
Leader Election in Asymmetric Labeled Unidirectional Rings

Karine Altisen,∗ Ajoy K. Datta,† Stéphane Devismes,∗ Anaı̈s Durand,∗ and Lawrence L. Larmore†
∗Université Grenoble Alpes, Grenoble, France

†UNLV, Las Vegas, USA

Abstract—We study (deterministic) leader election in
unidirectional rings of homonym processes that have
no a priori knowledge on the number of processes. In
this context, we show that there is no algorithm that
solves process-terminating leader election for the class
of asymmetric labeled rings. In particular, there is no
process-terminating leader election algorithm in rings in
which at least one label is unique. However, we show
that process-terminating leader election is possible for
the subclass of asymmetric rings, where multiplicity is
bounded. We confirm this positive results by proposing two
algorithms, which achieve the classical trade-off between
time and space.

Keywords-Leader Election, Homonym Processes, Multi-
plicity, Unidirectional Rings.

I. INTRODUCTION

In 1980, Angluin [1] showed the impossibility of
solving deterministic leader election in networks of
anonymous processes. This negative result led to two
major opposite lines of research. The first one consists
in circumventing the impossibility result by using ran-
domization to break symmetries [2]. In the second one,
networks are assumed to be equipped with unique pro-
cess identifiers, to eliminate symmetries, which allowed
the design of deterministic algorithms [3].

Quite recently, the notion of homonym processes [4],
[5] has been introduced as an intermediate model be-
tween the (fully) anonymous and (fully) identified ones.
In this model, each process has an identifier, called here
label, which may not be unique. Let L be the set of
labels present in a system of n processes. Then, |L| = 1
(resp., |L| = n) corresponds to the fully anonymous
(resp., fully identified) model. This natural extension is
mainly motivated by the group signatures [6]: signatures
are labels, and process groups share the same signature
to maintain some kind of privacy. Homonyms have been
mainly studied for solving the consensus problem in
networks where processes are subjected to Byzantine
failures [5], [7].

Related Work: Several works address deterministic
solutions for various election problems in rings of

This study has been partially supported by the ANR projects DESCARTES
(ANR-16-CE40-0023) and ESTATE (ANR-16-CE25-0009).

homonym processes, e.g., [4], [8]–[10]. In [8], Flocchini
et al consider the weak leader election problem in
bidirectional rings of homonym processes. The weak
leader election problem consists in electing at least one,
but at most two processes, and in the latter case the two
processes should be neighbors. Assuming that processes
a priori know the number of processes n, they show that
process-terminating (i.e., every process eventually halts)
weak leader election is possible if and only if the ring
is asymmetrically labeled, i.e., looking at the sequence
of all labels in any sense of direction, there is no
non-trivial rotational symmetry. They also propose two
process-terminating algorithms for asymmetric labeled
rings of n processes, assuming that n is prime and
only two labels are possible, 0 or 1. The first algorithm
additionally assumes a common sense of direction;
while the second one is a generalization of the first one,
where the common sense of direction is removed.

Delporte et al [9] have investigated the leader election
problem in bidirectional rings of homonym processes.
They have given a necessary and sufficient condition
on the number of distinct labels needed to design a
leader election algorithm. Precisely, they show that there
exists a deterministic solution for message-terminating
(i.e., processes do not halt but only a finite number of
messages are exchanged) leader election on a bidirec-
tional ring if and only if the number of labels is strictly
greater than the greatest proper divisor of n. Assuming
this condition, they give two algorithms. The first one
is message-terminating and does not assume any further
extra knowledge. The second one assumes the processes
know n, is process-terminating, and is asymptotically
optimal in messages (O(n log n)).

In [4], Dobrev and Pelc consider a generalization of
the process-terminating leader election in both bidirec-
tional and unidirectional rings of homonym processes
which a priori know a lower bound m and an up-
per bound M on the (unknown) number of processes
n. They propose algorithms that decide whether the
election is possible and perform it, if so. They give
synchronous algorithms for bidirectional and unidirec-
tional rings working in time O(M) using O(n log n)
messages. They also give an asynchronous algorithm

for bidirectional rings that uses O(nM) messages, and
show that it is optimal; no time complexity is given.

In [10], we focus on unidirectional rings of homonym
processes, where processes know neither the number of
processes n, nor any bound on it. We propose a process-
terminating algorithm, assuming that (1) at least one
process holds a label which is unique, and (2) processes
a priori know an upper bound k on the multiplicity
of the labels, i.e., no label occurs more than k times.
The proposed algorithm has time complexity at most
(k + 2)n and message complexity O(n2 + kn).

Contribution: In this work, we explore the design
of process-terminating (deterministic) leader election al-
gorithms in unidirectional rings of homonym processes
which, contrary to [4], [8], [9], know neither the number
of processes n, nor any bound on it. Since we only
consider unidirectional rings, results from Delporte et
al [9] do not apply: the common sense of direction may
help processes to solve the leader election problem.

We first consider the class U∗ of all unidirectional
rings in which at least one label is unique. We show
that without further knowledge, there is no process-
terminating leader election algorithm for this class.
(Recall that if we additionally assume the knowledge
of some upper bound on the multiplicity, the problem
becomes solvable [10].)

We then consider the class U∗∩Kk, where Kk is the
class of all ring networks whose multiplicity is less than
or equal to k; in this class, processes know k a priori.
We show the lower bound Ω(kn) on the time complexity
of any leader election in U∗ ∩ Kk. This result implies
that the algorithm for U∗ ∩ Kk, proposed in [10], is
asymptotically optimal in time.

Finally, we consider more general settings: the class
A of all asymmetric labeled rings, i.e., all labeled ring
networks that have no non-trivial rotational symmetry.
First, since U∗ ⊆ A, there is also no process-terminating
leader election for the class A. Hence, we consider the
subclass A ∩ Kk. We propose two process-terminating
leader election algorithms for this class which achieve
the classical trade-off between time and space. Based on
the lower bound for U∗∩Kk and the fact that U∗∩Kk ⊆
A∩Kk, the first one is asymptotically optimal in time,
as its time complexity is at most (2k+ 2)n . Moreover,
its message and space complexity are at most n2(2k +
1) messages and O(knb) bits per process, respectively
(b is the number of bits required to store any label).
In the second one, we reduce the space complexity to
O(dlog ke+ b) bits, but at the price of increasing both
time and message complexities to O(k2n2).

Finally, notice that, perhaps surprisingly, there are
labeled rings (e.g., a ring of three processes with labels

1, 2, and 2) for which we can solve process-terminating
leader election, whereas it cannot be solved in the model
of [4], [9]. This suggests that the knowledge of k and of
a common orientation is more helpful to solve process-
terminating leader election in a ring than the knowledge
of n or bounds on n.

Roadmap: The model and definitions are proposed
in Section II. Impossibility results and lower bounds are
exposed in Section III. Our algorithms, their correctness
and complexity analysis are given in Sections IV-V.

II. PRELIMINARIES

Ring Networks: We assume unidirectional rings
of n ≥ 2 processes, p0, . . . , pn−1, operating in asyn-
chronous message-passing model, where links are FIFO
and reliable. pi can only receive messages from its left
neighbor, pi−1, and can only send messages to its right
neighbor, pi+1. Subscripts are modulo n.

The state of a process is a vector of the values
of its variables. The state of a link (pi, pi+1), noted
S(pi,pi+1), is the ordered list of messages it contains. A
configuration is a vector of states, one for each link and
each process of the ring.

Processes communicate using the functions send and
rcv. Since every link (pi, pi+1) is reliable, calls to send
by pi and rcv by pi+1 are the only way to modify
S(pi,pi+1). When pi executes send m, the message m
is added at the tail of S(pi,pi+1). We now explain how a
call of pi+1 to rcv works. Each message is of the form
〈x1, . . . , xk 〉, where x1, . . . , xk is a list of values, each
of a given datatype. We say that a value x conforms
to y if y is a value and x = y, or y is a variable and
has the same datatype as x. A message in S(pi,pi+1)

remains in this list until pi+1 receives it by calling the
function rcv (no message loss). The received messages
are processed FIFO. So, the function rcv is message-
blocking: A call to rcv 〈v1, . . . , vz 〉 by pi+1 returns
TRUE if and only if the head message 〈x1, . . . , xz 〉 of
S(pi,pi+1) satisfies ∀j ∈ {1, . . . , z}, xj conforms to vj .
When a call to rcv 〈v1, . . . , vz 〉 by pi+1 returns TRUE,
the head of S(pi,pi+1), 〈x1, . . . , xz 〉, is removed from
S(pi,pi+1) (each message is received exactly once) and
∀j ∈ {1, . . . , z}, vj is assigned to xj if vj is a variable.
Otherwise, rcv does not modify S(pi,pi+1).

A distributed algorithm is a collection of n local
algorithms, one per process. We assume that processes
have no knowledge about n, and each process p has a
label, p.id; labels may not be distinct. For any label ` in
the ring R, let mlty[`], the multiplicity of ` in R, be the
number of processes in R whose id is `. Comparisons
(order and equality) are the only operations permitted
on labels. We denote by b the number of bits required to

2

store any label. In our distributed algorithms, all local
algorithms are identical, except maybe for the labels. In
particular, every execution begins at a so-called initial
configuration, where each process is at a designated
initial state and all links are empty. The local algorithm
of each process p is given as a list of actions of the
form 〈guard〉 → 〈statement〉. A guard is a predicate
involving the variables of p and calls to rcv. An action
is enabled if its guard is TRUE. A process p is enabled if
at least one of its action is enabled. A statement contains
assignments of p’s variables and/or calls to the function
send. The statement of an action can be executed by
p only if the action is enabled at p. We assume that
the actions are atomically executed, i.e., the evaluation
of the guard and the execution of the corresponding
statement, if executed, are done in one atomic step.
We assume that the local algorithm of each process
p contains at most one action triggerable without the
reception of any message. This action is executed by p
first in all executions.

Processes are fairly activated, i.e., if a process is
continuously enabled, then it eventually executes one of
its enabled actions. Let 7→ be the binary relation over
configurations such that γ 7→ γ′ if and only if γ′ can
be obtained from γ by the atomic execution of one or
more enabled processes in γ; γ 7→ γ′ is called a step.
An execution is a maximal sequence of configurations
Γ = γ0 . . . γi . . . such that (1) γ0 is the initial configura-
tion, (2) ∀i > 0, γi−1 7→ γi, and (3) processes are fairly
activated in Γ. Maximal means that Γ is either infinite,
or ends in a so-called terminal configuration where no
process is enabled. Time complexity [11] is evaluated in
time units, assuming that message transmission time is
at most one time unit, and the process execution time is
zero. Roughly speaking, time complexity measures the
execution time of the algorithm according to the slowest
messages: the execution is normalized in such a way
that the longest message delay (i.e., the transmission of
the message followed by its processing at the receiving
process) becomes one unit of time.

Leader Election: An algorithm ALG solves the
process-terminating leader election problem (leader
election for short) in a ring network R if every execution
e of ALG on R satisfies the following conditions: e is
finite and for every process p,

1) p has a Boolean variable p.isLeader which is ini-
tially FALSE, never switches from TRUE to FALSE
(the decision of being the leader is irrevocable),
and, in the terminal configuration of e, is TRUE for
a unique process L, the leader. So, there should be
at most one leader in each configuration.

2) p has a variable p.leader such that in the terminal
configuration of e, p.leader = L.id.

3) p has a Boolean variable p.done, initially FALSE,
such that p.done is TRUE in the terminal configura-
tion of e, indicating that p knows that the leader has
been elected. Once p.done becomes TRUE, it will
never again become FALSE, L.isLeader is equal to
TRUE, and p.leader is permanently set to L.id.

4) p eventually halts (local termination decision) after
p.done becomes TRUE.
Ring Network Classes: An algorithm ALG solves

the leader election for the class of ring network R
if ALG solves the leader election for every network
R ∈ R. It is important to note that, for ALG to be a
leader election algorithm for a class R, ALG cannot be
given any specific information about the network (such
as its cardinality or the actual multiplicity of the ring)
unless that information holds for all members of R,
since ALG must work for every R ∈ R without any
change whatsoever in its code.

We say that a ring network R is symmetric if it has
a non-trivial rotational symmetry, i.e., there is some
integer 0 < d < n such that pi+d and pi have the same
label for all i. Otherwise, we say R is asymmetric.

We now define three important classes of ring net-
works. Kk is the class of all ring networks such that no
label occurs more than k times, where k ≥ 1 is a given
integer. A is the class of all asymmetric ring networks.
U∗ is the class of all rings in which at least one label
is unique. By definition, U∗ ⊆ A.

III. IMPOSSIBILITY RESULTS AND LOWER BOUNDS

Recall that an execution is synchronous if at each step
all enabled processes execute.

Lemma 1. Let k ≥ 2 and ALG be an algorithm that
solves the leader election for U∗ ∩ Kk. ∀R ∈ K1, the
synchronous execution of ALG in R contains at least
1+(k−2)n steps, where n is the number of processes.

Proof: Let k ≥ 2 and ALG be a leader election
algorithm for U∗ ∩ Kk. Let Rn ∈ K1 be a ring of
n processes, noted p0, . . . , pn−1 with distinct labels
l0, . . . , ln−1 respectively. Since K1 ⊆ U∗ ∩ Kk, ALG
is correct for Rn and so, the synchronous execution
Γ = γ0, . . . of ALG on Rn is finite. Let T be the number
of steps of Γ: within T synchronous steps, p`.isLeader
becomes TRUE for some 0 ≤ ` ≤ n − 1, i.e., p` is the
leader in the terminal configuration γT of Γ.

We now build the ring Rn,k ∈ U∗ ∩ Kk of kn +
1 processes, q0, . . . , qkn, with labels consisting of the
sequence l0, . . . , ln−1 repeated k times, followed by a
single label X /∈ {l0, . . . , ln−1}. Since Rn,k ∈ U∗ ∩

3

Kk, ALG is correct on Rn,k. Let Γ′ = γ′0, . . . be the
synchronous execution of ALG on Rn,k.

By construction, we have the following property on
Γ′: (*) For every j ∈ {0, ..., kn−1}, for every t ≥ 0, if
t ≤ j, then the state of qj in γ′t is identical to the state
of pj mod n in γt. Indeed, no information from qkn has
already reached qj .

Assume, by the contradiction, that T ≤ (k−2)n. Let
j1 = (k − 2)n + ` and j2 = (k − 1)n + `. Since ` ∈
{0, ..., n− 1}, we have j1, j2 ∈ {(k− 2)n, ..., kn− 1},
i.e., T ≤ j1 < j2 < kn. Then, j1 mod n = j2 mod n =
`. So, by (*) the states of qj1 and qj2 in γ′T are identical
to the state of p` in γT : in particular, qj1 .isLeader =
qj2 .isLeader = TRUE in γ′T . This contradicts the fact
that ALG achieves leader election in Rn,k. (Bullet 1 of
the specification is violated in γ′T , see page 3.) Hence,
the number of steps T of the synchronous execution of
ALG in Rn is greater than (k − 2)n.

Since K1 ⊆ U∗ ∩ Kk, follows:

Corollary 2. Let k ≥ 2. The time complexity of any
algorithm that solves the leader election for U∗∩Kk is
Ω(k n), where n is the number of processes.

Theorem 1. There is no algorithm that solves the leader
election for U∗.

Proof: Suppose ALG is an algorithm for U∗. Let
Rn be a ring network of K1 with n processes. Let e be
the synchronous execution of ALG on Rn: as K1 ⊆ U∗,
ALG is correct for Rn and, consequently, e is finite. Let
T be the number of steps of e. We can fix some k ≥ 2
such that 1 + (k − 2)n > T .

Since (U∗ ∩Kk) ⊆ U∗, ALG is correct for U∗ ∩Kk.
By Lemma 1, T ≥ 1 + (k − 2)n, a contradiction.

Since by definition U∗ ⊆ A, Theorem 1 and Corol-
lary 2 imply the following two corollaries.

Corollary 3. There is no algorithm that solves the
leader election for A.

Corollary 4. Let k ≥ 2. The time complexity of any
algorithm that solves the leader election for A∩Kk is
Ω(k n), where n is the number of processes.

IV. ALGORITHM Ak

We now give a solution, Algorithm Ak, to the leader
election for the class A ∩Kk, for fixed k. Ak is based
on the following observation. Consider a ring R of
A ∩ Kk with n processes. As R is asymmetric, any
two processes in R can be distinguished by examining
all labels. So, using the lexicographical order, a process
can be elected as the leader by examining all labels.
Initially, any process p of R does not know the labels

of R, except its own. But, if each process broadcasts
its own label clockwise, then any process can learn the
labels of all other processes from messages it receives
from its left neighbor. In the following, we show that,
after examining finitely many labels, a process can
decide that it learnt (at least) all labels of R and so
can determine whether it is the leader.

Sequences of Labels: Given any process p of
R, we define LLabels(p), to be the infinite se-
quence of labels of processes, starting at p and
continuing counter-clockwise forever: LLabels(pi) =
pi.id, pi−1.id, pi−2.id . . ., where subscripts are modulo
n. For example, if the ring has three processes where
p0.id = p1.id = A and p2.id = B, then LLabels(p0) =
ABAABA . . . For any sequence of labels σ, we define
σt as the prefix of σ of length t, and σ[i], for all i ≥ 1,
as the ith element (starting from the left) of σ. If σ is
an infinite sequence (resp. a finite sequence of length
λ), we say that π = σm is a repeating prefix of σ if
σ[i] = π[1 + (i− 1) mod m] for all i ≥ 1 (resp. for all
1 ≤ i ≤ λ). Informally, if σ is infinite, then σ is the
concatenation πππ . . . of infinitely many copies of π,
otherwise σ is the truncation at length λ of the infinite
sequence πππ . . . Let srp(σ) be the repeating prefix of
σ of minimum length.

As R is asymmetric, we have:

Lemma 5. Let p be a process and m ∈ {2n, . . . ,∞}.
The length of srp(LLabels(p)m) is n.

The next lemma shows that any process p can fully
determine R, i.e., p can determine n, as well as the
labeling of R, from any prefix of LLabels(p), provided
that prefix contains at least 2k + 1 copies of any label.

Lemma 6. Let p be a process, m > 0 and ` be a label.
If LLabels(p)m contains at least 2k+1 copies of `, then
R is fully determined by LLabels(p)m.

Proof: We note π = LLabels(p)m and assume
that it contains at least 2k + 1 copies of `. First,
m > 2n. Indeed, there are at most k copies of ` in
any subsequence of LLabels(p) of length no more than
n, by definition of Kk. So, at most 2k copies of `
in any subsequence of length no more than 2n. Then,
by Lemma 5, srp(π) = LLabels(p)n. Hence, one can
compute srp(π): its length provides n and its contents
is exactly the counter-clockwise sequence of labels in
R, starting from p.

True Leader: We define the true leader of R as
the process L such that LLabels(L)n is a Lyndon word
[12], i.e., a non-empty string that is strictly smaller
in lexicographic order than all of its rotations. In the
following, we note LW(σ) the rotation of the sequence

4

Table 1: Actions of Process p in Algorithm Ak

A1 p.INIT → p.INIT ← FALSE, p.string← p.id, send
〈
p.id

〉
A2 ¬p.INIT ∧ rcv

〈
x
〉
∧ ¬Leader(p.string . x) → p.string← p.string . x, send

〈
x
〉

A3 ¬p.INIT ∧ rcv
〈
x
〉
∧ Leader(p.string . x) ∧ ¬p.isLeader → p.string← p.string . x, p.isLeader← TRUE, p.leader← p.id

p.done← TRUE, send
〈

FINISH
〉

A4 ¬p.INIT ∧ rcv
〈

FINISH
〉
∧ ¬p.isLeader → p.leader← LW(srp(p.string))[1], p.done← TRUE, send

〈
FINISH

〉
, (halt)

A5 ¬p.INIT ∧ rcv
〈
x
〉
∧ p.isLeader → (nothing)

A6 ¬p.INIT ∧ rcv
〈

FINISH
〉
∧ p.isLeader → (halt)

σ which is a Lyndon word.
In Algorithm Ak (see Table 1), the true leader will

be elected. Precisely, in Ak, a process p uses a variable
p.string to save a prefix of LLabels(p) at any step:
p.string is initially empty and consists of all the labels
that p has received during the execution of Ak so far.
Lemma 6 shows how p can determine the label of the
true leader. Indeed, if p.string contains at least 2k + 1
copies of some label, srp(p.string) = LLabels(p)n. If
srp(p.string) = LW(srp(p.string)), then p is the true
leader. Otherwise, the label of the true leader is the first
label of LW(srp(p.string)), i.e., LW(srp(p.string))[1].

In Ak, we use the function Leader(σ) which returns
TRUE if the sequence σ contains at least 2k+1 copies of
some label and srp(σ) = LW(srp(σ)), FALSE otherwise.

Overview of Ak: Each process p has six variables.
As defined in the specification, p has the variables p.id
and p.leader (of label type), and p.done and p.isLeader
(Booleans, initially FALSE). p also has a Boolean vari-
able p.INIT, initially TRUE, and the variable p.string, as
defined above. There are two kinds of messages: 〈x〉
where x is of label type and 〈FINISH〉.

Ak consists of two phases, which we call the string
growth phase and the finishing phase. During the
string growth phase, each process p builds a prefix
of LLabels(p) in p.string. First, p initiates a token
containing its label, and also initializes p.string to p.id
(Action A1). The token moves around the ring repeat-
edly until the end of the string growth phase. When p
receives a label, p executes Action A2 to append it to
its string, and sends it to its right neighbor. Thus, each
process keeps growing p.string.

Eventually, L receives a label x such that L.string . x
is long enough for L to determine that it is the leader,
see Lemma 6 and the definition of Leader. In this
case, L executes Action A3: L appends L.string with
x, ends the string growth phase, initiates the finishing
phase by electing itself as leader, and sends the message
〈FINISH〉 to its right neighbor. The message 〈FINISH〉
traverses the ring, informing all processes that the
election is over. As each process p receives the message
(Action A4), it knows that a leader has been elected,
can determine its label, LW(srp(p.string))[1], and then

halts. Meanwhile, L consumes every token (Action A5).
When 〈FINISH〉 returns to L, it executes Action A6 and
halts, concluding the execution of Ak.

Theorem 2. Ak solves the leader election for A ∩
Kk, has time complexity at most (2k + 2)n, message
complexity at most n2(2k + 1), and requires at most
(2k + 1)nb+ 2b+ 3 bits in each process.

Proof: Let M = max {mlty[`] : ` is a label in R}
and m = d(2k + 1)/Men. After at most m time units,
by Lemma 6, every process will know R completely,
hence, by definition, L can determine that it is the the
true leader. As soon as L realizes that it is the leader, it
will execute Action A3, sending the message 〈FINISH〉
around the ring. Every process but L will receive the
message 〈FINISH〉 and execute Action A4, which will
be its final action, within at most n − 1 time units.
Finally L executes Action A6 at most one time unit
later, ending the execution. Thus, every process p halts
after fewer than m + n time units. In the worst case,
there are no duplicate labels, i.e., M = 1, so Ak solves
the leader election for A∩Kk and its time complexity
is at most (2k + 2)n.

When the execution halts, all sent messages have
been received. So, the number of message sendings
is equal to the number of message receptions. Each
token initiated at the beginning of the growing phase
circulates in the ring until being consumed by L after
it realizes that it is the true leader. Similarly, 〈FINISH〉
traverses the ring once and stopped at L. Hence, each
process receives at most as many messages as L. L
receives 2k + 1 messages with the same label x to
detect that it is the true leader (Action A3). When L
becomes leader, the received token 〈x〉 is consumed
and L has received messages containing other labels (at
most n−1 different labels) at most 2k times each. Then,
L receives and consumes all other tokens (at most n−1)
before receiving 〈FINISH〉. Overall, L receives at most
n(2k+1)+1 messages and so, the message complexity
is at most n2(2k + 1) + n.

From the previous discussion, the length of L.string is
bounded by 2kn+1. If p 6= L, then p.string continues to
grow after L executes Action A3 until p executes Action

5

A4 by receiving the message 〈FINISH〉. Now, the FIFO
property ensures that p.string is appended at most n−1
times more than L.string due to the remaining tokens.
Thus the length of p.string is always less than (2k+1)n.
So, the space complexity is at most (2k+1)nb+2b+3
bits per process.

V. ALGORITHM Bk

For any k ≥ 2, we now give another leader election
algorithm, Bk, for a ring R in the class A ∩ Kk. The
space complexity of Bk is smaller than that of Ak, but
its time complexity is greater. See Table 2 for its code
and Figure 2 for its state diagram.

Overview: Like Ak, Bk elects the true leader of
R, namely, the process L such that LLabels(L)n is a
Lyndon word, i.e., LLabels(L)n is minimum among
the sequences LLabels(q)n of all processes q, where
sequences are compared using lexicographical ordering.

We define as active the processes that are (still)
competing to be the leader (other processes are said to
be passive). We compute the lexicographical ordering
step by step, as follows. Initially, the set of active
processes contains all processes: Act0 = {p0, ..., pn−1}.
An execution of Bk consists of phases where processes
are deactivated, i.e., become passive. At the end of a
given phase i ≥ 1, the set of active processes is given
by: Acti = {p ∈ R,LLabels(p)i = LLabels(L)i}.
During phase i ≥ 1, a process q is removed from Acti,
when LLabels(q)[i] > LLabels(L)[i]; more precisely,
when q realizes that some process p ∈ Acti−1 satisfies
LLabels(p)[i] < LLabels(q)[i], see Figure 1. When
i ≥ n, Acti is reduced to {L}, since R is asymmetric.
Using k, Bk is able to detect that at least n phases have
been done, and so to terminate.

As defined in the specification, we use at each
process p the constant p.id and the variables p.leader
(of label type), p.done and p.isLeader (Booleans, ini-
tially FALSE). Each process p also maintains a variable
p.state ∈ {INIT, COMPUTE, SHIFT, PASSIVE, WIN,
HALT}, initially equals to INIT. A passive process (i.e.,
no more competing) is in state PASSIVE; other states
are used by (still) active processes; state HALT is the
last state for every process. Three kinds of message
are exchanged: 〈x〉 is used during the computation of
a phase, 〈PHASE SHIFT, x〉 is used to notify that a
phase is over, and 〈FINISH, x〉 is used during the ending
phase, where x is of label type. Intuitively, we say that
a process is in its ith phase, with i ≥ 1, if it received
(i− 1) 〈PHASE SHIFT, 〉 messages.

Phase Computation: The goal of the ith phase
is to compute Acti, given Acti−1, namely to deacti-
vate each active process p such that LLabels(p)[i] >

1
1p0

3 3

p1

1
1

p2

3
3
p3

2
2 p4

22
p5

1
1

p6

2
2

p7

(a) 1st phase.

1
2p0

3 1

p1

1
3

p2

3
1
p3

2
3 p4

22
p5

1
2

p6

2
1

p7

(b) 2nd phase.

1
1p0

3 2

p1

1
1

p2

3
3
p3

2
1 p4

23
p5

1
2

p6

2
2

p7

(c) 3rd phase.

1
p0

3

p1

1
p2

3 p3
2
p4

2
p5

1
p6

2p7

(d) 4th phase.

Figure 1: Execution of Bk where k = 3 and p0 is
elected. We color in white (resp. in black) processes that
are active (resp. passive) at the beginning of the phase.
The gray label next to a process shows its guest.

LLabels(L)[i]. To that purpose, we introduce, at each
process p, a variable p.guest, of label type, such that
p.guest = LLabels(p)[i]. (How p.guest is maintained
in each phase will be explained later.)

During phase i ≥ 1, the value p.guest of every
active process p circulates among active processes: at
the beginning of the phase, every active process sends
its current guest to its right neighbor (Action B1 for the
first phase, Action B6 for other phases). Since passive
processes are no more candidate, they simply forward
the message (Action B7). When an active process p
receives a label x greater than p.guest, it discards this
value (Action B2), since x > p.guest ≥ LLabels(L)[i].
Conversely, when p is active and receives a label x lower
than p.guest, it turns to be passive, executing Action B4
(nevertheless, p forwards x).

A process p, which is (still) active, can end the com-
putation of its phase i once it has considered the guest
value of every other process that are active all along
phase i (i.e., processes in Acti−1 that did not become
passive during phase i). Such a process p detects the end
of the current phase when it has seen the value p.guest
(k+ 1) times. To that goal, we use the counter variable
p.inner, which is initialized to 1 at the beginning of
each phase (Actions B1 and B6) and incremented each
time p receives the value p.guest while being active
(Action B3) (once a process is passive the variable inner

6

Table 2: Actions of Process p in Algorithm Bk

B1 p.state = INIT → p.state← COMPUTE, p.guest← p.id
p.inner← 1, p.outer← 1, send

〈
p.guest

〉
Computation during a phase
B2 p.state = COMPUTE ∧ rcv

〈
x
〉
∧ x > p.guest → (nothing)

B3 p.state = COMPUTE ∧ rcv
〈
x
〉
∧ x = p.guest ∧ p.inner < k → p.inner ++, send

〈
x
〉

B4 p.state = COMPUTE ∧ rcv
〈
x
〉
∧ x < p.guest → p.state← PASSIVE, send

〈
x
〉

Phase Switching
B5 p.state = COMPUTE ∧ rcv

〈
x
〉
∧ x = p.guest ∧ p.inner = k → p.state← SHIFT, send

〈
PHASE SHIFT, p.guest

〉
B6 p.state = SHIFT ∧ rcv

〈
PHASE SHIFT, x

〉
∧ (x 6= p.id ∨ p.outer < k) → p.state← COMPUTE, if p.id = x then p.outer ++

p.guest← x, p.inner← 1, send
〈
p.guest

〉
Passive Processes
B7 p.state = PASSIVE ∧ rcv

〈
x
〉

→ send
〈
x
〉

B8 p.state = PASSIVE ∧ rcv
〈

PHASE SHIFT, x
〉

→ send
〈

PHASE SHIFT, p.guest
〉

, p.guest← x

Ending Phase
B9 p.state = SHIFT ∧ rcv

〈
PHASE SHIFT, x

〉
∧ x = p.id ∧ p.outer = k → p.state← WIN, p.isLeader← TRUE

p.leader← p.id, p.guest← p.id, send
〈

FINISH, p.id
〉

B10 p.state = PASSIVE ∧ rcv
〈

FINISH, x
〉

→ p.state← HALT, send
〈

FINISH, x
〉

p.leader← x, p.done← TRUE, (halt)
B11 p.state = WIN ∧ rcv

〈
FINISH, x

〉
→ p.state← HALT, p.done← TRUE, (halt)

INIT SHIFT

COMPUTE
WIN

p.isLeader

PASSIVE
HALT
p.done

B1

B2, B3

B4

B5

B6

B7, B8

B9

B10

B11

Figure 2: State diagram of Bk.

is meaningless). So, the current phase ends for an active
process p when it receives p.guest while p.inner was
already equal to k (Action B5).

Phase Switching: We now explain how p.guest
is maintained at each phase. Initially, p.guest is set to
p.id and phase 1 starts for p (Action B1). Next, the
value of p.guest for every p is updated when switching
to the next phase. First, note that it is mandatory that
every active process updates its guest variable when
entering a new phase, i.e., after detecting the end of
the previous phase, so that the labels that circulate
during the computation of the phase actually represent
LLabels(p)[i] for process p ∈ Acti−1. Now, FIFO links
allow to enforce a barrier synchronization as follows.
At the end of phase i ≥ 1, Acti is computed, and every
still active process has the same label prefix of length
i, LLabels(p)i, hence the same value for p.guest =
LLabels(p)[i]. As a consequence, they are all able to
detect the end of phase i. So, they switch their state

from COMPUTE to SHIFT and signal the end of the
phase by sending a message 〈PHASE SHIFT, p.guest〉
(Action B5). Messages 〈PHASE SHIFT, 〉 circulate in
the ring, through passive processes (Action B8) until
reaching another (or possibly the same) active process:
when a process p (being passive or active) receives
〈PHASE SHIFT, x〉, (1) it switches from phase i to
(i + 1) by adopting x as new guest value, and (2)
if p is passive, it sends 〈PHASE SHIFT, y〉 where y
was its previous guest value; otherwise, the shifting
process is done and so p switches p.state from SHIFT
to COMPUTE or WIN and starts a new phase (Action B6
or B9). As a result, all guest values have eventually
shifted by one on the right for the next phase.

Note that, due to FIFO links and the fact that active
processes switch to their state SHIFT between two
successive phases, phases cannot overlap, i.e, when a
label x is considered in phase i, in state COMPUTE, x
is the guest of some process q which is active in phase
i, such that LLabels(q)[i] = x.

How Many Phases?: Phase switching stops for an
active process p once its guest took the value p.id
(k + 1) times. Indeed, when p.guest is updated for
the (k + 1)th times by p.id, it is guaranteed that the
number of phases executed by the algorithm is greater
or equal to n, because p.guest = LLabels(p)[i] and
there is no more than k processes with the same value
p.id. In this case, p is the true leader and every other
process q is passive. Again, to detect this, we use at
each process p a counter called p.outer. It is initially
set to 1 (Action B1) and incremented by each active

7

process at each phase switching (Action B6). When
p.outer reaches the value k + 1 (or equivalently when
p receives p.id while p.outer = k, see Action B9), p
declares itself as the leader and initiates the final phase:
it sends a message 〈FINISH, p.id〉; each other process
successively receives the message, saves the label in the
message in its leader variable, forwards the message,
and then halts. Once the message reaches the leader (p)
again, it also halts.

Correctness and Complexity of Bk: To prove the
correctness of Bk (Theorem 3), we first establish that
phases are causally well-defined (see Observation 1),
e.g. they do not overlap. Then, lemmas 7-13 prove the
invariant of the algorithm, by induction on the phase
number. Finally, Theorem 4 proves its complexity.

A barrier synchronization is achieved between each
phase using messages 〈PHASE SHIFT, 〉. Hence we
have the following observation:

Observation 1. Let i ≥ 1. A message received in phase
i has been sent in phase i (it was actually initiated
in phase i). Conversely, if a message has been sent in
phase i, it can only be received in phase i.

In the following, we say that a process p is dead-
locked if p is disabled although a message is ready to be
received by p. We let X = min{x : LLabels(L)x con-
tains L.id (k + 1) times}. For any i ∈ {1, . . . , X}, we
define HIi as the following predicate: ∀p ∈ R,∀j, 1 ≤
j < i,

1) p.guest is equal to LLabels(p)[j] in phase j,
2) p is not deadlocked during its phase j, and
3) p ∈ Actj if and only if p exits its phase j using

Action B6 or B9.

Lemma 7. For all i ∈ {1, . . . , X}, HIi holds.

Lemma 7 is proven by induction on i. The base
case (i = 1) is trivial. The induction step (assume HIi
and show HIi+1, for i ∈ {1, . . . , X − 1}) consists in
proving the correct behavior of phase i. To that goal, we
prove Lemmas 8, 12, and 13 which respectively show
Conditions 1, 2, and 3 for HIi+1.

Lemma 8. For i ∈ {1, . . . , X − 1}, if HIi holds, then
∀p ∈ R,∀j < i + 1, p.guest is equal to LLabels(p)[j]
in phase j.

Proof: Let i ∈ {1, . . . , X − 1} such that HIi
holds. First note that for every process p, we have
LLabels(p)[1] = p.id = p.guest in phase 1. Hence
the lemma holds for i = 1. Now assume that i > 1.
Using HIi, we have that for every 1 ≤ j < i,
LLabels(p)[j] = p.guest at phase j.

We consider now the case when j = i. Note that
a process can only change the value of its variable
guest with Action B6, B8 or B9, namely during phase
switching. Let p be a process at phase i and consider,
in the execution, the step when p switches from phase
(i − 1) to phase i: it receives from its left neighbor, q
a message 〈PHASE SHIFT, x〉, where x was the value
of q.guest when q sent the message (see Actions B5
and B8). From Observation 1, and since p receives
it at phase (i − 1), q sends this message at phase
(i − 1) also. Hence, x = q.guest at phase (i − 1).
Now, when p receives the message, it assigns its variable
p.guest to x (Action B6, B8 or B9): hence, at phase i,
p.guest = LLabels(q)[i− 1] = LLabels(p)[i].

From Observation 1, if p receives 〈PHASE SHIFT, 〉
at phase i ≥ 1, it was sent by its left neighbor in phase
i. So by Lemma 8, we deduce the following corollary.

Corollary 9. For i ∈ {1, . . . , X−1}, if HIi holds, then
∀p ∈ R, if p exits phase j ≤ i by Action B9, then
LLabels(p)[j] equals p.id.

Lemma 10. For i ∈ {1, . . . , X − 1}, if HIi holds, then
no action B9 is executed before phase i+ 1.

Proof: Assume by contradiction that HIi holds and
some action B9 is executed before phase i+1. Consider
the first time it occurs, say some process p executes
Action B9 in some phase j ≤ i.

From Corollary 9, by Action B9, p receives a message
〈PHASE SHIFT, x〉 with x = p.id = LLabels(p)[j].

Furthermore, we have that p.outer = k at phase
j. Hence p.id was observed (k + 1) times since the
beginning of the execution: p.guest took k times value
p.id and the value x in the received message is also
p.id. By Lemma 8, the sequence of values of p.guest
is equal to LLabels(p)j−1. Adding x = LLabels(p)[j] at
the end of the sequence, we obtain LLabels(p)j . Hence,
j = min{x : LLabels(p)x contains p.id (k + 1) times}
and n < j (this implies that j ≥ 2, hence (j − 1) ≥ 1).

As p executes Action B9 in phase j, it is active during
its whole jth phase and hence exits its phase (j − 1)
using Action B6. By Condition 3 in HIi and since (j−
1) < i, p ∈ Actj−1. By definition of Actj−1, since
j > n, Actj−1 = {L}, hence p = L.

As a consequence, j = X , a contradiction.
In the following, we show that processes cannot dead-

lock (Lemma 12). We start by showing the following
intermediate result:

Lemma 11. While a process is in state COMPUTE (resp.
SHIFT), the next message it has to consider cannot be
of the form 〈PHASE SHIFT, 〉 (resp. 〈x〉).

8

Proof: Assume by contradiction that some process
p is in state COMPUTE (resp. SHIFT), but receives
an unexpected message 〈PHASE SHIFT, 〉 (resp. 〈x〉)
meanwhile. We examine the first case, the other case
being similar. The unexpected message was transmitted
through passive processes to p, but first initiated by
some active process q (Action B5).

Since Action B5 was enabled at process q, q received
k messages 〈q.guest〉 during one and the same phase.
By the multiplicity, at least one of those messages, say
m, was initiated by q using Action B1 or B6. So, m
traversed the entire ring (Actions B2-B5, B7). Observa-
tion 1 ensures that this traversal occurs during one and
the same phase. As a consequence, q.guest ≥ r.guest
for every process r that were active when receiving m.
In particular, q.guest ≥ p.guest.

As q executed Action B5, k messages 〈q.guest〉
were sent by q (one action, either B1 or B6, and
(k − 1) actions B3) during the traversal of m, and
so during the same phase again. Hence, p has also
received 〈q.guest〉 k times during the same phase.
Thus, p.guest ≥ q.guest since p is still active, and
so p.guest = q.guest. Now, counters inner of p and q
counted accordingly during this phase: p.inner should
be greater than or equal to k. Hence p should have
executed Action B5 before receiving the unexpected
message, a contradiction.

Lemma 12. For every i ∈ {1, . . . , X−1}, if HIi holds,
then ∀p ∈ R, p is not deadlocked before phase (i+ 1).

Proof: Let i ∈ {1, . . . , X−1} such that HIi holds.
Let p be any process. If p is in state INIT or PASSIVE
in phase i, then it cannot deadlock since the states
INIT and PASSIVE are not blocking by definition of the
algorithm. From Lemma 10 since HIi holds, p cannot
take state WIN before phase (i + 1). Hence, it cannot
take state HALT by Action B9 or B11 as well. As
no action B9 is executed during phase i, no message
〈FINISH, 〉 circulates in the ring during this phase
(Observation 1): Action B10 cannot be enabled, hence
p cannot take state HALT by Action B10. If p is in state
COMPUTE (resp. SHIFT), it cannot receive any message
〈PHASE SHIFT, 〉 (resp. 〈x〉) by Lemma 11. More-
over, it cannot have received any message 〈FINISH, 〉
since no such message was sent during this phase (see
Lemma 10 which applies as HIi holds). As a conclusion,
there is no way for p to deadlock during phase i.

Lemma 13. For every i ∈ {1, . . . , X−1}, if HIi holds,
then ∀p ∈ R, ∀j < i+1, p ∈ Actj if and only if p exits
its phase j by Action B6 or B9.

Proof: Let i ∈ {1, . . . , X−1} such that HIi holds.

Claim 1: ∀p, if p ∈ Acti−1 (resp. /∈ Acti−1), p initi-
ates (resp. does not initiate) a message 〈LLabels(p)[i]〉
(resp. any message) at the beginning of phase i.

Proof of Claim 1: If i = 1, every process p is in Act0
and starts its phase 1, i.e., its execution, by executing
Action B1 and sending its label p.id = LLabels(p)[1].
Otherwise (i > 1), by Lemma 10, no process can
execute Action B9 before phase (i + 1). So by HIi,
every process p ∈ Acti−1 exits phase (i − 1) (and so
starts phase i) by executing Action B6 and sending its
label p.guest = LLabels(p)[i] (Lemma 8). By HIi, if
p is not in Acti−1, p does not exits phase (i − 1) by
executing Action B6 and so it cannot initiates a message
with its label at the beginning of phase i.

Claim 2: Any process p receives a message
〈LLabels(L)[i]〉 k times during its phase i.

Proof of Claim 2: Consider a message m =
〈LLabels(L)[i]〉 that circulates the ring (one exists since
L ∈ Acti−1 initiates one at the beginning of phase
i, see Claim 1). m is always received in phase i
(see Observation 1) all along its ring traversal. From
HIi and Lemma 12, no process is deadlocked before
its phase (i + 1). Hence, when m reaches a process
in state PASSIVE, it is forwarded (Action B7) and
when m reaches a process q in state COMPUTE (with
q.guest = LLabels(q)[i] ≥ LLabels(L)[i], by Lemma 8
and definition of L), it is also forwarded unless Action
B5 is enabled at q. This occurs at q if LLabels(q)[i] =
LLabels(L)[i], since q.inner is initialized to 1 at the be-
ginning of the phase (Action B1 or B6) and incremented
if q receives LLabels(q)[i]. Hence, q has received k
messages 〈LLabels(L)[i]〉 during the phase.

As a consequence, between any two processes q
and q′ in Acti−1 (in state COMPUTE in phase i,
see HIi) such that LLabels(q)[i] = LLabels(q′)[i] =
LLabels(L)[i], circulates during phase i, k messages
〈LLabels(L)[i]〉; any process between q and q′ has
forwarded them (and so received them).

Conclusion of the Proof: By HIi, the lemma holds for
all j < i. Let now consider the case j = i.

If p ∈ Acti, then LLabels(p)i = LLabels(L)i and in
particular, LLabels(p)[i] = LLabels(L)[i]. As Acti ⊆
Acti−1, p is active at the end of phase (i − 1) and
as no action B9 can take place before phase (i + 1)
(Lemma 10), p is in state COMPUTE during the com-
putation of phase i. Since p.guest = LLabels(L)[i] ≤
LLabels(q)[i] for any q ∈ Acti−1 (Lemma 8, definition
of L), and as any message 〈x〉 that circulates during
the phase is initiated by some process q ∈ Acti−1 with
x = LLabels(q)[i] (HIi and Claim 1), p never executes
Action B4 during phase i. Furthermore, p receives k
times p.guest during the phase (Claim 2), hence it

9

executes Action B5 followed by Action B6 or B9 to
exit phase i.

Conversely, if p /∈ Acti, it may be or not in Acti−1.
If p /∈ Acti−1, then from HIi, p exits phase (i−1) with
Action B8; it remains in state PASSIVE all along phase
i and can only exit phase i with Action B8. Otherwise,
p ∈ Acti−1, i.e., LLabels(p)i−1 = LLabels(L)i−1 but
LLabels(p)[i] > LLabels(L)[i]. p executes B4 at least
when receiving the first occurrence of 〈LLabels(L)[i]〉
(Claim 2) and takes state PASSIVE. Once p is passive, it
remains so and can only exit phase i using Action B8.

Finally, at least L executes Action B5: hence phase
switching actually occurs (started by L or some other
process) and causes every process to exit phase i.

This ends the proof of Lemma 7.

Theorem 3. Bk solves the leader election for A∩Kk.

Proof: By Lemma 7 and by definition of X , no
process is deadlocked before phase X and L is the only
process that exits phase X executing Action B6 or B9.
Now, by Lemma 7 and Corollary 9, ∀i ∈ {1, . . . , X},
L.guest = LLabels(L)[i] during phase i. Hence, when
p begins its Xth phase, it is the (k + 1)th time that
L sets L.guest to L.id. Since L.outer is initialized to
1 and incremented when L enters a new phase with
L.guest = L.id, L enters its phase X by Action B9.
So, L sends a message 〈FINISH, L.id〉. L also sets
L.isLeader and L.leader to TRUE and L.id, respec-
tively. Every other process p receives the message in
phase X (Observation 1) while being in state PASSIVE,
since p exits its (X − 1)th phase executing Action B8
(Lemma 7). So, p saves L.id in its variable leader, then
transmits the message to its right neighbor, and finally
halts (Action B10). Finally, L receives 〈FINISH, L.id〉
and halts (Action B11).

Theorem 4. Bk has time complexity O(k2n2), message
complexity O(k2n2), and requires 2 dlog ke+3b+5 bits
per process.

Proof: A phase ends when an active process sees
its guest (k+1) times. This requires O((k+1)n) time
units. There is exactly X phases and X ≤ (k + 1)n.
Thus, the time complexity of Bk is O(k2n2).

During the first phase, every process starts by sending
its id. Since a phase involves O((k + 1)n) actions per
process, each process forwards labels O((k+1)n) times.
Finally, to end the first phase, every process sends and
receives 〈PHASE SHIFT, 〉. Hence, O(kn2) messages
are sent during the first phase. Moreover, only processes
that have the same label as L (at most k) are still active
after the first phase.

For every phase i > 1, let d = mlty[min{p.guest

: p ∈ Acti−1}]. When phase i starts, every active
process (at most k) sends its new guest. When the first
message ends its first traversal (O(kn) messages), every
process that becomes passive in the phase is already
passive. Then, the variables inner of the remaining
active processes increment of d each turn of ring by
a message. So the remaining messages (at most d) do
at most k

d traversal (n hops): O(kn) messages. Overall,
the phase requires O(kn) messages exchanged. As there
is at most O(kn) phases, there are at most O(k2n2)
messages exchanged.

Finally, for every process p, p.inner and p.outer are
initialized to 1 and they are never incremented over k.
Hence, every process requires 2 dlog ke+3b+5 bits.

REFERENCES

[1] D. Angluin, “Local and global properties in networks of
processors,” in STOC, 1980, pp. 82–93.

[2] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and
A. Trehan, “Sublinear bounds for randomized leader
election,” in ICDCN, 2013, pp. 348–362.

[3] N. Lynch, Distributed Algorithms. Morgan Kaufmann,
1996.

[4] S. Dobrev and A. Pelc, “Leader election in rings with
nonunique labels,” Fundam. Inform., vol. 59, no. 4, pp.
333–347, 2004.

[5] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, A. Ker-
marrec, E. Ruppert, and H. Tran-The, “Byzantine agree-
ment with homonyms,” Dist. Comp., vol. 26, no. 5-6, pp.
321–340, 2013.

[6] D. Chaum and E. van Heyst, “Group signatures,” in
EUROCRYPT, 1991, pp. 257–265.

[7] S. Arévalo, A. F. Anta, D. Imbs, E. Jiménez, and M. Ray-
nal, “Failure detectors in homonymous distributed sys-
tems (with an application to consensus),” JPDC, vol. 83,
pp. 83–95, 2015.

[8] P. Flocchini, E. Kranakis, D. Krizanc, F. L. Luccio,
and N. Santoro, “Sorting and election in anonymous
asynchronous rings,” JPDC, vol. 64, no. 2, pp. 254–265,
2004.

[9] C. Delporte-Gallet, H. Fauconnier, and H. Tran-The,
“Leader election in rings with homonyms,” in NETYS,
2014, pp. 9–24.

[10] K. Altisen, A. K. Datta, S. Devismes, A. Durand, and
L. L. Larmore, “Leader election in rings with bounded
multiplicity,” in SSS, 2016, to appear.

[11] G. Tel, Introduction to distributed algorithms (2nd Ed.).
Cambridge University Press, 2000.

[12] R. C. Lyndon, “On burnsides problem,” Trans. of the
AMS, vol. 77, no. 2, pp. 202–215, 1954.

10

APPENDIX

A. Phase Numbering

The phases of each process p are defined according
to the assignments on its variable p.guest. When p
initializes p.guest to p.id in Action B1, p starts its
first phase. Then, an active (resp. a passive) process p
switches from some phase i to phase i + 1 by setting
p.guest to the value x upon the reception of some
message 〈PHASE SHIFT, x〉 in Action B6 or B9 (resp.
Action B8).

B. Proof of Observation 1

We prove that when a given message is sent by
a process and received by its right neighbor, those
processes are at the same phase. The proof is split into
three cases (Lemmas 14-16), according to the message
types. Observation 1 is then a direct consequence of
those lemmas.

Lemma 14. Let p be a process, q its right neighbor,
m = 〈PHASE SHIFT, 〉 a message, and i, j ≥ 1.

If m is sent by p in phase i and received by q in
phase j, then i = j.

Proof: We prove the lemma by induction on i ≥ 1.
Assume i = 1, p sends m during its first phase

and q receives m at phase j ≥ 1. Between two
consecutive sendings of 〈PHASE SHIFT, 〉 (Action B5
or B8), p necessarily updates p.guest (Action B6, B8,
or B9), incrementing then its phase number. So m is
necessarily the first 〈PHASE SHIFT, 〉 message p sent
during the execution. Since q cannot receive messages
from another process than p, q does not receive any
other 〈PHASE SHIFT, 〉 message before m, so q is in
its first phase upon the reception of m: j = 1.

Assume now that the lemma holds for i ≥ 1. Assume
also that p sends m during its phase i + 1 and q
receives it in phase j ≥ 1. Consider the moment
where p sent its previous 〈PHASE SHIFT, 〉 message,
say m′. Again, between two consecutive sendings of
〈PHASE SHIFT, 〉 (Action B5 or B8), p necessarily
updates p.guest (Action B6, B8, or B9), incrementing
then its phase number. So p was at most in phase i
when p sent m′. Furthermore, p cannot update p.guest
two times (Action B6, B8, or B9) without sending
some 〈PHASE SHIFT, 〉 message (Action B5 or B8)
in between. (Notice also that a process cannot execute
Action B9 twice.) Hence, p was in its phase i when it
sent m′.

Now by induction hypothesis, q received m′ in its ith

phase (Action B6 or B8): this started its phase i + 1.
Since it cannot receive messages from another process

than p, q is in its j = (i+ 1)th phase when it receives
m.

Lemma 15. Let p be a process, q its right neighbor,
m = 〈x〉 a message (where x a label), and i, j ≥ 1.

If m is sent by p in phase i and received by q in
phase j, then i = j.

Proof: Assume by contradiction that the lemma
is wrong and consider, without loss of generality, the
first time this contradiction occurs during the execution:
some message m = 〈x〉 was sent by a process p in
phase i, received by its right neighbor q in phase j, but
i 6= j.

If j < i then i > 1 and p receives a message
〈PHASE SHIFT, 〉 (Action B6, B8, or B9), increments
its phase number, and does not forward it (Action B5
or B8) to q before sending m. Precisely, p receives a
message 〈PHASE SHIFT, 〉 either by executing Action
B6 (but it necessarily executes Action B5 beforehand),
or by executing Action B8: in both cases, p sends a
message 〈PHASE SHIFT, 〉 to q before sending m, a
contradiction.

Otherwise, i < j. Then, j > 1 and q receives a
message m′ = 〈PHASE SHIFT, 〉 from p that makes q
switch from its (j − 1)th to its jth phase (Action B6,
B8, or B9). By Lemma 14, p is in phase j − 1 when it
sends m′. Hence i ≥ j − 1, which in turns implies that
i = j−1: p sends m′ and then m without incrementing
its phase number (Action B6, B8, or B9) in between.
As a consequence, either p sends m′ by Action B5 and
p necessarily sends m by Action B6, or p sends m′

by Action B8. In both cases, p updates p.guest and
so increments its phase number before sending m, a
contradiction.

Lemma 16. Let p be a process, q its right neighbor,
〈FINISH, 〉 a message, and i, j ≥ 1.

If m is sent by p in phase i and received by q in
phase j, then i = j.

Proof: There are two cases.
1) If p sends m by Action B9, then p switches from

phase i− 1 to i, and p necessarily executes Action B5
beforehand. So q receives m′ = 〈PHASE SHIFT, 〉
from p just before m. By Lemma 14, p sends m′ in
phase i−1 so q receives m′ in phase i−1 and switches to
phase i. Now, q cannot assign q.guest (and so increment
its phase number) between the reception of m′ and m.
So q receives m in phase j = i.

2) If p sends m executing Action B10, then before-
hand, p necessarily executes Action B4, B7, or B8. If p
executes Action B8 beforehand, using similar arguments
as in case 1), q receives m in phase j = i. Otherwise, p

11

sends a message m′ = 〈x〉, where x is a label, in phase
i (p cannot update p.guest and increment its phase
number in between) to q. By Lemma 15, q receives m′

in phase i and cannot update q.guest (and increment
its phase number) between the reception of m′ and m.
Hence, q receives m in phase j = i.

C. Proof of Corollary 9

Corollary 9. For i ∈ {1, . . . , X − 1}, if HIi is true,
then ∀p ∈ R, if p exits phase j ≤ i by Action B9, then
LLabels(p)[j] equals p.id.

Proof: Let i ∈ {1, . . . , X − 1}. Assume that HIi
holds. Let p be a process that executes Action B9
in some phase j ≤ i. By this action, p receives a
message m = 〈PHASE SHIFT, x〉. Note that, since
k = p.outer ≤ j in phase j and since k ≥ 2, we have
j > 1.
p receives m from its left neighbor, q, x being the

value of q.guest when q sent m (Action B8 or B5).
From Lemma 14, and since p receives m at phase j, q
also sends m in phase j. Hence, x = q.guest in phase
j − 1. Hence, x = LLabels(q)[j − 1] = LLabels(p)[j].

12

