
∀p ∈ V , ∀r ∈ Rp,

[
Result(γk . . . γk′ , p, r) ∧

(
∃l < k, Start(γl, γl+1, p, r)

)]
⇒

[
∀i ∈

{k, . . . , k′}, NoConflict(γi, p)
]

Computation Start: If an application at process p requests resource r, then p eventu-
ally starts a computation to obtain r: ∀k ≥ 0, ∀p ∈ V , ∀r ∈ Rp,

[
∃l > k,Request(γl,

p, r)⇒ Start(γl, γl+1, p, r)
]

Computation End: If process p starts a computation to obtain resource r, the compu-
tation eventually ends (in particular, p obtained r during the computation): ∀k ≥ 0,
∀p ∈ V , ∀r ∈ Rp, Start(γk, γk+1, p, r)⇒

[
∃l > k,∃l′ > l,Result(γl . . . γl′ , p, r)

]
Thus, an algorithm A is snap-stabilizing w.r.t. SPLRA (i.e., snap-stabilizing for

LRA) if starting from any arbitrary configuration, all its executions satisfy SPLRA.2

3 Concurrency

Many existing resource allocation algorithms, especially self-stabilizing ones [5, 7, 9,
20, 22, 24, 26], do not consider the concurrency issue. In [19], authors propose a concur-
rency property ad hoc to `-exclusion. We now define the maximal-concurrency, which
generalizes the definition of [19] to any resource allocation problem.

3.1 Maximal-Concurrency.

Informally, maximal-concurrency can be defined as follows: if there are processes that
can access some resource they are requesting without violating the safety of the con-
sidered resource allocation problem, then at least one of them should eventually access
one of its requested resources, even if no process releases the resource it holds in the
meantime.

Let PCS(γ) be the set of processes that are executing their critical section in γ,
i.e., the set of processes holding resources in γ. Let PReq(γ) be the set of requesting
processes that are not in critical section in γ. Let PFree(γ) ⊆ Preq(γ) be the set of re-
questing processes that can access their requested resource(s) in γ without violating the
safety of the considered resource allocation problem. Let continuousCS(γi . . . γj) ≡
∀k ∈ {i, . . . , j − 1}, PCS(γk) ⊆ PCS(γk+1)

Definition 1 (Maximal-Concurrency). An algorithm is maximal-concurrent if and only
if ∀e = (γi)i≥0 ∈ E , ∀i ≥ 0, ∃N ∈ N, ∀j > N ,

(
continuousCS(γi . . . γi+j) ∧

PFree(γi) 6= ∅
)
⇒
(
∃k ∈ {i, . . . , i+ j − 1},∃p ∈ V, p ∈ PFree(γk) ∩ PCS(γk+1)

)
The examples below show the versatility of our property: we instantiate the set

PFree according to the considered problem.

Example 1: Local Resource Allocation Maximal-Concurrency. In the local resource
allocation problem, a requesting process is allowed to enter its critical section if all its
neighbors in critical section are using resources which are compatible with its request.
Below, we denote by γ(p).req the resource(s) requested by process p in γ. Hence,

PFree(γ) = {p ∈ PReq(γ) | ∀q ∈ Np, (q ∈ PCS(γ)⇒ γ(q).req
 γ(p).req)}
2 By contrast, a non-stabilizing algorithm achieves LRA if all its executions starting from pre-

defined initial configurations satisfy SPLRA.

Example 2: `-Exclusion Maximal-Concurrency. The `-exclusion problem [19] is a gen-
eralization of mutual exclusion, where up to ` ≥ 1 critical sections can be executed
concurrently. Solving this problem allows management of a pool of ` identical units of
a non-sharable reusable resource. Hence,

PFree(γ) = ∅ if |PCS(γ)| = `; PFree(γ) = PReq(γ) otherwise

Using this latter instantiation, we obtain a definition of maximal concurrency which
is equivalent to the “avoiding `-deadlock” property of Fischer et al. [19].

Example 3: k-out-of-` Exclusion Maximal-Concurrency. The k-out-of-` exclusion prob-
lem is a generalization of the `-exclusion problem where each process can hold up to
k ≤ ` identical units of a non-sharable reusable resource. In this context, rather than
being the resource(s) requested by process p, γ(p).req is assumed to be the number
of requested units. Let Available(γ) = ` −

∑
p∈PCS(γ) γ(p).req be the number of

available units. Hence,

PFree(γ) = {p ∈ PReq(γ) : γ(p).req ≤ Available(γ)}

Using this latter instantiation, we obtain a definition of maximal concurrency which
is equivalent to the “strict (k, `)-liveness” property of Datta et al. [?], which basically
means that if at least one request can be satisfied using the available resources, then
eventually one of them is satisfied, even if no process releases resources in the mean
time.

In the same paper, the authors show the impossibility of designing a k-out-of-` ex-
clusion algorithm satisfying the strict (k, `)-liveness. To circumvent this impossibility,
they then propose a weaker property called “(k, `)-liveness”, which means that if any
request can be satisfied using the available resources, then eventually one of them is sat-
isfied, even if no process releases resources in the mean time. Despite this property is
weaker than maximal concurrency, it can be expressed using our formalism as follows:

PFree(γ) = ∅ if ∃p ∈ PReq(γ), γ(p).req > Available(γ); PFree(γ) = PReq(γ) otherwise

This might seem surprising, but observe that in the above formula, the set PFree is
distorted from its original meaning.

The maximal-concurrency property can also be defined using the following alterna-
tive definition:

Definition 2 (Maximal Concurrency). An algorithm is maximal concurrent if and
only if ∀e = (γi)i≥0 ∈ E , ∀i ≥ 0, ∃T ∈ N, ∀t ≥ T ,

continuousCS(γi . . . γi+t)⇒ PFree(γi+t) = ∅

Definitions 1 and 2 are equivalent using induction arguments (see [3]). Using the latter
definition, remark that an algorithm is not maximal concurrent if and only if ∃e =
(γi)i≥0 ∈ E , ∃i ≥ 0, ∀T ∈ N, ∃t ≥ T , continuousCS(γi . . . γi+t)∧PFree(γi+t) 6= ∅.

3.2 Maximal Concurrency vs. Fairness.

Definition 3 below gives a definition of fairness classically used in resource allocation
problems. Notably, Computation Start and End properties of Specification 1 trivially
implies this fairness property. Next, Theorem 1 states that no LRA algorithm (stabi-
lizing or not) can achieve maximal-concurrency. Actually, its proof is based on the
incompatibility between fairness and maximal-concurrency.

Definition 3 (Fairness). Each time a process is (continuously) requesting a resource
r, it eventually accesses r.

Theorem 1. It is impossible to design a LRA algorithm for arbitrary networks that
satisfies maximal-concurrency.

Proof. Assume, by contradiction, that there is a local resource allocation algorithm
A (stabilizing or not) which satisfies maximal-concurrency. Let consider the following
graph: G = (V,E) where V = {p1, p2, p3} and E = {(p1, p2), (p2, p3)}. Let X and Y
be two resources such that X 6
 Y , X ∈ Rp1 , Y ∈ Rp2 , and X ∈ Rp3 (notice that we
can have X = Y). We assume that, when p1 and p3 request a resource, they request X ,
and, when p2 requests a resource, it requests Y . Below, we exhibit a possible execution
e of A on G where fairness is violated if maximal-concurrency is achieved. Figure 1
illustrates the proof.

First, assume that p1 continuously requests X while p2 and p3 are idle (Config-
uration 1.(a)). As A satisfies the fairness property, p1 eventually executes its critical
section to access X . This critical section can last an arbitrary long (yet finite) time
(Figure 1.(b)).

Then, p2 and p3 start continuously requesting (Y for p2 and X for p3). To satisfy
the maximal-concurrency property, p3 must eventually obtain resource X , even if p1
does not finish its critical section in the meantime. In this case, the system reaches the
configuration given in Figure 1.(d).

Then, it is possible that p1 ends its critical section and releases resourceX right after
Configuration 1.(d). But, in this case, p2 still cannot access Y because Y is conflicting
with the resource X currently used by p3. So, the system can reach Configuration 1.(e).
If p1 continuously requests X again right after Configuration 1.(e), we obtain Config-
uration 1.(f). Now, the execution of the critical section of p3 may last an arbitrary long
(yet finite) time, and p1 should again accessX , even if p3 does not finish its critical sec-
tion in the meantime, by maximal-concurrency. So, the system can reach Configuration
1.(g).

Now, if p3 releases its resource and then continuously requests it again, we retrieve
a configuration similar to the one of Figure 1.(c). We can repeat this scheme infinitely
often so that p2 continuously requests Y but never access it: the fairness property is
violated, a contradiction. �

3.3 Partial Maximal-Concurrency.

To circumvent the previous impossibility result, we propose a weaker version of maxi-
mal concurrency, called partial maximal-concurrency.

(a)

p1 p2 p3

X

(b)

X

(c)

X Y X

(d)

X Y X

(e)

Y X

(f)

X Y X

(g)

X Y X

(h)

X Y

fairness maximal concurrency

maximal concurrency

Fig. 1. Maximal concurrency vs. fairness. The processes in black are executing their critical sec-
tion. The processes in gray are requesting resources. The processes in white are idle. Requested
resources are given in the bubbles next to the nodes.

Definition 4 (Partial Maximal-Concurrency). An algorithm A is partially maximal-
concurrent if and only if ∀e = (γi)i≥0 ∈ E , ∀i ≥ 0, ∃T ∈ N such that ∀t ≥ T ,
∃X ⊆ V such that continuousCS(γi . . . γi+t)⇒ PFree(γi+t) ⊆ X

Notice that, by definition, a maximal-concurrent algorithm is also partially maximal-
concurrent.

The proof of Theorem 1 reveals that fairness and maximal concurrency are con-
tradictory in the following situation: some neighbors of a process alternatively use re-
sources which are conflicting with its own request. So, to achieve fairness, we must
relax the expected level of concurrency in such a way that at least in that situation p
eventually satisfies its request. To ensure this, any LRA algorithm should then eventu-
ally allow p to prevent its requesting neighbors from entering their critical section, even
if p cannot currently satisfies its request (i.e., even if one of its neighbor is using a con-
flicting resource) and even if some of its requesting neighbors can enter critical section
without creating any conflict. Hence, in the worst case, p has one neighbor holding a
conflicting resource and it should prevent all other neighbors to satisfy their requests,
in order to eventually satisfy its own request (and so to ensure fairness).

We derive the following refinement of partial maximal concurrency based on this
latter observation: this seems to be the finest concurrency we can expect in LRA algo-
rithm.

Definition 5 (Strong Partial Maximal-Concurrency). An algorithm A is strongly
partially maximal-concurrent if and only if ∀e = (γi)i≥0 ∈ E , ∀i ≥ 0, ∃T ∈ N
such that ∀t ≥ T , ∃p, q ∈ V , q ∈ Np such that continuousCS(γi . . . γi+t) ⇒
PFree(γi+t) ⊆ Np\{q}

In the next section, we show that strong partial maximal-concurrency can be realized
by a snap-stabilizing LRA algorithm.

4 Local Resource Allocation Algorithm

We now propose a snap-stabilizing LRA algorithm which achieves the strong partial
maximal concurrency. This algorithm consists of two modules: Algorithm LRA, which
manages local resource allocation, and Algorithm T C which provides a self-stabilizing
token circulation service to LRA, whose goal is to ensure fairness.

4.1 Composition

These two modules are composed using a fair composition [17], denoted LRA ◦ T C.
In such a composition, each process executes a step of each algorithm alternately.

Notice that the purpose of this composition is only to simplify the design of the
algorithm: a composite algorithm written in the locally shared memory model can be
translated into an equivalent non-composite algorithm. Such a translation can be done
using the rewriting rule given in the technical report [3].

4.2 Token Circulation Module

We assume that T C is a self-stabilizing black box which allows LRA to emulate a self-
stabilizing token circulation. T C provides two outputs to each process p in LRA: the
predicate TokenReady(p) and the statementPassToken(p). The predicate TokenReady(p)
expresses whether the process p holds a token and can release it . Note that this interface
of T C allows some process to hold the token without being allowed to release it yet:
this may occur, for example, when before releasing the token, the process has to wait
for the network to clean some faults . The statement PassToken(p) can be used to
pass the token from p to one of its neighbor. Of course, it should be executed (by LRA)
only if TokenReady(p) holds. Precisely, we assume that T C satisfies the following
properties.

Property 1 (Stabilization). T C stabilizes, i.e., reaches and remains in configurations
where there is a unique token in the network, independently of any call toPassToken(p)
at any process p.

Property 2. Once T C has stabilized, ∀p ∈ V , if TokenReady(p) holds, then TokenReady(p)
is continuously true until PassToken(p) is invoked.

Property 3 (Fairness). Once T C has stabilized, if ∀p ∈ V , PassToken(p) is invoked
in finite time each time TokenReady(p) holds, then ∀p ∈ V , TokenReady(p) holds
infinitely often.

To design T C we proceed as follows. There exist several self-stabilizing token
circulations for arbitrary rooted networks [10, 12, 23] that contain a particular action,
T : TokenReady(p) → PassToken(p), to pass the token, and that stabilizes inde-
pendently of the activations of action T . Now, the networks we consider are not rooted,
but identified. So, to obtain a self-stabilizing token circulation for arbitrary identified
networks, we can fairly compose any of them with a self-stabilizing leader election al-
gorithm [4, 18, 13, 1] using the following additional rule: if a process considers itself
as leader it executes the token circulation program for a root; otherwise it executes the
program for a non-root. Finally, we obtain T C by removing action T from the resulting
algorithm, while keeping TokenReady(p) and PassToken(p) as outputs, for every
process p.

Remark 1. Following Property 2 and 3, the algorithm, noted T C *, made of Algorithm
T C where action T : TokenReady(p) → PassToken(p) has been added, is a self-
stabilizing token circulation.

Algorithm 1 Algorithm LRA for every process p
Variables
p.status ∈ {Out,Wait,Blocked, In}, p.token ∈ B

Inputs
p.req ∈ Rp ∪ {⊥}: Variable from the application
TokenReady(p): Predicate from T C, indicate that p holds the token
PassToken(p): Statement from T C, pass the token to a neighbor

Macros
WaitingNeigh(p) ≡ {q ∈ Np | q.status = Wait}
LocalMax(p) ≡ max {q ∈ WaitingNeigh(p) ∪ {p}}
LocalTokens(p) ≡ {q ∈ Np ∪ {p} | q.token}
TokenMax(p) ≡ max {q ∈ LocalTokens(p)}

Predicates
ResourceFree(p) ≡ ∀q ∈ Np,

(
q.status = In⇒ p.req
 q.req

)
IsBlocked(p) ≡ ¬ResourceFree(p) ∨

(
∃q ∈ Np, q.status = Blocked ∧ q.token

)
TokenAccess(p) ≡ LocalTokens(p) 6= ∅ ∧ p = TokenMax(p)
MaxAccess(p) ≡ LocalTokens(p) = ∅ ∧ p = LocalMax(p)

Guards
Requested(p) ≡ p.status = Out ∧ p.req 6= ⊥
Block(p) ≡ p.status = Wait ∧ IsBlocked(p)
Unblock(p) ≡ p.status = Blocked ∧ ¬IsBlocked(p)
Enter(p) ≡ p.status = Wait ∧ ¬IsBlocked(p) ∧ (TokenAccess(p) ∨MaxAccess(p))
Exit(p) ≡ p.status = In ∧ p.req = ⊥
ResetToken(p) ≡ TokenReady(p) 6= p.token
ReleaseToken(p) ≡ TokenReady(p) ∧ p.status ∈ {Out, In} ∧ ¬Requested(p)

Actions
(1) RsT -action :: ResetToken(p) → p.token← TokenReady(p);
(2) Ex-action :: Exit(p) → p.status← Out;
(3) RlT -action :: ReleaseToken(p) → PassToken(p);
(4) R-action :: Requested(p) → p.status← Wait;
(4) B-action :: Block(p) → p.status← Blocked;
(4) UB-action :: Unblock(p) → p.status← Wait;
(4) E-action :: Enter(p) → p.status← In; if TokenReady(p) then PassToken(p) fi;

The algorithm presented in next section for local resource allocation emulates action
T using predicate TokenReady(p) and and statement PassToken(p) given as inputs.

4.3 Resource Allocation Module

The code of LRA is given in Algorithm 1. Priorities and guards ensure that actions
of Algorithm 1 are mutually exclusive. We now informally describe Algorithm 1, and
explain how Specification 1 is instantiated with its variables.

First, a process p interacts with its application through two variables: p.req ∈ Rp ∪
{⊥} and p.status ∈ {Out,Wait, In,Blocked}. p.req can be read and written by the
application, but can only be read by p in LRA. Conversely, p.status can be written by
p in LRA, but the application can only read it. Variable p.status can take the following
values:

– Wait, which means that p requests a resource but does not hold it yet;
– Blocked, which means that p requests a resource, but cannot hold it now;
– In, which means that p holds a resource;
– Out, which means that p is currently not involved into an allocation process.

When p.req = ⊥, this means that no resource is requested. Conversely, when
p.req ∈ Rp, the value of p.req informs p about the resource requested by the ap-
plication. We assume two properties on p.req. Property 4 ensures that the application
(1) does not request for resource r′ while a computation to access resource r is running,

and (2) does not cancel or modify a request before the request is satisfied. Property 5
ensures that any critical section is finite.

Property 4. ∀p ∈ V , the updates on p.req (by the application) satisfy the following
constraints:

– The value of p.req can change from ⊥ to r ∈ Rp if and only if p.status = Out,
– The value of p.req can change from r ∈ Rp to ⊥ if and only if p.status = In.
– The value of p.req cannot directly change from r ∈ Rp to r′ ∈ Rp with r′ 6= r.

Property 5. ∀p ∈ V , if p.status = In and p.req 6= ⊥, then eventually p.req becomes
⊥.

Consequently, the predicate Request(γi, p, r) in Specification 1 is true if and only
if p.req = r in γi; the predicate NoConflict(γi, p) is expressed by p.status = In ⇒(
∀q ∈ Np, q.status = In⇒ (q.req
 p.req)

)
in γi. (We set ⊥ compatible with every

resource.)
The predicate Start(γi, γi+1, p, r) becomes true when process p takes the request

for resource r into account in γi 7→ γi+1, i.e., when the status of p switches from Out
to Wait in γi 7→ γi+1 because p.req = r 6= ⊥ in γi.

Assume that γi . . . γj is a computation where Result(γi . . . γj , p, r) holds: process
p accesses resource r, i.e., p switches its status from Wait to In in γi−1 7→ γi while
p.req = r, and later switches its status from In to Out in γj 7→ γj+1.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(a) Initial configuration.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(b) 6 executed B-action, 1
executed E-action, and 5 ex-
ecuted R-action.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(c) 3 executed B-action and
7 executed E-action.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(d) 2 executed E-action and
5 executed B-action.

8

6

2

7

1

5

3

⊥

W

R

R

R

R

W

(e) The application of 8 does
not need the write access any-
more.

8

6

2

7

1

5

3

⊥

W

R

R

R

R

W

(f) 8 executed Ex-action.

Fig. 2. Example of execution of LRA ◦ T C.

We now illustrate the principles of LRA with the example given in Figure 2. In
this example, we consider the local reader-writer problem. In the figure, the numbers
inside the nodes represent their IDs. The color of a node represents its status: white for
Out, gray for Wait, black for In, and crossed out for Blocked. A double circled node
holds a token. The bubble next to a node represents its request. Recall that we have two
resources: R for a reading access and W for a writing access.

When the process is idle (p.status = Out), its application can request a resource.
In this case, p.req = r 6= ⊥ and p sets p.status to Wait by R-action: p starts the
computation to obtain r. For example, 5 starts a computation to obtain R in (a)7→(b). If
one of its neighbors is using a conflicting resource, p cannot satisfy its request yet. So, p
switches p.status from Wait to Blocked by B-action (see 6 in (a) 7→(b)). If there is no
more neighbor using conflicting resources, p gets back to status Wait by UB-action.

When several neighbors request for conflicting resources, we break ties using a
token-based priority: Each process p has an additional Boolean variable p.token which
is used to inform neighbors about whether p holds a token or not. A process p takes
priority over any neighbor q if and only if

(
p.token∧¬q.token

)
∨
(
p.token = q.token∧

p > q
)
. More precisely, if there is no token in the neighborhood of p, the highest priority

process is the waiting process with highest ID. Otherwise, the token holders (there may
be several tokens during the stabilization phase of T C) blocked all their requesting
neighbors, even if they request for non-conflicting resources, and until the token holders
obtain their requested resources. This mechanism allows to ensure fairness by slightly
decreasing the level of concurrency. (The token circulates to eventually give priority to
blocked processes, e.g., processes with small IDs.)

The highest priority waiting process in the neighborhood gets status In and can use
its requested resource by E-action, e.g., 7 in step (b)7→(c) or 1 in (a)7→(b). Moreover,
if it holds a token, it releases it. Notice that, as a process is not blocked when one
of its neighbors is using a compatible resource, several neighbors using compatible
resources can concurrently enter and/or execute their critical section (see 1, 2, and 7
in Configuration (d)). When the application at process p does not need the resource
anymore, i.e., when it sets the value of p.req to ⊥, p executes Ex-action and switches
its status to Out, e.g., 8 during step (e)7→(f).

RlT -action is used to straight away pass the token to a neighbor when the process
does not need it, i.e., when either its status is Out and the process does not request any
resource or when its status is In. (Hence, the token can eventually reach a requesting
process and help it to satisfy its request.)

The last action, RsT -action, ensures the consistency of variable token so that the
neighbors realize whether or not a process holds a token.

4.4 Correctness and Partial Maximal-Concurrency

In this subsection, we sketch the proof of snap-stabilization of Algorithm LRA ◦ T C.
Then, we give the proof outline which shows that LRA ◦ T C is strongly partially
maximal-concurrent. Recall that we assume a distributed weakly fair daemon.

Theorem 2 (Resource Conflict Freedom). Every execution of LRA◦T C satisfies the
resource conflict freedom property.
Proof Outline. Immediate from the guard of E-action. �

In LRA◦T C, the token circulation is used to ensure fairness. Hence, a crucial point
to show that LRA ◦ T C satisfies the computation start and end properties (Theorems 3
and 4) consists in showing that no process can keep a token forever.

Lemma 1. No process can keep a token forever.

Proof Outline. Assume, by contradiction, that a process p holds a token forever. Then,
eventually p is the only token holder forever, by Property 1. If p.status = Out and
p.req = ⊥, p does not need the token and straightaway releases it by RlT -action, a
contradiction. If p.status = In, p eventually ends its computation executingEx-action.
Then, p.status = Out, and, as in the previous case, p eventually releases its token, a
contradiction. Otherwise, the token gives priority to p over all of its neighbors. So, p
eventually enters in critical section by E-action and so releases the token, a contradic-
tion. �

Theorem 3 (Computation End). Every execution of LRA ◦ T C satisfies the compu-
tation end property.

Proof Outline. Assume a computation starts at process p to obtain resource r.
Assume, by contradiction, that r is never allocated to p. By Property 1, a unique to-

ken eventually exists in the network. Moreover, p eventually gets the token, by Lemma 1
and Property 3. Again by Lemma 1, p eventually releases the token. Now, p can only
release the token by executing E-action. In this case, p obtains resource r, a contradic-
tion.

Hence, r is allocated to p in finite time. Now, by Property 5, in finite time, the
application does not need the resource r anymore and sets p.req to ⊥. So p eventually
executes Ex-action and ends its computation. �

We illustrate the previous proof with an example given in Figure 3. We consider the
local mutual exclusion problem. In this example, we try to delay as much as possible the
critical section of process 2. First, process 2 has two neighbors (7 and 8) that also request
the resource and have greater IDs. So, they will execute their critical section before 2
(in steps (a) 7→(b) and (e) 7→(f)). But, the token circulates and eventually reaches 2 (see
Configuration (g)). Then, 2 has priority over its neighbors (even though it has a lower
ID) and eventually starts executing its critical section in (j)7→(k)).

4

6

1

9

3

7

5

2

8

(a)

4

6

1

9

3

7

5

2

8

(b)

4

6

1

9

3

7

5

2

8

(c)

4

6

1

9

3

7

5

2

8

(d)

4

6

1

9

3

7

5

2

8

(e)

4

6

1

9

3

7

5

2

8

(f)

4

6

1

9

3

7

5

2

8

(g)

4

6

1

9

3

7

5

2

8

(h)

4

6

1

9

3

7

5

2

8

(i)

4

6

1

9

3

7

5

2

8

(j)

4

6

1

9

3

7

5

2

8

(k)
Fig. 3. Example of execution of LRA ◦ T C on the local mutual exclusion problem. The bubbles
mark the requesting processes.

Theorem 4 (Computation Start). Every execution of LRA◦ T C satisfies the compu-
tation start property.
Proof Outline. A process p eventually obtains status Out. Indeed, if p.status 6= Out,
p is computing and, by Theorem 3, this computation eventually ends. Hence, if the
application of p requests some resource r, i.e., p.req = r 6= ⊥, p eventually executes
R-action and a computation for r starts. �

Theorem 5 below is immediate from Theorems 2, 3, and 4.

Theorem 5 (Correctness). Algorithm LRA◦T C is snap-stabilizing w.r.t. SPLRA as-
suming a distributed weakly fair daemon.

We now show that LRA◦T C is strongly partially maximal-concurrent. We instan-
tiate the sets PCS and PReq as follows: PReq(γ) = {p ∈ V, p.req 6= ⊥ ∧ p.status 6=
In in γ} and PCS(γ) = {p ∈ V, p.status = In ∧ p.req 6= ⊥ in γ}.

Theorem 6 (Strong Partial Maximal-Concurrency). AlgorithmLRA◦T C is a strong
partial maximal concurrent local resource allocation algorithm.
Proof Outline. After stabilization of T C, ∃T from which, if continousCS holds until
γT , then every process does not change the values of its variables req and status. After
γT (and if continuousCS still holds), if PFree is not empty, every process in PFree
has status Blocked. Indeed, otherwise there is a finite sequence of processes in PFree
with increasing priorities such that the last process is allowed to execute E-action and
change its status to In, a contradiction with the definition of T .

A process p is blocked because ¬ResourceFree(p) or
(
∃q ∈ Np, q.status =

Blocked ∧ q.token
)
. Now, in the former case, p /∈ PFree. So, p ∈ PFree is blocked

because of the unique token holder, say q. Then, p ∈ Nq and PFree(γT) contains all
the requesting neighbors of q. In the worst case, it contains all the neighborhood of q
except one process s that is in critical section, namely, the one that blocks q. Hence,
PFree(γT) ⊆ Nq\{s}, and LRA ◦ T C is strongly partially maximal-concurrent. �

5 Conclusion

We characterized the maximal level of concurrency we can obtain in resource alloca-
tion problems by proposing the notion of maximal-concurrency. This notion is versatile,
e.g., it generalizes the avoiding `-deadlock [19] and (strict) (k,`)-liveness [11] defined
for the `-exclusion and k-out-of-`-exclusion, respectively. From [19], we already know
that maximal-concurrency can be achieved in some important global resource alloca-
tion problems.3 Now, perhaps surprisingly, our results show that maximal-concurrency
cannot be achieved in problems that can be expressed with the LRA paradigm. How-
ever, we showed that strong partial maximal-concurrency (an high, but not maximal,
level of concurrency) can be achieved by a snap-stabilizing LRA algorithm. We have to
underline that the level of concurrency we achieve here is similar to the one obtained in
the committee coordination problem [6]. Defining the exact class of resource allocation
problems where maximal-concurrency (resp. strong partial maximal-concurrency) can
be achieved is a challenging perspective.

3 By “global” we mean resource allocation problems where a resource can be accessed by any
process.

References

1. Altisen, K., Cournier, A., Devismes, S., Durand, A., Petit, F.: Self-stabilizing Leader Election
in Polynomial Steps. In: SSS. pp. 106–119 (2014)

2. Altisen, K., Devismes, S.: On Probabilistic Snap-Stabilization. In: ICDCN. pp. 272–286
(2014)

3. Altisen, K., Devismes, S., Durand, A.: Concurrency in Snap-Stabilizing Local Resource Al-
location. Research report, VERIMAG (Dec 2014), hal.archives-ouvertes.fr/hal-01099186

4. Arora, A., Gouda, M.G.: Distributed Reset. IEEE Trans. Computers 43(9), 1026–1038
(1994)

5. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-Stabilizing Local Mutual Ex-
clusion and Daemon Refinement. Chicago J. Theor. Comput. Sci. (2002)

6. Bonakdarpour, B., Devismes, S., Petit, F.: Snap-Stabilizing Comittee Coordination. In:
IPDPS. pp. 231–242 (2011)

7. Boulinier, C., Petit, F., Villain, V.: When Graph Theory Helps Self-Stabilization. In: PODC.
pp. 150–159 (2004)

8. Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-Stabilization and PIF in Tree Networks. Dist.
Comp. 20(1), 3–19 (2007)

9. Cantarell, S., Datta, A.K., Petit, F.: Self-Stabilizing Atomicity Refinement Allowing Neigh-
borhood Concurrency. In: SSS. pp. 102–112 (2003)

10. Cournier, A., Devismes, S., Villain, V.: Light Enabling Snap-Stabilization of Fundamental
Protocols. ACM TAAS 4(1) (2009)

11. Datta, A.K., Hadid, R., Villain, V.: A Self-Stabilizing Token-Based k-out-of-l-Exclusion
Algorithm. Concurrency and Computation: Practice and Experience 15(11-12), 1069–1091
(2003)

12. Datta, A.K., Johnen, C., Petit, F., Villain, V.: Self-Stabilizing Depth-First Token Circulation
in Arbitrary Rooted Networks. Dist. Comp. 13(4), 207–218 (2000)

13. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing Leader Election in Optimal Space
under an Arbitrary Scheduler. Theor. Comput. Sci. 412(40), 5541–5561 (2011)

14. Dijkstra, E.W.: Solution of a Problem in Concurrent Programming Control. Commun. ACM
8(9), 569 (1965)

15. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM
17(11), 643–644 (1974)

16. Dijkstra, E.W.: Two Starvation-Free Solutions of a General Exclusion Problem. Tech. Rep.
EWD 625, Plataanstraat 5, 5671, AL Nuenen, The Netherlands (1978)

17. Dolev, S.: Self-Stabilization. MIT Press (2000)
18. Dolev, S., Herman, T.: Superstabilizing Protocols for Dynamic Distributed Systems. Chicago

J. Theor. Comput. Sci. (1997)
19. Fischer, M.J., Lynch, N.A., Burns, J.E., Borodin, A.: Resource Allocation with Immunity to

Limited Process Failure (Preliminary Report). In: FOCS. pp. 234–254 (1979)
20. Gouda, M.G., Haddix, F.F.: The Alternator. Dist. Comp. 20(1), 21–28 (2007)
21. Gradinariu, M., Tixeuil, S.: Conflict Managers for Self-Stabilization without Fairness As-

sumption. In: ICDCS. p. 46 (2007)
22. Huang, S.: The Fuzzy Philosophers. In: IPDPS. pp. 130–136 (2000)
23. Huang, S., Chen, N.: Self-Stabilizing Depth-First Token Circulation on Networks. Dist.

Comp. 7(1), 61–66 (1993)
24. Kakugawa, H., Yamashita, M.: Self-Stabilizing Local Mutual Exclusion on Networks in

which Process Identifiers are not Distinct. In: SRDS. pp. 202–211 (2002)
25. Lamport, L.: A New Solution of Dijkstra’s Concurrent Programming Problem. Commun.

ACM 17(8), 453–455 (1974)

26. Nesterenko, M., Arora, A.: Stabilization-Preserving Atomicity Refinement. J. Parallel Dis-
trib. Comput. 62(5), 766–791 (2002)

27. Raynal, M.: A Distributed Solution to the k-out of-M Resources Allocation Problem. In:
ICCI’91. pp. 599–609 (1991)

