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ABSTRACT
We initiate research on self-stabilization in highly dynamic iden-
tified message passing systems where dynamics is modeled using
time-varying graphs (TVGs). More precisely, we address the self-
stabilizing leader election problem in three wide classes of TVGs:
the class TCB (Δ) of TVGs with temporal diameter bounded by Δ,
the class TCQ (Δ) of TVGs with temporal diameter quasi-bounded
by Δ, and the class TCR of TVGs with recurrent connectivity only,
where TCB (Δ) ⊆ TCQ (Δ) ⊆ TCR . We first study conditions
under which our problem can be solved. We introduce the notion
of size-ambiguity to show that the assumption on the knowledge of
the number 𝑛 of processes is central. Our results reveal that, despite
the existence of unique process identifiers, any deterministic self-
stabilizing leader election algorithm working in the class TCQ (Δ)
or TCR cannot be size-ambiguous, justifying why our solutions
for those classes assume the exact knowledge of 𝑛. We then present
three self-stabilizing leader election algorithms for Classes TCB (Δ),
TCQ (Δ), and TCR , respectively. Our algorithm for TCB (Δ) sta-
bilizes in at most 3Δ rounds. In TCQ (Δ) and TCR , stabilization
time cannot be bounded, except for trivial specifications. However,
we show that our solutions are speculative in the sense that their
stabilization time in TCB (Δ) is 𝑂 (Δ) rounds.
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1 INTRODUCTION
Context. Starting from an arbitrary configuration, a self-stabilizing
algorithm [18] makes a distributed system reach within finite time
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a configuration from which its behavior is correct. Essentially, self-
stabilizing algorithms tolerate transient failures, since by definition
such failures last a finite time (as opposed to crash failures, for
example) and their frequency is low (as opposed to intermittent
failures). Indeed, the arbitrary initial configuration can be seen as
the result of a finite number of transient faults, and after those faults
cease, we can expect a sufficiently large time window without any
fault so that the system recovers and then exhibits a correct behavior
for a long time.

Even though self-stabilization is not inherently suited to handle
other failure patterns, a.k.a., intermittent and permanent failures,
several works show that in many cases self-stabilization can still
be achieved despite such faults occur. Indeed, strong forms of self-
stabilization have been proposed to tolerate permanent failures, e.g.,
fault-tolerant self-stabilization [6] to cope with process crashes, and
strict stabilization [30] to withstand Byzantine failures. Furthermore,
several self-stabilizing algorithms, e.g., [17], withstand intermittent
failures such as frequent lost, duplication, or reordering of messages,
meaning their convergence is still effective despite such faults con-
tinue to often occur in the system. Hence, even if at the first glance
guaranteeing a convergence property may seem to be contradictory
with a high failure rate, the literature shows that self-stabilization
may be a suitable answer even in such cases.

All these aforementioned works assume static communication
networks. Nevertheless, self-stabilizing algorithms dedicated to ar-
bitrary network topologies tolerate, up to a certain extent, some
topological changes (i.e., the addition or the removal of communica-
tion links or nodes). Precisely, if topological changes are eventually
detected locally at involved processes and if the frequency of such
events is low enough, then they can be considered as transient faults.
Actually, a number of works, e.g., [16, 19, 24] (n.b., [16] deals with
leader election), use this kind of argument to claim that they are
suited for the dynamic context. Furthermore, several approaches,
like superstabilization [23] and gradual stabilization [2], aims at ad-
ditionally providing countermeasures to efficiently treat topological
changes when they are both spatially and timely sparse. However,
all these aforementioned approaches, e.g., [2, 16, 19, 23, 24], be-
come totally ineffective when the frequency of topological changes
drastically increase, in other words when topological changes are
intermittent rather than transient. Actually, in the intermittent case,
the network dynamics should be no more considered as an anomaly
but rather as an integral part of the system nature.

Several works aim at proposing a general graph-based model
to capture the network dynamics. In [10], the network dynamics
is represented as a sequence of digraphs called evolving graphs.
In [13], the topological evolution of the network is modeled by a
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(fixed) digraph where the nodes represent participating processes
and the edges are communication links that may appear during
the lifetime of the network. Each edge is labeled according to its
presence during the lifetime of the network. Such digraphs are called
Time-Varying Graphs (TVGs, for short).

In highly dynamic distributed systems, an expected property is
self-adaptiveness, i.e., the ability of a system to accommodate to sud-
den and frequent changes of its environment. By definition, achiev-
ing self-stabilization in highly dynamic networks is a suitable answer
to self-adaptiveness. Speculation [29] is another possible approach
for self-adaptiveness. Roughly speaking, it guarantees that the sys-
tem satisfies its requirements for all executions, but also exhibits
significantly better performances in a subset of more probable ex-
ecutions. The main idea behind speculation is that worst possible
scenarios are often rare (even unlikely) in practice. So, a speculative
algorithm is assumed to self-adapt its performances w.r.t. the “qual-
ity” of the environment, i.e., the more favorable the environment is,
the better the complexity of the algorithm should be. Interestingly,
Dubois and Guerraoui [26] have investigated speculation in self-
stabilizing, yet static, systems. They illustrate this property with a
self-stabilizing mutual exclusion algorithm whose stabilization time
is significantly better when the execution is synchronous.

Contribution. We initiate research on self-stabilization in highly
dynamic identified message passing systems where the dynamics is
modeled using TVGs to obtain solutions tolerating both transient
faults and high dynamics. In our model, processes can only com-
municate through local broadcast primitives: at each round, every
process can send a common message to its unknown set of current
neighbors (if any).

We reformulate the definition of self-stabilization to accommo-
date TVGs, and investigate the self-stabilizing leader election prob-
lem. This problem is fundamental in distributed computing since
it allows to synchronize and self-organize a network. Thus, leader
election is a basic component in many protocols, e.g., spanning tree
constructions, broadcasts, and convergecasts.

We study self-stabilizing leader election in three wide classes
of TVGs, respectively denoted by TCB (Δ), TCQ (Δ), and TCR ,
where TCB (Δ) ⊆ TCQ (Δ) ⊆ TCR : TCB (Δ) is the class of
TVGs with temporal diameter bounded by Δ [27], TCQ (Δ) is the
class of TVGs with temporal diameter quasi-bounded by Δ (intro-
duced here), and TCR is the class of TVGs with recurrent connec-
tivity [13]; this latter class is the most general infinite TVG class
introduced so far [12, 13].1

We first study conditions under which our problem can be solved.
Actually, our results show that the assumption on the knowledge of
the number 𝑛 of processes is central. To see this, we introduce the
notion of size-ambiguity, which formalizes the fact that some subsets
of processes do not share enough initial knowledge on 𝑛 to detect
that the system is not limited to themselves. In other words, such an
ambiguity comes from the fact that 𝑛 is only partially known by the
processes (e.g., when processes only know an upper bound on𝑛). Our
results show that, despite the existence of unique process identifiers,
any deterministic self-stabilizing leader election algorithm working

1Considering finite TVGs, i.e., dynamic systems whose lifetime is limited, does not
really make sense in the self-stabilizing context, since commonly self-stabilizing algo-
rithms do not terminate [1, 20].

in the class TCQ (Δ) or TCR cannot be size-ambiguous. Hence, to
make the problem solvable in those classes, we will assume each
process knows the exact value of 𝑛.

We then propose self-stabilizing leader election algorithms for the
three considered classes. In more detail, we present a self-stabilizing
leader election algorithm for Class TCB (Δ) with a stabilization time
of at most 3Δ rounds, assuming every process knows Δ, yet using
no information on 𝑛. This in particular shows that our necessary
condition is tight. Then, we propose a self-stabilizing leader election
algorithm for Class TCQ (Δ) assuming every process knows Δ and
𝑛. In general, stabilization time cannot be bounded in TCQ (Δ);
nevertheless we show that the algorithm is speculative since its
stabilization time in TCB (Δ) is at most 2Δ rounds. Finally, we
propose a self-stabilizing leader election algorithm for Class TCR ,
where only 𝑛 is known, yet requiring unbounded local memories.
Finding a self-stabilizing solution in this class was rather challenging,
since there is no guarantee on message delivery timeliness at all (n.b.,
by definition of the class, there is no bound on the temporal diameter).
Again, in general, stabilization time cannot be bounded in TCR , yet
we show that the algorithm is speculative since its stabilization time
in TCB (Δ) is at most Δ + 1 rounds.

Related Work. Ensuring convergence in highly dynamic networks
regardless of the initial configuration may seem to be very challeng-
ing, even impossible in many cases [9]. However, there are a few
works [8, 11, 22] that deal with this issue, yet in widely different
models and assumptions than ours.

A recent work [8] deals with the self-stabilizing exploration of
a highly dynamic ring by a cohort of synchronous robots equipped
with visibility sensors, moving actuators, yet no communication
capabilities. Note that, contrary to [8], the three classes studied the
present paper never enforce the network to have a particular topology
at a given time.

In [11], Cai et al. tackles the self-stabilizing leader election prob-
lem in highly dynamic systems through the population protocol
model. In this model, communications are achieved by atomic ren-
dezvous between pair of anonymous processes, where ties are nonde-
terministically broken. The local broadcast primitive we use here is
weaker. Moreover, authors assume global fairness, meaning that ev-
ery configuration infinitely often reachable is infinitely often reached.
We do not make such an assumption here. Actually, Cai et al. show
that, in their model, self-stabilizing leader election is deterministi-
cally solvable if and only if the number of processes 𝑛 is known,
despite processes being anonymous. In our model, even with the
knowledge of 𝑛, (deterministic) self-stabilizing leader election can-
not be solved if processes are anonymous.2 Moreover, our results
show that (maybe surprisingly) even with process identifiers, the
knowledge of 𝑛 is necessary to solve self-stabilizing leader election
in TCQ (Δ) and TCR .

Finally, Dolev et al. [22] assume the system is equipped with a
routing algorithm, which allows any two processes to communicate,
providing that the sender knows the identifier of the receiver. This
blackbox protocol abstracts the dynamics of the system: the dynam-
ics makes it fair lossy, non-FIFO, and duplication-prone. Moreover,
the channel capacity is assumed to be bounded. Based on this weak

2Every static network is a very particular case of TVG, which belongs to all classes
studied here, so the impossibility result of Angluin [3] still applies.
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routing algorithm, they build a stronger routing protocol which is
reliable, FIFO, and which prevents duplication. We should remark
that techniques used here can be reengineered to implement their
input black box routing protocol.
Roadmap. In Section 2, we present the computational model. In
Section 3, we propose and justify our definition of self-stabilization
for highly dynamic environments; we then study the impact of the
knowledge of 𝑛 on the solvability of the self-stabilizing leader elec-
tion. In the three next sections, we present our algorithms. The last
section is dedicated to conclusions and perspectives.

2 PRELIMINARIES
Time-varying Graphs. A time-varying graph (TVG for short) [13]
is a tuple G = (𝑉 , 𝐸,T , 𝜌) where 𝑉 is a (static) set of nodes, 𝐸
is a (static) set of arcs between pairwise nodes, T is an interval
over N∗ (the set of positive integers) called the lifetime of G, and
𝜌 : 𝐸 × T → {0, 1} is the presence function that indicates whether
or not a given arc exists at a given time. We denote by 𝑜T = minT
the first instant in T .

From a global viewpoint, the evolution of G is described as a
sequence of digraphs, called snapshots: the snapshot of G at time
𝑡 ∈ T is the digraph 𝐺𝑡 = (𝑉 , {𝑒 ∈ 𝐸 : 𝜌 (𝑒, 𝑡) = 1}).

Let [𝑡, 𝑡 ′] ⊆ T . The temporal subgraph of G for the interval
[𝑡, 𝑡 ′], denoted by G[𝑡,𝑡 ′ ] , is the TVG (𝑉 , 𝐸, [𝑡, 𝑡 ′], 𝜌 ′) where 𝜌 ′ is
𝜌 restricted to [𝑡, 𝑡 ′]. Roughly speaking, G[𝑡,𝑡 ′ ] is itself a TVG that
reproduces all the interactions present in the original TVG G, yet
for the time window [𝑡, 𝑡 ′].

A journey J can be thought as a path over time from a source 𝑝1
to a destination 𝑞𝑘 , i.e., J is a sequence (𝑒1, 𝑡1), (𝑒2, 𝑡2), . . . , (𝑒𝑘 , 𝑡𝑘 )
where ∀𝑖 ∈ {1, . . . , 𝑘}, 𝑒𝑖 = (𝑝𝑖 , 𝑞𝑖 ) ∈ 𝐸 satisfies 𝜌 (𝑒𝑖 , 𝑡𝑖 ) = 1 and 𝑖 <
𝑘 ⇒ 𝑞𝑖 = 𝑝𝑖+1∧𝑡𝑖 < 𝑡𝑖+1. We respectively denote by 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 (J)
and 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 (J) the starting time 𝑡1 and the arrival time 𝑡𝑘 of J . A
journey from 𝑝 to 𝑞 is a journey whose source is 𝑝 and destination
is 𝑞. Let J (𝑝, 𝑞) be the set of journeys in G from 𝑝 to 𝑞. Let⇝ be
the binary relation over 𝑉 such that 𝑝 ⇝ 𝑞 if 𝑝 = 𝑞 or there exists a
journey from 𝑝 to 𝑞 in G.

The temporal length of a journey J is equal to 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 (J) −
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 (J) + 1. Let 𝑡 ≥ 𝑜T − 1. By extension, we define the
temporal distance from 𝑝 to 𝑞 at 𝑡 , denoted by 𝑑𝑝,𝑡 (𝑞), as follows:
𝑑𝑝,𝑡 (𝑞) = 0, if 𝑝 = 𝑞, 𝑑𝑝,𝑡 (𝑞) = min{𝑎𝑟𝑟𝑖𝑣𝑎𝑙 (J) − 𝑡 : J ∈
J (𝑝, 𝑞) ∧ 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 (J) > 𝑡} otherwise (by convention, we let
min ∅ = +∞). Roughly speaking, the temporal distance from 𝑝 to 𝑞

at time 𝑡 gives the minimum timespan for 𝑝 to reach 𝑞 after 𝑡 . The
temporal diameter at 𝑡 is the maximum temporal distance between
any two nodes at 𝑡 .

We define 𝐼𝑇𝑉𝐺 (G) to be the predicate that holds if T is a right-
open interval, in which case G is said to be an infinite TVG; other-
wise G is called a finite TVG.
TVG Classes. Let G = (𝑉 , 𝐸,T , 𝜌) be a TVG. We consider the
following four TVG classes.

Class TC (Connectivity over Time), also denoted by C3 in [13]:
every node can reach all the others at least once through a journey.
Formally, G ∈ TC if ∀𝑝, 𝑞 ∈ 𝑉 , 𝑝 ⇝ 𝑞.

Class TCR (Recurrent Connectivity), denoted by C5 in [13]:
at any point in time, every node can reach all the others through a
journey. Formally, G ∈ TCR if 𝐼𝑇𝑉𝐺 (G) ∧ ∀𝑡 ∈ T ,G[𝑡,+∞) ∈ TC.

Class TCB (Δ) with Δ ∈ N∗ (Bounded Temporal Diameter), de-
noted by TC(Δ) in [27]: at any point in time, every node is at
temporal distance at most Δ from all other nodes, i.e., the temporal
diameter is bounded by Δ. Formally, G ∈ TCB (Δ) if 𝐼𝑇𝑉𝐺 (G) ∧
∀𝑡 ∈ T ,G[𝑡,𝑡+Δ) ∈ TC.

Class TCQ (Δ) with Δ ∈ N∗ (Quasi Bounded Temporal Diame-
ter): every node is infinitely often at temporal distance at most Δ
from each other node. Formally, G ∈ TCQ (Δ) if 𝐼𝑇𝑉𝐺 (G)∧∀𝑝, 𝑞 ∈
𝑉 ,∀𝑡 ∈ T , ∃𝑡 ′ ≥ 𝑡 − 1, 𝑑𝑝,𝑡 ′ (𝑞) ≤ Δ.

Notice that, ∀Δ ∈ N∗, TCB (Δ) ⊆ TCQ (Δ) ⊆ TCR ⊆ TC,
by definition. Furthermore, we say that a TVG class C is recurring
if C only contains infinite TVGs and, for every G ∈ C and every
𝑡 ≥ 𝑜T , G[𝑡,+∞) ∈ C. (In other words, every recurring TVG class
is suffix-closed.) The three classes we will consider hereafter (i.e.,
TCR , TCB (Δ), TCQ (Δ)) are recurring.

Computational Model. We consider the computational model de-
fined in [5, 14]. We assume a distributed system made of a set of 𝑛
processes, denoted by 𝑉 . Each process has a local memory, a local
sequential and deterministic algorithm, and message exchange capa-
bilities. We assume that each process 𝑝 has a unique identifier (ID
for short). The identifier of 𝑝 is denoted by 𝑖𝑑 (𝑝) and taken in an
arbitrary domain 𝐼𝐷𝑆𝐸𝑇 totally ordered by <. We assume that each
identifier is stored using 𝐵 bits. In the sequel, we denote by ℓ the pro-
cess of minimum identifier. Processes are assumed to communicate
by message passing through an interconnected network that evolves
over the time. The topology of the network is then conveniently
modeled by an infinite TVG G = (𝑉 , 𝐸,T , 𝜌). Processes execute
their local algorithms in synchronous rounds. For every 𝑖 > 0, the
communication network at Round 𝑖 is defined by 𝐺𝑜T+𝑖−1, i.e., the
snapshot of G after 𝑖 − 1 instants elapse from the initial time 𝑜T . So,
∀𝑝 ∈ 𝑉 , we denote by N(𝑝)𝑖 = {𝑞 ∈ 𝑉 : 𝜌 ((𝑝, 𝑞), 𝑜T + 𝑖 − 1) = 1},
the set of 𝑝’s neighbors at Round 𝑖. N(𝑝)𝑖 is assumed to be unknown
by process 𝑝, whatever the value of 𝑖 is.

A distributed algorithm A is a collection of 𝑛 local algorithms
A(𝑝), one per process 𝑝 ∈ 𝑉 (n.b., different processes may have
different codes). At any round, each process has a state. The state of
each process 𝑝 ∈ 𝑉 in A is defined by the values of its variables in
A(𝑝). We denote by S𝑉

A (𝑝) the non-empty set of 𝑝’s possible local
states in A. Some variables may be constants in which case their
values are predefined. A configuration of A for 𝑉 is a vector of 𝑛
components (𝑠1, 𝑠2, . . . , 𝑠𝑛), where 𝑠1 to 𝑠𝑛 represent the states of the
processes in 𝑉 .

Let 𝛾0 be the initial configuration of A for 𝑉 . For any (synchro-
nous) round 𝑖 ≥ 1, the system moves from the current configuration
𝛾𝑖−1 to some configuration 𝛾𝑖 , where 𝛾𝑖−1 (resp. 𝛾𝑖 ) is referred to as
the configuration at the beginning of Round 𝑖 (resp. at the end of
Round 𝑖). Such a move is atomically performed by every process
𝑝 ∈ 𝑉 according to the following three steps, defined in its local
algorithm A(𝑝):

(1) 𝑝 sends a message consisting of all or a part of its local state
in 𝛾𝑖−1 using the primitive SEND(),

(2) using Primitive RECEIVE(), 𝑝 receives all messages sent
by processes in N(𝑝)𝑖 , and

(3) 𝑝 computes its state in 𝛾𝑖 .
An execution of a distributed algorithm A in the TVG G = (𝑉 , 𝐸,T , 𝜌)
is an infinite sequence of configurations 𝛾0, 𝛾1, . . . of A for 𝑉 such
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that ∀𝑖 > 0, 𝛾𝑖 is obtained by executing a synchronous round of A
on 𝛾𝑖−1 based on the communication network at Round 𝑖, i.e., the
snapshot 𝐺𝑜T+𝑖−1.

3 SELF-STABILIZATION IN HIGHLY
DYNAMIC ENVIRONMENTS

Definition. In the following, we define a specification as a predicate
over configuration sequences.

Self-stabilization has been originally defined for static networks.
In the reference book of Dolev [20], self-stabilization is defined as
follows. An algorithm is self-stabilizing for a specification 𝑆𝑃 if
there exists a set of so-called legitimate configurations satisfying the
following two properties: (1) every execution of the algorithm in
the considered system eventually reaches a legitimate configuration
(Convergence); and (2) every possible execution suffix starting from
a legitimate configuration satisfies 𝑆𝑃 (Correctness). Below, we
accommodate this definition to highly dynamic environments.

Definition 3.1 (Self-stabilization). An algorithm A is self-stabili-
zing for the specification 𝑆𝑃 on a class C of infinite TVGs if for
every set of processes 𝑉 , there exists a subset of configurations L of
A for 𝑉 , called legitimate configurations, such that:

(1) for every G ∈ C with set of processes 𝑉 and every configura-
tion 𝛾 of A for 𝑉 , every execution of A in G starting from
𝛾 contains a legitimate configuration 𝛾 ′ ∈ L (Convergence),
and

(2) for every G ∈ C with set of processes 𝑉 , every 𝑡 ≥ 𝑜T , every
legitimate configuration 𝛾 ∈ L, and every execution 𝑒 in
G[𝑡,+∞) starting from 𝛾 , 𝑆𝑃 (𝑒) holds (Correctness).

The length of the stabilization phase of an execution 𝑒 is the length
of its maximum prefix containing no legitimate configuration. The
stabilization time in rounds is the maximum length of a stabilization
phase over all possible executions.

REMARK 1. In the case of a recurring class of TVG, the defini-
tion of self-stabilization for an algorithm A and a specification 𝑆𝑃

can be slightly simplified. Indeed, the correctness property can be
equivalently rewritten as follows: given a set of processes 𝑉 and a
set of configurations L on 𝑉 , for every G ∈ C with set of processes
𝑉 , every legitimate configuration 𝛾 ∈ L, and every execution 𝑒 in G
starting from 𝛾 , 𝑆𝑃 (𝑒) holds (Recurring-Correctness).

It is worth noting that Definition 3.1, as the one given in the
reference book of Dolev [20], does not include the notion of closure:
intuitively, a set of configurations S is closed if every step of the
algorithm starting in a configuration of S leads to a configuration of
S; see Definition 3.2 for a formal definition. Now, when dealing with
high-level models (such as the atomic-state model), closure is most
of the time present in definitions of self-stabilization. However, in
the more practical message passing model, closure is usually simply
given up; see, e.g., [4, 25, 31]. Even if this absence is never motivated,
this may be explained by the lack of functional significance of the
closure property as compared to the convergence and correctness
properties. Closure is rather a nice property that often helps to write
elegant, and so simpler, proofs. Moreover, closure may be sometimes
too restrictive, as we will show in Theorem 3.4 for example. Below,
we reformulate closure in the context of TVGs.

Definition 3.2 (Closure). Let A be a distributed algorithm, C
be an infinite TVG class, 𝑉 be a set of processes, and S be a set
of configurations of A for 𝑉 . S is closed in C if for every G ∈ C
with set of processes 𝑉 , every 𝑡 ≥ 𝑜T , and every configuration
𝛾 ∈ S, every execution of A in G[𝑡,+∞) starting from 𝛾 only contains
configurations of S.

REMARK 2. Again, when the considered class of TVGs is re-
curring, the definition of closure can be slightly simplified. If A is
a distributed algorithm, C is a recurring TVG class, 𝑉 is a set of
processes, and S is a set of configurations of A for 𝑉 , then S is
closed in C if for every G ∈ C with set of processes 𝑉 and every
configuration 𝛾 ∈ S, every execution of A in G starting from 𝛾 only
contains configurations of S.

Self-stabilizing Leader Election. The leader election problem con-
sists in distinguishing a single process in the system. In identified
networks, the election usually consists in making the processes agree
on one of the identifiers held by processes. The identifier of the
elected process is then stored at each process 𝑝 in an output variable,
denoted here by 𝑙𝑖𝑑 (𝑝). We call fake ID any value 𝑣 ∈ 𝐼𝐷𝑆𝐸𝑇 (recall
that 𝐼𝐷𝑆𝐸𝑇 is the definition domain of the identifiers) such that 𝑣
is not assigned as a process identifier in the system, i.e., there is no
process 𝑝 ∈ 𝑉 such that 𝑖𝑑 (𝑝) = 𝑣 . In the self-stabilizing context, the
output variables 𝑙𝑖𝑑 may be initially corrupted; in particular some of
them may be initially assigned to fake IDs. Despite such fake IDs, the
goal of a self-stabilizing algorithm is to make the system converge
to a configuration from which a unique process is forever adopted as
leader by all processes, i.e., ∃𝑝 ∈ 𝑉 such that ∀𝑞 ∈ 𝑉 , 𝑙𝑖𝑑 (𝑞) = 𝑖𝑑 (𝑝)
forever. Hence, the leader election specification 𝑆𝑃𝐿𝐸 can be for-
mulated as follows: a sequence of configurations 𝛾0, 𝛾1, . . . satisfies
𝑆𝑃𝐿𝐸 if and only if ∃𝑝 ∈ 𝑉 such that ∀𝑖 ≥ 0, ∀𝑞 ∈ 𝑉 , the value
of 𝑙𝑖𝑑 (𝑞) in configuration 𝛾𝑖 is 𝑖𝑑 (𝑝). In the sequel, we say that an
algorithm is a self-stabilizing leader election algorithm for the class
of infinite TVG C if it is self-stabilizing for 𝑆𝑃𝐿𝐸 on C.
Knowledge of 𝑛 and Closure in TCB (Δ). We now advocate
that closure of legitimate configurations may be cumbersome in
TCB (Δ) since to achieve it, any (deterministic) self-stabilizing
leader election algorithm somehow requires the exact knowledge of
𝑛 (the number of processes), i.e., even partial knowledge such as an
upper bound on 𝑛 is not sufficient; see Theorem 3.4. To that goal,
we need to first define what we mean by not exactly knowing 𝑛.

When an algorithm A uses the number of its processes, this
means that this information is given as an input in the local state of
each process. So, the definition of the set of possible local states of
each process is adjusted according to the size of the system it belongs
to. Conversely, if an algorithm A does not know its exact size, this
means that there are sizes of systems that cannot be distinguished by
part of its processes using their local inputs (and so their possible
local states). More precisely, for a given set of processes𝑉 executing
A, there should exist a size 𝑘 < |𝑉 | for which the processes of any 𝑘-
subset 𝑈 of 𝑉 do not share enough initial information to distinguish
whether the system is made of the process-set 𝑉 or 𝑈 . Below, we
formalize this intuitive idea by the notion of size-ambiguity.

Definition 3.3 (Size-Ambiguity). Let 𝑉 be a set of processes and
𝑘 ∈ N. A distributed algorithm A is (𝑘,𝑉 )-ambiguous if 0 < 𝑘 <

|𝑉 | and for every 𝑈 ⊂ 𝑉 such that |𝑈 | = 𝑘 and every 𝑝 ∈ 𝑈 , S𝑈
A (𝑝)
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is well-defined and S𝑈
A (𝑝) = S𝑉

A (𝑝). We simply say that A is size-
ambiguous if there exists 𝑉 and 𝑘 such that A is (𝑘,𝑉 )-ambiguous.

Consider now a few examples. First, if each process has a constant
input whose value is the number 𝑛 of processes in the system (i.e.,
each process "exactly knows 𝑛"), then from our definition, the algo-
rithm is not size-ambiguous since, in this case, the set of possible
local states of any process differs from one size of system to another,
at least because of the input storing 𝑛. Conversely, if the processes
do not know the exact number of processes but its parity, then we
can choose any set 𝑉 of at least three processes and any positive
value 𝑘 < |𝑉 | with same parity as |𝑉 |: for every subset 𝑈 of 𝑉 such
that |𝑈 | = 𝑘, the constant input giving the parity will be the same
at each process of 𝑈 whether running its algorithm in a TVG with
process-set 𝑉 or 𝑈 . Consequently, every process 𝑝 ∈ 𝑈 will have
the same set of possible local states in both TVGs; hence the size-
ambiguity. Similarly, an algorithm is size-ambiguous if each process
𝑝 only knows an upper bound 𝑁𝑝 ≥ 2 on the number of processes in
the TVG (n.b., processes may not know the same bound) since the
property can be achieved with any set 𝑉 of at least two processes
and any value 𝑘 such that 0 < 𝑘 < |𝑉 |.

THEOREM 3.4. Let A be a deterministic self-stabilizing leader
election algorithm for TCB (Δ) (with Δ ≥ 2),𝑉 be a set of processes,
L be a set of legitimate configurations of A for 𝑉 , and 𝑘 ∈ N. L is
not closed in TCB (Δ) if A is (𝑘 ,𝑉 )-ambiguous.

PROOF. Let 𝑛 = |𝑉 | and 𝑉 = {𝑝0, . . . , 𝑝𝑛−1}. Assume, by the
contradiction, that L is closed in TCB (Δ). Let G = (𝑉 , 𝐸,T , 𝜌) be
an infinite TVG such that

(1) 𝐸 = {(𝑝𝑖 , 𝑝 𝑗 ) : 𝑝𝑖 , 𝑝 𝑗 ∈ 𝑉 ∧ 𝑖 ≠ 𝑗}
(2) ∀𝑡 ≥ 𝑜T , ∀(𝑝𝑖 , 𝑝 𝑗 ) ∈ 𝐸, 𝜌 ((𝑝𝑖 , 𝑝 𝑗 ), 𝑡) = 1 if and only if either

𝑡 is odd, or 𝑖 ∉ { 𝑡2 mod 𝑛, . . . , ( 𝑡2 + 𝑛 − 𝑘 − 1) mod 𝑛} and
𝑗 ∉ { 𝑡2 mod 𝑛, . . . , ( 𝑡2 + 𝑛 − 𝑘 − 1) mod 𝑛}.

Notice first that, ∀𝑡 ≥ 𝑜T , the snapshot 𝐺𝑡 of G is fully connected
when 𝑡 is odd. Consequently, G belongs to TCB (Δ), with Δ ≥ 2.
Then, by definition, we have:

Claim 1: For every 𝑥 ∈ {0, . . . , 𝑛 − 1} and every 𝑖 ≥ 0, in the
snapshot 𝐺𝑡𝑥,𝑖 of G at time 𝑡𝑥,𝑖 = 2((𝑖 + 𝑜T ).𝑛 + 𝑥), the set 𝑉 \
{𝑝𝑥 , . . . , 𝑝 (𝑥+𝑛−𝑘−1) mod 𝑛} is fully connected and all processes in
the set {𝑝𝑥 , . . . , 𝑝 (𝑥+𝑛−𝑘−1) mod 𝑛} are isolated.

Let 𝛾 ∈ L and 𝑝ℓ ∈ 𝑉 be the elected process in 𝛾 . ∀𝑖 ≥ 0, we
inductively define Configuration 𝛾𝑖 as follows. 𝛾0 = 𝛾 . ∀𝑖 > 0, 𝛾𝑖

is the configuration at the end of the first round of the execution of
A in G[𝑡ℓ,𝑖 ,+∞) starting from 𝛾𝑖−1. Since TCB (Δ) is recurring, we
can use the closure of L to show by induction Claim 2 below (n.b.,
Claim 2 is the only result of the proof where closure of L is used).

Claim 2: ∀𝑖 ≥ 0, 𝛾𝑖 is legitimate and ∀𝑝 𝑗 ∈ 𝑉 , 𝑙𝑖𝑑 (𝑝 𝑗 ) = 𝑝ℓ in 𝛾𝑖 .
Let 𝑉 − = 𝑉 \ {𝑝ℓ , . . . , 𝑝 (ℓ+𝑛−𝑘−1) mod 𝑛} and 𝐸− = {(𝑝𝑖 , 𝑝 𝑗 ) :

𝑝𝑖 , 𝑝 𝑗 ∈ 𝑉 − ∧ 𝑖 ≠ 𝑗}. Let G− = (𝑉 −, 𝐸−,T , 𝜌−) be the infinite
TVG having 𝑘 processes such that ∀𝑡 ≥ 𝑜T , ∀(𝑝𝑖 , 𝑝 𝑗 ) ∈ 𝐸−, we
have 𝜌 ((𝑝𝑖 , 𝑝 𝑗 ), 𝑡) = 1. In other word, G− is a static fully connected
network. Consequently, G− in particular belongs to TCB (Δ) with
Δ ≥ 2 (actually, it also belongs to TCB (Δ) with Δ = 1). Let 𝛾−0 be
the configuration of A for𝑉 − where each process has the same state
as in the configuration 𝛾0 (such a configuration exists by definition of
(𝑘 ,𝑉 )-ambiguity). We now consider the execution 𝑒 = 𝛾−0 , . . . , 𝛾

−
𝑖
, . . .

of A in G− starting from the configuration 𝛾−0 . Claim 3 below can
be proven by induction on 𝑖.

Claim 3: ∀𝑖 ≥ 0, the state of each process in𝑉 − in 𝛾−
𝑖

is the same
as in 𝛾𝑖 .

By Claims 2 and 3, for every process 𝑝 𝑗 in 𝑉 −, in every configu-
ration 𝛾−

𝑖
, we have 𝑙𝑖𝑑 (𝑝 𝑗 ) = 𝑝ℓ ∉ 𝑉

−, i.e., 𝑙𝑖𝑑 (𝑝 𝑗 ) is a fake ID (for
𝑉 −). Hence, no suffix of 𝑒 satisfies 𝑆𝑃𝐿𝐸 . As a consequence, A is
not a self-stabilizing leader election algorithm for TCB (Δ) (with
Δ ≥ 2), a contradiction. □

REMARK 3. The condition Δ ≥ 2 is necessary in Theorem 3.4,
indeed if Δ = 1, there is a trivial deterministic self-stabilizing leader
election algorithm for TCB (Δ) that does not need information on 𝑛

and has a closed set of legitimate configurations: it simply consists
of all processes sending their own IDs at each round; since Δ = 1,
all processes learn the exact set of all IDs present in the network at
each round and just have to choose, e.g., the smallest one, 𝑖𝑑 (ℓ). The
legitimate configurations are then all configurations where every
process 𝑝 satisfies 𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (ℓ).

According to Theorem 3.4, the set of legitimate configurations
of our solution for TCB (Δ) (Algorithm 1) is not closed, since by
making no assumption on 𝑛, this algorithm is size-ambiguous. The
contrapositive of Theorem 3.4 is given in Corollary 3.5. This latter
justify the need of the exact knowledge of the number of processes
to obtain a closed set of legitimate configurations in a deterministic
self-stabilizing leader election algorithm for TCB (Δ), with Δ ≥ 2.

COROLLARY 3.5. Let A be a deterministic self-stabilizing leader
election algorithm for TCB (Δ) (with Δ ≥ 2),𝑉 be a set of processes,
and L be a set of legitimate configurations of A for𝑉 . If L is closed
in TCB (Δ), then A should not be size-ambiguous.

REMARK 4. The scheme used in the proof of Theorem 3.4 can be
adapted to handle other problems consisting in computing a constant
output whose value depends on the set of processes. For example, one
can show that no deterministic self-stabilizing size-ambiguous algo-
rithm for TCB (Δ) can both compute the exact number of processes
and achieve the closure of its legitimate configurations.

Knowledge of 𝑛 and Closure in TCQ (Δ). We now show that every
execution of a self-stabilizing algorithm for a recurring specifica-
tion in TCQ (Δ) necessarily converges to a closed set of legitimate
configurations; see Theorem 3.8. Consequently, no deterministic
self-stabilization leader election algorithm for TCQ (Δ) can be size-
ambiguous (Theorem 3.10 and Corollary 3.11); justifying why algo-
rithms in Sections 5 and 6 assume the exact knowledge of 𝑛.

Definition 3.6 (Recurring Specification). We say that a specifica-
tion 𝑆𝑃 is recurring if for every sequence of configurations 𝛾0, 𝛾1, . . .,
𝑆𝑃 (𝛾0, 𝛾1, . . .) ⇒ (∀𝑖 ≥ 0, 𝑆𝑃 (𝛾𝑖 , 𝛾𝑖+1, . . .)).

𝑆𝑃𝐿𝐸 (as most of specifications used in self-stabilization) is a
recurring specification.

Definition 3.7 (Sequential Composition). Let G = (𝑉 , 𝐸,T , 𝜌)
be an infinite TVG and G′ = (𝑉 ′, 𝐸 ′, [𝑎, 𝑏], 𝜌 ′) be a finite TVG.
The sequential composition of G′ and G, denoted by G′ ▷ G, is
the infinite TVG G′′ = (𝑉 ′′, 𝐸 ′′,T ′′, 𝜌 ′′) such that 𝑉 ′′ = 𝑉 ∪ 𝑉 ′,
𝐸 ′′ = 𝐸 ∪ 𝐸 ′, T ′′ = [𝑎, +∞), and ∀𝑒 ∈ 𝐸 ′′,
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• ∀𝑡 ∈ [𝑎, 𝑏], 𝜌 ′′(𝑒, 𝑡) = 1 if and only if 𝑒 ∈ 𝐸 ′ ∧ 𝜌 ′(𝑒, 𝑡) = 1,
and

• ∀𝑡 > 𝑏, 𝜌 ′′(𝑒, 𝑡) = 1 if and only if 𝑒 ∈ 𝐸∧𝜌 (𝑒, 𝑜T +𝑡−𝑏−1) =
1.

PROPERTY 1. Let G = (𝑉 , 𝐸,T , 𝜌) ∈ TCQ (Δ) and G′ =

(𝑉 ′, 𝐸 ′,T ′, 𝜌 ′) be a finite TVG. If 𝑉 ′ ⊆ 𝑉 , G′ ▷ G ∈ TCQ (Δ).

THEOREM 3.8. Let 𝑆𝑃 be a recurring specification, A be a
self-stabilizing algorithm for 𝑆𝑃 on TCQ (Δ), and 𝑉 be a set of
processes. There exists a set of legitimate configurations of A for 𝑉
which is closed in TCQ (Δ).

PROOF. Assume, by the contradiction, that every set of legitimate
configurations of A for 𝑉 is not closed in TCQ (Δ). Let L be the
set of legitimate configurations of A for 𝑉 defined as follows: for
every configuration 𝛾 of A for 𝑉 , 𝛾 ∈ L if and only if for every
G ∈ TCQ (Δ) with set of processes𝑉 and every execution 𝑒 of A in
G starting from 𝛾 , 𝑆𝑃 (𝑒) holds. Since L is not closed in TCQ (Δ),
there exists 𝛾0 ∈ L, G = (𝑉 , 𝐸,T , 𝜌) ∈ TCQ (Δ) with 𝑉 as set
of processes, and an execution 𝛾0, . . . , 𝛾𝑖 , . . . in G starting from 𝛾0
which contains a configuration 𝛾𝑖 ∉ L. By definition of L, there
exists G′ ∈ TCQ (Δ) with set of processes 𝑉 and an execution 𝑒 ′ in
G′ starting from 𝛾𝑖 such that ¬𝑆𝑃 (𝑒 ′) (otherwise 𝛾𝑖 should be in L).
Now, G[𝑜T ,𝑜T+𝑖−1] ▷ G′ ∈ TCQ (Δ), by Property 1. Consequently,
𝛾0, . . . , 𝛾𝑖−1, 𝑒 ′ is an execution of A in TCQ (Δ) that starts from 𝛾0
and violates 𝑆𝑃 since ¬𝑆𝑃 (𝑒 ′) and 𝑆𝑃 is recurring. By the correctness
property of the self-stabilizing definition (see Remark 1), 𝛾0 cannot
be a legitimate configuration, a contradiction. □

COROLLARY 3.9. Let A be any self-stabilizing leader election
algorithm for TCQ (Δ) and 𝑉 be a set of processes. There exists
a set of legitimate configurations of A for 𝑉 which is closed in
TCQ (Δ).

Since TCB (Δ) ⊆ TCQ (Δ), from Corollaries 3.5 and 3.9, we
deduce Theorem 3.10 and Corollary 3.11:

THEOREM 3.10. No deterministic self-stabilizing leader election
algorithm for TCQ (Δ), with Δ ≥ 2, can be size-ambiguous.

COROLLARY 3.11. No deterministic self-stabilizing leader elec-
tion algorithm for TCR can be size-ambiguous.

REMARK 5. Like in Remark 4, one can show, for example, that no
deterministic self-stabilizing size-ambiguous algorithm for TCQ (Δ)
(resp. TCR ) can compute the exact number of processes.

4 CLASS TCB (Δ) WITH Δ KNOWN
Overview of Algorithm 1. Each process 𝑝 maintains two variables:
the output 𝑙𝑖𝑑 (𝑝) will eventually contain the ID of the leader; 𝑡𝑡𝑙 (𝑝)
represents the degree of mistrust of 𝑝 in 𝑙𝑖𝑑 (𝑝) and allows to elim-
inate messages containing fake IDs. The value 𝑡𝑡𝑙 (𝑝) increases at
each round if 𝑝 does not receive a message; otherwise it is updated
thanks to the received messages. The value of 𝑡𝑡𝑙 (𝑝) can increase up
to 2Δ−1. Process 𝑝 never increases 𝑡𝑡𝑙 (𝑝) from 2Δ−1 to 2Δ; instead
it locally resets and declares itself as the leader: 𝑙𝑖𝑑 (𝑝) := 𝑖𝑑 (𝑝) and
𝑡𝑡𝑙 (𝑝) := 0 (see Line u1).

At each round 𝑖, 𝑝 first sends its leader ID together with its degree
of mistrust; see Line 2. Then, 𝑝 selects the received message ⟨𝑖𝑑, 𝑡𝑡𝑙⟩

which is minimum using the lexicographic order (i.e., the message
the lowest ID and with the lowest 𝑡𝑡𝑙 to break ties, if any; see Line 7).
If 𝑖𝑑 is smaller than 𝑙𝑖𝑑 (𝑝), 𝑝 updates its leader 𝑙𝑖𝑑 (𝑝); see Line 8.
If 𝑖𝑑 = 𝑙𝑖𝑑 (𝑝), it updates the 𝑡𝑡𝑙 (𝑝) by taking the smallest value
between 𝑡𝑡𝑙 (𝑝) and 𝑡𝑡𝑙 (in this way, 𝑝 may decrease its mistrust in
𝑙𝑖𝑑 (𝑝); see Line 11). In either case, 𝑡𝑡𝑙 (𝑝) is then incremented if
𝑙𝑖𝑑 (𝑝) ≠ 𝑖𝑑 (𝑝). Finally, if 𝑙𝑖𝑑 (𝑝) ≥ 𝑖𝑑 (𝑝), 𝑝 systematically resets;
see Line 15. So, if 𝑝 believes to be the leader at the end of Round 𝑖

(i.e., 𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (𝑝)), then it sends its own ID together with a degree
of mistrust 0 at the beginning of the next round, 𝑖 + 1.

The reset mechanism allows to remove all fake IDs within at
most 2Δ rounds. From that time, the lower ID process, ℓ , satisfies
(𝑙𝑖𝑑 (ℓ), 𝑡𝑡𝑙 (ℓ)) = (𝑖𝑑 (ℓ), 0) forever (Corollary 4.2). So, after 2Δ
rounds, ℓ sends ⟨𝑖𝑑 (ℓ), 0⟩ at each round and all processes will receive
messages ⟨𝑖𝑑 (ℓ), 𝑑⟩, with 𝑑 ≤ Δ < 2Δ (since Δ ∈ N∗), at least
every Δ rounds since the temporal diameter is upper bounded by Δ.
Thus, within at most Δ additional rounds, they will all adopt ℓ as
leader and never more reset, ensuring that ℓ will remain the leader
forever (Lemma 4.4). Hence, Algorithm 1 is a self-stabilizing leader
election for TCB (Δ) and its stabilization time is at most 3Δ rounds
(Corollary 4.5).

Algorithm 1: Self-stabilizing leader election for TCB (Δ) , for each
process 𝑝.

Inputs:
Δ ∈ N∗ : upper bound on the temporal diameter
𝑖𝑑 (𝑝) ∈ 𝐼𝐷𝑆𝐸𝑇 : ID of 𝑝

Local Variables:
𝑙𝑖𝑑 (𝑝) ∈ 𝐼𝐷𝑆𝐸𝑇 : ID of the leader
𝑡𝑡𝑙 (𝑝) ∈ {0, . . . , 2Δ − 1} : degree of mistrust in 𝑙𝑖𝑑 (𝑝)

Macros:
𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑇𝐿 (𝑣):

u1: if 𝑣 ≥ 2Δ then // Reset
u2: 𝑙𝑖𝑑 (𝑝) := 𝑖𝑑 (𝑝)
u3: 𝑡𝑡𝑙 (𝑝) := 0
u4: else if 𝑙𝑖𝑑 (𝑝) ≠ 𝑖𝑑 (𝑝) then 𝑡𝑡𝑙 (𝑝) := 𝑣

1: Repeat Forever
2: SEND(⟨𝑙𝑖𝑑 (𝑝), 𝑡𝑡𝑙 (𝑝) ⟩)
3: mailbox := RECEIVE()
4: if𝑚𝑎𝑖𝑙𝑏𝑜𝑥 = ∅ then
5: 𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑇𝐿 (𝑡𝑡𝑙 (𝑝) + 1)
6: else
7: ⟨𝑙𝑖𝑑, 𝑡𝑡𝑙 ⟩ := min{messages in mailbox}
8: if 𝑙𝑖𝑑 < 𝑙𝑖𝑑 (𝑝) then
9: 𝑙𝑖𝑑 (𝑝) := 𝑙𝑖𝑑

10: 𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑇𝐿 (𝑡𝑡𝑙 + 1)
11: else if 𝑙𝑖𝑑 = 𝑙𝑖𝑑 (𝑝) then
12: 𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑇𝐿 (min(𝑡𝑡𝑙 (𝑝), 𝑡𝑡𝑙) + 1)
13: else
14: 𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑇𝐿 (𝑡𝑡𝑙 (𝑝) + 1)

15: if 𝑙𝑖𝑑 (𝑝) ≥ 𝑖𝑑 (𝑝) then // Reset
16: 𝑙𝑖𝑑 (𝑝) := 𝑖𝑑 (𝑝)
17: 𝑡𝑡𝑙 (𝑝) := 0

Self-stabilization and Complexity. First, by definition of the algo-
rithm, the next remark follows.

REMARK 6. Since the end of the first round, ∀𝑝 ∈ 𝑉 , we have
𝑙𝑖𝑑 (𝑝) ≤ 𝑖𝑑 (𝑝) ∧ (𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (𝑝) ⇒ 𝑡𝑡𝑙 (𝑝) = 0).

Lemma 4.1 below can be proven by induction on 𝑖.
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LEMMA 4.1. Let 𝑓 be a fake ID. For every 𝑖 ≥ 1, at the beginning
of Round 𝑖, ∀𝑝 ∈ 𝑉 , 𝑙𝑖𝑑 (𝑝) = 𝑓 ⇒ 𝑡𝑡𝑙 (𝑝) ≥ 𝑖 − 1.

Lemma 4.1 implies that for every 𝑖 > 0 and every fake ID 𝑓 ,
∀𝑝 ∈ 𝑉 , 𝑙𝑖𝑑 (𝑝) = 𝑓 ⇒ 𝑡𝑡𝑙 (𝑝) ≥ 𝑖 at the end of Round 𝑖. We define a
quasi-legitimate configuration of Algorithm 1 as any configuration
where 𝑙𝑖𝑑 (ℓ) = 𝑖𝑑 (ℓ) and 𝑡𝑡𝑙 (ℓ) = 0 and there is no fake ID in the
system (i.e., ∀𝑝 ∈ 𝑉 , 𝑙𝑖𝑑 (𝑝) is not a fake ID). So, from Lemma 4.1
and thanks to the reset mechanism of Algorithm 1, we deduce the
following corollary.

COROLLARY 4.2. At the end of Round 2Δ, the configuration is
quasi-legitimate.

The proof of the next lemma consists in showing that for every
set of processes 𝑉 , the set of quasi-legitimate configurations of
Algorithm 1 for 𝑉 is closed in TCB (Δ).

LEMMA 4.3. Let 𝑒 be an execution of Algorithm 1 in an arbitrary
TVG that starts from a quasi-legitimate configuration. The configu-
ration reached at the end of every round of 𝑒 is quasi-legitimate.

PROOF. Consider any step from 𝛾 to 𝛾 ′ such that 𝛾 is quasi-
legitimate. First, since 𝛾 contains no fake ID, no message containing
a fake ID can be sent in the step from 𝛾 to 𝛾 ′, and 𝛾 ′ contains no fake
ID too. Moreover, 𝑖𝑑 (ℓ) is the smallest non-fake ID. So, ∀𝑝 ∈ 𝑉 ,
𝑙𝑖𝑑 (𝑝) ≥ 𝑖𝑑 (ℓ) in 𝛾 ′. By Remark 6, we conclude that 𝑙𝑖𝑑 (ℓ) = 𝑖𝑑 (ℓ)
and 𝑡𝑡𝑙 (ℓ) = 0 in 𝛾 ′. Hence, 𝛾 ′ is quasi-legitimate. □

A process 𝑝 has a legitimate state iff 𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (ℓ), 𝑡𝑡𝑙 (𝑝) ≤ Δ,
and 𝑝 = ℓ ⇒ 𝑡𝑡𝑙 (𝑝) = 0. We define a legitimate configuration
of Algorithm 1 as any configuration where every process has a
legitimate state. By definition, every legitimate configuration is also
quasi-legitimate.

LEMMA 4.4. Let G be a TVG of Class TCB (Δ), 𝑡 ≥ 𝑜T , and
𝑒 be an execution of Algorithm 1 in G[𝑡,+∞) starting in a quasi-
legitimate configuration. For every 𝑟 ≥ Δ, the configuration at the
end of Round 𝑟 in 𝑒 is legitimate.

PROOF. First, remark that for every 𝑗 > 0, the communication
network at Round 𝑗 in 𝑒 is 𝐺𝑡+𝑗−1. Then, the proof of the lemma is
based on the claim below.

Claim (*): for every 𝑖 ≥ 0, 𝑑 ≥ 0, every process 𝑝 such that
𝑑ℓ,𝑡+𝑖−1 (𝑝) ≤ 𝑑 satisfies: ∀𝑗 ∈ {1, . . . ,Δ −𝑑ℓ,𝑡+𝑖−1 (𝑝) + 1}, 𝑙𝑖𝑑 (𝑝) =
𝑖𝑑 (ℓ) and 𝑡𝑡𝑙 (𝑝) ≤ 𝑑ℓ,𝑡+𝑖−1 (𝑝) + 𝑗 − 1 at the beginning of Round(
𝑖 + 𝑗 + 𝑑ℓ,𝑡+𝑖−1 (𝑝)

)
of 𝑒.

Let 𝑟 ≥ Δ ∈ N∗. We now apply Claim (*) to 𝑑 = Δ so that
every process 𝑝 is taken into account by the claim: with 𝑖 = 𝑟 − Δ,
𝑗 = Δ−𝑑ℓ,𝑡+𝑖−1 (𝑝) +1, we obtain that 𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (ℓ) and 𝑡𝑡𝑙 (𝑝) ≤ Δ
at the beginning of Round 𝑟 + 1; in addition, 𝑡𝑡𝑙 (ℓ) = 0 at the
beginning of Round 𝑟 + 1, by Remark 6. Hence, the configuration at
the end of Round 𝑟 is legitimate. □

As a direct consequence of Corollary 4.2 and Lemma 4.4, we
obtain the convergence.

COROLLARY 4.5. Let G be a TVG of TCB (Δ). For every 𝑖 ≥ 3Δ,
at the end of Round 𝑖 of any execution of Algorithm 1 in G, the
configuration is legitimate.

LEMMA 4.6. Let G be a TVG of TCB (Δ), 𝑡 ≥ 𝑜T , and 𝑒 be
an execution of Algorithm 1 for G[𝑡,+∞) starting in a legitimate
configuration. For every 𝑟 ∈ {1, ...,Δ − 1}, the configuration 𝑒 has
reached at the end of Round 𝑟 satisfies 𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (ℓ) and 𝑡𝑡𝑙 (𝑝) ≤
Δ + 𝑟 , for every process 𝑝.

PROOF. First, the lemma trivially holds for Δ ≤ 1. So, we now
show by induction on 𝑟 that the lemma holds in the case where
Δ > 1. For the base case, at the beginning of Round 1, ∀𝑝 ∈ 𝑉 ,
𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (ℓ) and 𝑡𝑡𝑙 (𝑝) ≤ Δ as the first configuration of 𝑒 is
legitimate. According to the algorithm, at the end of Round 1, ∀𝑝 ∈
𝑉 , 𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (ℓ) and 𝑡𝑡𝑙 (𝑝) ≤ Δ + 1 < 2Δ (since Δ > 1).

Induction step: let 𝑖 ∈ {2, ...,Δ − 1}. At the end of Round 𝑖 − 1,
hence at the beginning of Round 𝑖, ∀𝑝 ∈ 𝑉 , 𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (ℓ) and
𝑡𝑡𝑙 (𝑝) ≤ Δ + 𝑖 − 1 < 2Δ − 1, by induction hypothesis. According to
the algorithm, and since Δ + 𝑖 < 2Δ, no process can reset. Hence, at
the end of Round 𝑖, ∀𝑝 ∈ 𝑉 , 𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (ℓ) and 𝑡𝑡𝑙 (𝑝) ≤ Δ + 𝑖, and
we are done. □

Theorem 4.7 below is a direct consequence of Lemmas 4.4
and 4.6.

THEOREM 4.7. For every G = (𝑉 , 𝐸,T , 𝜌) ∈ TCB (Δ), for
every legitimate configuration 𝛾 of Algorithm 1 for 𝑉 , the execution
of Algorithm 1 in G starting from 𝛾 satisfies 𝑆𝑃𝐿𝐸 .

By Corollary 4.5 and Theorem 4.7, we have the next corollary.

COROLLARY 4.8. Algorithm 1 is a self-stabilizing leader elec-
tion algorithm for TCB (Δ). Its stabilization time is at most 3Δ
rounds. It requires 𝑂 (𝐵 + logΔ) bits per process and messages of
size 𝑂 (𝐵 + logΔ) bits.

5 CLASS TCQ (Δ) WITH Δ AND 𝑛 KNOWN
Overview of Algorithm 2. Each process 𝑝 collects IDs in its vari-
able 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝). Actually, 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) is a (FIFO) queue con-
taining at most 𝑛 pairs ⟨𝑖𝑑, 𝑡⟩, where 𝑖𝑑 is an identifier and 𝑡 is a
timestamp, i.e., an integer value less than or equal to Δ. (We denote
by 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) [𝑖𝑑] the timestamp associated to the identifier 𝑖𝑑
belonging to𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝).)

At each round 𝑖, 𝑝 sends all pairs ⟨𝑖𝑑, 𝑡⟩ of 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) such that
𝑡 < Δ at the end of Round 𝑖 − 1 (Line 2). (The timestamps allow
to eventually remove all fake IDs.) Then, 𝑝 updates 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)
by calling function 𝑖𝑛𝑠𝑒𝑟𝑡 on each received pair ⟨𝑖𝑑, 𝑡⟩ such that
𝑖𝑑 ≠ 𝑖𝑑 (𝑝) (Lines 4-5).

The insertion function 𝑖𝑛𝑠𝑒𝑟𝑡 works as follows: if 𝑖𝑑 already ap-
pears in 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝), then the old pair tagged with 𝑖𝑑 is removed
first from the queue (Line i1), and in either case, ⟨𝑖𝑑, 𝑡⟩ is appended
at the tail of the queue (Lines i1 and i4). In particular, since the size
of 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) is limited, if the queue is full, its head is removed to
make room for the new value (Line i3). Using this FIFO mechanism,
initial spurious values eventually vanish from𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝).

After all received pairs have been managed, the timestamps of
all pairs in the queue are incremented (Line 6) and then, ⟨𝑖𝑑 (𝑝), 0⟩
is systematically inserted at the tail of the queue (Line 7). This
mechanism ensures two main properties. First, every timestamp
associated to a fake ID in a variable𝑚𝑒𝑚𝑏𝑒𝑟𝑠 is eventually forever
greater than or equal to Δ (Lemma 5.1); and consequently, eventually
no message containing fake IDs is sent (Corollary 5.2). Second, by
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definition of TCQ (Δ), for every two distinct processes 𝑝 and 𝑞, there
are journeys of length at most Δ infinitely often, so each process
𝑝 regularly receives messages containing 𝑖𝑑 (𝑞) with timestamps
smaller than Δ. Thus, eventually 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) exactly contains all
IDs of the networks (Lemma 5.4). Now, at the end of each round,
𝑝 updates its leader variable with the smallest ID in 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)
(Line 7). Hence, the process of lowest ID, ℓ , is eventually elected.

Algorithm 2: Self-stabilizing leader election for TCQ (Δ) for each
process 𝑝.

Inputs:
𝑛 ∈ N : number of processes
Δ ∈ N∗ : recurrent bound on

the temporal distance between processes
𝑖𝑑 (𝑝) ∈ 𝐼𝐷𝑆𝐸𝑇 : ID of 𝑝

Local Variables:
𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) : queue of at most 𝑛 elements

contains pairs ⟨𝑖𝑑, 𝑡 ⟩ ∈ 𝐼𝐷𝑆𝐸𝑇 × {0, . . . ,Δ}
𝑙𝑖𝑑 (𝑝) ∈ 𝐼𝐷𝑆𝐸𝑇 : ID of the leader

Macros:
𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝, ⟨𝑖𝑑, 𝑡 ⟩):

i1: if ∃𝑡 ′, ⟨𝑖𝑑, 𝑡 ′⟩ ∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) then remove ⟨𝑖𝑑, 𝑡 ′⟩ from
𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) ; push ⟨𝑖𝑑,min(𝑡, 𝑡 ′) ⟩ at the tail of𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)

i2: else
i3: if |𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) | = 𝑛 then remove the head of𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)
i4: push ⟨𝑖𝑑, 𝑡 ⟩ at the tail of𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)

1: Repeat Forever
2: SEND({ ⟨𝑖𝑑, 𝑡 ⟩ ∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) : 𝑡 < Δ})
3: mailbox := RECEIVE()
4: forall pair ⟨𝑖𝑑, 𝑡 ⟩ in a message of mailbox do
5: if 𝑖𝑑 ≠ 𝑖𝑑 (𝑝) then 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝, ⟨𝑖𝑑, 𝑡 ⟩)
6: forall ⟨𝑖𝑑, 𝑡 ⟩ ∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) : 𝑡 < Δ do 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) [𝑖𝑑 ] + +
7: 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝, ⟨𝑖𝑑 (𝑝), 0⟩) ; 𝑙𝑖𝑑 (𝑝) := min{𝑖𝑑 : ⟨𝑖𝑑, _⟩ ∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) }

Self-stabilization. Lemma 5.1 below can be proven by induction on
𝑖.

LEMMA 5.1. Let 𝑓 be a fake ID. For every 𝑖 ≥ 1, at the begin-
ning of Round 𝑖, the following property holds: ∀𝑝 ∈ 𝑉 if 𝑓 is in
𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝), then𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) [𝑓 ] ≥ 𝑖 − 1.

Since a process 𝑝 does not send a pair ⟨𝑖𝑑, 𝑡⟩ of𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) with
𝑡 ≥ Δ, we have:

COROLLARY 5.2. In any round Δ + 𝑖 with 𝑖 ≥ 1, no process
receives a message containing fake IDs.

LEMMA 5.3. ∀𝑝, 𝑞 ∈ 𝑉 , if 𝑖𝑑 (𝑞) is inserted into 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)
during Round Δ + 𝑖 with 𝑖 ≥ 1, 𝑖𝑑 (𝑞) remains into 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)
forever.

PROOF. If an ID 𝑖𝑑 is in 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝), it can only be removed
from𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) if function 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝, ⟨𝑖𝑑 ′, 𝑡⟩) is called and one of
the following two situations occurs:

• Line i1: if 𝑖𝑑 = 𝑖𝑑 ′ but in this case 𝑖𝑑 is immediately added at
the tail of𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝),

• Line i3: if 𝑖𝑑 ≠ 𝑖𝑑 ′, 𝑖𝑑 is the head of the queue, and the size
of𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) is already 𝑛.

After 𝑖𝑑 is inserted (at tail) into𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝), it requires the insertion
of 𝑛 different IDs that are not into𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) (and that are different
from 𝑖𝑑) in order to get 𝑖𝑑 at the head of the queue and remove it.
If 𝑖𝑑 is inserted during Round Δ + 𝑖, it is not a fake ID and the only

other IDs that can be inserted into 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) are IDs of processes
in 𝑉 since 𝑝 will not receive any fake ID (Corollary 5.2). Thus, at
most 𝑛 − 1 IDs different from 𝑖𝑑 can be inserted after the insertion
of 𝑖𝑑. Hence, 𝑖𝑑 cannot be removed from𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝). □

By definition of class TCQ (Δ), for every pair of processes 𝑝 and
𝑞, there exists 𝑡 ≥ Δ such that 𝑑𝑞,𝑜T+𝑡−1 (𝑝) ≤ Δ. We denote by
𝑡 (𝑞, 𝑝) the minimum value 𝑡 that satisfies the above property, namely
𝑡 (𝑞, 𝑝) represents the first date after Δ + 𝑜T − 1 (i.e., after Δ rounds)
from which 𝑞 can broadcast an information to 𝑝 in no more than Δ
rounds.

LEMMA 5.4. ∀𝑝, 𝑞 ∈ 𝑉 , by the end of Round 𝑡 (𝑞, 𝑝) + Δ, 𝑖𝑑 (𝑞) is
in𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) forever.

PROOF. Let 𝑞 ∈ 𝑉 . Remark, first, that 𝑖𝑑 (𝑞) ∈ 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑞) ∧
𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑞) [𝑞] = 0 by the end of Round 1, by definition of Algo-
rithm 2, see Line 7.

Let 𝑝 ∈ 𝑉 . If 𝑞 = 𝑝 then using the remark above and since 𝑡 (𝑞, 𝑝)+
Δ ≥ 1, we are done. We now assume 𝑞 ≠ 𝑝. As 𝑑𝑞,𝑜T+𝑡 (𝑞,𝑝)−1 (𝑝) ≤
Δ, there exists a journey J = {(𝑒1, 𝑡1), ..., (𝑒𝑘 , 𝑡𝑘 )} such that 𝑡1 >

𝑜T + 𝑡 (𝑞, 𝑝) − 1, 𝑡𝑘 = 𝑡 (𝑞, 𝑝) +𝑑𝑞,𝑜T+𝑡 (𝑞,𝑝)−1 (𝑝) +𝑜T − 1 ≤ 𝑡 (𝑞, 𝑝) +
Δ+𝑜T −1 and for every 𝑖 ∈ {1, ..., 𝑘}, 𝑒𝑖 = (𝑝𝑖−1, 𝑝𝑖 ) with 𝑝0 = 𝑞 and
𝑝𝑘 = 𝑝. To simplify the notations, let 𝜏𝑖 = 𝑡𝑖 − 𝑜T + 1 for every 𝑖 in
{1, ..., 𝑘} such that the edge 𝑒𝑖 = (𝑝𝑖−1, 𝑝𝑖 ) is present during Round
𝜏𝑖 . We have 𝜏1 > 𝑡 (𝑞, 𝑝), 𝜏𝑘 ≤ 𝑡 (𝑞, 𝑝) + Δ, and 𝜏𝑖 − 𝜏1 < Δ.

We prove (by induction on 𝑖) that for all 𝑖 ∈ {1, ..., 𝑘}, (1) 𝑖𝑑 (𝑞) is
forever in𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝𝑖 ) by the end of Round 𝜏𝑖 and (2)𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝𝑖 ) [𝑞]
≤ 𝜏𝑖 − 𝜏1 + 1 at the end of Round 𝜏𝑖 .

Base case: for 𝑖 = 1, the edge (𝑞, 𝑝1) exists at Round 𝜏1. Using the
first remark in the proof, at the beginning of Round 𝜏1, since 𝜏1 >

𝑡 (𝑞, 𝑝) ≥ Δ ≥ 1, we have 𝑖𝑑 (𝑞) ∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑞)∧𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑞) [𝑞] = 0.
Hence, at Round 𝜏1,𝑞 sends ⟨𝑖𝑑 (𝑞), 0⟩ in its message to 𝑝1. Following
the algorithm, 𝑝1 inserts 𝑖𝑑 (𝑞) in𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝1) during Round 𝜏1 > Δ.
So, 𝑖𝑑 (𝑞) is forever in 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝1) by the end of Round 𝜏1; see
Lemma 5.3. Still following the algorithm, 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝1) [𝑞] = 1 at
the end of Round 𝜏1.

Induction Step: Let 𝑖 > 1. We assume the result holds for 𝑖 − 1:
𝑖𝑑 (𝑞) is forever in 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝𝑖−1) by the end of Round 𝜏𝑖−1 and
𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝𝑖−1) [𝑞] ≤ 𝜏𝑖−1 − 𝜏1 + 1 at the end of Round 𝜏𝑖−1. Hence,
at the beginning of Round 𝜏𝑖 (and so, at the end of Round 𝜏𝑖 − 1),
we have: 𝑖𝑑 (𝑞) in 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝𝑖−1) and as the timestamps are at most
incremented by one at the end of each round,𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝𝑖−1) [𝑞] ≤
𝜏𝑖−1 − 𝜏1 + 1 + 𝜏𝑖 − 1 − 𝜏𝑖−1 = 𝜏𝑖 − 𝜏1 < Δ.

During Round 𝜏𝑖 , the edge 𝑒𝑖 = (𝑝𝑖−1, 𝑝𝑖 ) is present and 𝑝𝑖−1
sends in its message to 𝑝𝑖 a pair

〈
𝑖𝑑 (𝑞), 𝑡𝑞

〉
such that 𝑡𝑞 ≤ 𝜏𝑖 − 𝜏1

since 𝜏𝑖 −𝜏1 < Δ. As 𝑝𝑖 receives it, it inserts 𝑖𝑑 (𝑞) in𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝𝑖 ) in
Round 𝜏𝑖 . Since 𝜏𝑖 > 𝜏1 > Δ, Lemma 5.3 ensures that 𝑖𝑑 (𝑞) remains
forever in𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝𝑖 ) by the end of Round 𝜏𝑖 . Moreover, following
the algorithm, at the end of Round 𝜏𝑖 , we have 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝𝑖 ) [𝑞] ≤
𝜏𝑖 − 𝜏1 + 1.

With 𝑖 = 𝑘, 𝑖𝑑 (𝑞) is forever in 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) by the end Round
𝜏𝑘 ≤ 𝑡 (𝑞, 𝑝) + Δ. □

Let𝑉 be a set of processes. We define a legitimate configuration of
Algorithm 2 for 𝑉 as any configuration of Algorithm 2 for 𝑉 where
for every process 𝑝, we have 𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (ℓ) and {𝑖𝑑 : ⟨𝑖𝑑, _⟩ ∈
𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)} = {𝑖𝑑 (𝑞) : 𝑞 ∈ 𝑉 }. Remark that the set of legitimate
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configurations of Algorithm 2 for𝑉 is closed in TCQ (Δ). Indeed, by
definition of the algorithm, no message containing a fake ID can be
sent from such a configuration. Hence, the set𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) of every
process 𝑝 remains constant and min{𝑖𝑑 : ⟨𝑖𝑑, _⟩ ∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)} =
𝑖𝑑 (ℓ) forever. Hence:

LEMMA 5.5. Any execution of Algorithm 2 that starts from a
legitimate configuration in an arbitrary TVG satisfies 𝑆𝑃𝐿𝐸 .

The next lemma is a direct consequence of Corollary 5.2 and
Lemma 5.4.

LEMMA 5.6. ∃𝑡 ≥ Δ such that the configuration reached at the
end of Round 𝑡 + Δ is legitimate.

By Lemmas 5.5-5.6, follows.

THEOREM 5.7. Algorithm 2 is a self-stabilizing leader election
algorithm for TCQ (Δ). It requires 𝑂 (𝑛(𝐵 + logΔ)) bits per process
and messages of size 𝑂 (𝑛(𝐵 + logΔ)) bits.

Speculative Stabilization. Stabilization time cannot be bounded
in TCQ (Δ), except for trivial specifications. Indeed, even if there
exist infinitely many journeys of length bounded by Δ between
any pair of distinct processes and Δ is known by all processes, the
time between any two consecutive such journeys is unbounded, by
definition of TCQ (Δ). Consequently, we cannot bound the time
necessary to route any piece of information from some process 𝑝 to
another process 𝑞, making the stabilization time unbounded in any
case. We now show that Algorithm 2 is speculative in the sense that
its stabilization time cannot be bounded in TCQ (Δ), but in a more
favorable case, actually in TCB (Δ) ⊆ TCQ (Δ), its stabilization
time is at most 2Δ rounds. To see this, remark that the previous
proof holds for TCB (Δ) since TCB (Δ) ⊆ TCQ (Δ). Yet, for every
processes 𝑝 and 𝑞, 𝑡 (𝑞, 𝑝) is exactly Δ in this class of TVGs. Hence in
the proof of Lemma 5.6, we have 𝑇 = max{𝑡 (𝑞, 𝑝) : 𝑞, 𝑝 ∈ 𝑉 } = Δ;
ensuring that in Class TCB (Δ), the configuration reached at the end
of Round 2Δ is legitimate.

THEOREM 5.8. The stabilization time of Algorithm 2 in Class
TCB (Δ) is at most 2Δ rounds.

6 CLASS TCR WITH 𝑛 KNOWN
Overview of Algorithm 3. Similarly to Algorithm 2, each process
𝑝 uses a variable 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) to collect IDs. However, this time,
𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) is a map that can contain up to 𝑛 IDs, each of them be-
ing associated with a timestamp (we denote by𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) [𝑖𝑑] the
timestamp associated to the identifier 𝑖𝑑 belonging to𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)).

At each round 𝑖, 𝑝 sends the content of 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) (Line 2).
Then, 𝑝 updates𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) by calling function 𝑖𝑛𝑠𝑒𝑟𝑡 on each re-
ceived pair ⟨𝑖𝑑, 𝑡⟩ such that 𝑖𝑑 ≠ 𝑖𝑑 (𝑝) (Lines 4-5). The function
𝑖𝑛𝑠𝑒𝑟𝑡 works as follows: if 𝑖𝑑 already appears in𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝), then
the associated timestamp is updated by keeping the smallest value
(Line i1). Otherwise, 𝑝 tries to insert ⟨𝑖𝑑, 𝑡⟩ in the map. Actually,
⟨𝑖𝑑, 𝑡⟩ is inserted in the map if the map is not full (Line i2) or 𝑡 is
smaller than the greatest timestamp 𝑡𝑀 in the map (Lines i3-i5). In
this latter case, ⟨𝑖𝑑, 𝑡⟩ overwrites any value having this timestamp
in 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) (Line i5). This overwriting mechanism allows to
eventually remove all fake IDs from𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝), since their times-
tamps will regularly increase. After𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) has been updated,

all timestamps of 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) are incremented (Line 6) and then,
⟨𝑖𝑑 (0), 0⟩ is systematically inserted in the map (Line 7).

Actually, Algorithm 3 guarantees two main properties. First, at
the beginning of any round 𝑖, any timestamp associated to a fake ID
is greater than or equal to 𝑖−1; see Lemma 6.1. Second, by definition
of TCR , at any point in time, every process can reach all the others
through a journey. The key property is then to show that if some
broadcast initiated by process 𝑝 reaches a process 𝑞 at Round 𝑖, then
the value of the timestamp in the message is small enough to ensure
the insertion of 𝑖𝑑 (𝑝) into 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑞); see Lemma 6.2. These two
properties ensure that eventually 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) exactly contains all
IDs of the network. Now, at the end of each round, 𝑝 updates its
leader variable with the smallest ID in𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) (Line 7). Hence,
the process of lowest ID, ℓ , is eventually elected.

Algorithm 3: Self-stabilizing leader election for TCR , for each
process 𝑝.

Inputs:
𝑛 ∈ N : number of processes
𝑖𝑑 (𝑝) ∈ 𝐼𝐷𝑆𝐸𝑇 : ID of 𝑝

Local Variables:
𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) : map of size at most 𝑛

contains pairs ⟨𝑖𝑑, 𝑡 ⟩ ∈ 𝐼𝐷𝑆𝐸𝑇 ×N
𝑙𝑖𝑑 (𝑝) ∈ 𝐼𝐷𝑆𝐸𝑇 : ID of the leader

Macros:
𝑚𝑎𝑥 (𝑝):

m1: if |𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) | < 𝑛 then return ⊥
m2: else return ⟨𝑖𝑑, 𝑡 ⟩ ∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) with maximum timestamp 𝑡

𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝, ⟨𝑖𝑑, 𝑡 ⟩):
i1: if ⟨𝑖𝑑, _⟩ ∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) then

𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) [𝑖𝑑 ] :=𝑚𝑖𝑛 (𝑡,𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) [𝑖𝑑 ])
i2: else if𝑚𝑎𝑥 (𝑝) = ⊥ then add ⟨𝑖𝑑, 𝑡 ⟩ in𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)
i3: else
i4: ⟨𝑖𝑑𝑀, 𝑡𝑀 ⟩ :=𝑚𝑎𝑥 (𝑝)
i5: if 𝑡 < 𝑡𝑀 then remove ⟨𝑖𝑑𝑀, 𝑡𝑀 ⟩ from𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) ; add

⟨𝑖𝑑, 𝑡 ⟩ in𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)

1: Repeat Forever
2: SEND(⟨𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) ⟩)
3: mailbox := RECEIVE()
4: forall pair ⟨𝑖𝑑, 𝑡 ⟩ in a message of mailbox do
5: if 𝑖𝑑 ≠ 𝑖𝑑 (𝑝) then 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝, ⟨𝑖𝑑, 𝑡 ⟩)
6: forall 𝑖𝑑 : ⟨𝑖𝑑, _⟩ ∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) do 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) [𝑖𝑑 ] + +
7: 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝, ⟨𝑖𝑑 (𝑝), 0⟩); 𝑙𝑖𝑑 (𝑝) := min{𝑖𝑑 : ⟨𝑖𝑑, _⟩ ∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) }

Self-stabilization. The lemma below and its proof are identical to
those of Lemma 5.1.

LEMMA 6.1. Let 𝑓 be a fake ID. For every 𝑖 ≥ 1, at the beginning
of Round 𝑖, the following holds: ∀𝑝 ∈ 𝑉 , if 𝑓 is in𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝), then
𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) [𝑓 ] ≥ 𝑖 − 1.

The following lemma can be proven by induction on 𝑖.

LEMMA 6.2. For every 𝑖 ≥ 1, at the end of Round 𝑖, the following
property holds: ∀𝑝, 𝑞 ∈ 𝑉 , if 𝑑𝑝,𝑜T (𝑞) ≤ 𝑖 − 1, then 𝑖𝑑 (𝑝) is in
𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑞) and𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑞) [𝑝] ≤ 𝑖 − 1.

Let𝑉 be a set of processes. We define a legitimate configuration of
Algorithm 3 for 𝑉 as any configuration of Algorithm 3 for 𝑉 where
𝑙𝑖𝑑 (𝑝) = 𝑖𝑑 (ℓ) and {𝑖𝑑 : ⟨𝑖𝑑, _⟩ ∈ 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)} = {𝑖𝑑 (𝑞) : 𝑞 ∈ 𝑉 },
for every process 𝑝. By definition of the algorithm, no message
containing a fake ID can be sent from such a configuration. So, from
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any legitimate configuration, the set 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝) of every process
𝑝 is constant and min{𝑖𝑑 : ⟨𝑖𝑑, _⟩ ∈ 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑝)} = 𝑖𝑑 (ℓ) forever.
Thus, the set of legitimate configurations of Algorithm 3 for 𝑉 is
closed in TCR and we have:

LEMMA 6.3. Any execution of Algorithm 3 that starts from a
legitimate configuration in an arbitrary TVG satisfies 𝑆𝑃𝐿𝐸 .

THEOREM 6.4. Algorithm 3 is a self-stabilizing leader election
algorithm for TCR .

PROOF. Let 𝑝 ∈ 𝑉 . By definition of TCR , ∀𝑞 ∈ 𝑉 , ∃J ∈
J (𝑝, 𝑞) such that 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 (J) > 𝑜T . The temporal length of J
is finite. Thus, ∃ 𝛿 (𝑝) ∈ N such that ∀𝑞 ∈ 𝑉 , 𝑑𝑝,𝑜T (𝑞) ≤ 𝛿 (𝑝).
Thus, at the end of Round 𝛿 (𝑝) + 1, ∀𝑞 ∈ 𝑉 , 𝑖𝑑 (𝑝) is in𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑞)
by Lemma 6.2. Since𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑞) contains at most 𝑛 entries, after
max𝑝∈𝑉 𝛿 (𝑝) + 1 rounds, 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 (𝑞) contains the ID of every pro-
cess and no fake ID. So 𝑞 chooses 𝑖𝑑 (ℓ) as leader at the end of Round
max𝑝∈𝑉 𝛿 (𝑝) + 1. Hence, the system is in a legitimate configuration
at the end of this round and, by Lemma 6.3, we are done. □

Speculative Stabilization. Similarly to TCQ (Δ), stabilization time
cannot be bounded in TCR , except for trivial specifications (n.b.,
TCQ (Δ) ⊆ TCR ). We now show that Algorithm 3 is speculative
in the sense that we cannot bound its stabilization time in TCR ,
but in a more favorable case, precisely in TCB (Δ) ⊆ TCR , its
stabilization time is at most Δ + 1 rounds, despite Δ is unknown. The
proof of the theorem below is the same as the one of Theorem 6.4
but as we consider a TVG in TCB (Δ), for every 𝑝 ∈ 𝑉 , 𝛿 (𝑝) ≤ Δ.
Hence the system reaches a legitimate configuration at the end of
Round max𝑝∈𝑉 𝛿 (𝑝) + 1 = Δ + 1.

THEOREM 6.5. The stabilization time of Algorithm 3 in TCB (Δ)
is at most Δ + 1 rounds.

7 CONCLUSION
We have addressed self-stabilization in highly dynamic identified
message passing systems by proposing self-stabilizing leader elec-
tion algorithms for three major classes of time-varying graphs:
TCB (Δ), TCQ (Δ), and TCR . It is worth noting that the impos-
sibility result of Braud-Santoni et al. [9] applies to the class of
always connected over the time TVGs of 𝑛 processes which is actu-
ally included and so stronger than TCR , as well as TCB (Δ) and
TCQ (Δ), for every 𝑛 ≥ 0 and Δ ≥ 𝑛 − 1. Precisely, this result
forbids the existence of silent self-stabilizing solutions for many
non-trivial static problems. Actually, silent self-stabilization addi-
tionally requires all processes to eventually keep their local state
constant [21]. Now, leader election is a static problem. We have cho-
sen to avoid this issue by proposing non-silent, a.k.a., talkative [7]
solutions, i.e., in our algorithms, a small part of the local state of
each process (namely, the timestamps) is modified infinitely often.
Beyond extending our results to other particular problems, further
research could focus on studying expressiveness of self-stabilization
in TVGs. To that goal, broadcast problems should be investigated,
again in very general TVG classes. Indeed, coupled with our leader
election solutions, they should allow to build generic transformers,
following, for example, the approaches proposed in [15, 28].
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