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Abstract

We propose a silent self-stabilizing leader election algorithm for bidirectional connected
identified networks of arbitrary topology. This algorithm is written in the locally shared
memory model. It assumes the distributed unfair daemon, the most general scheduling
hypothesis of the model. Our algorithm requires no global knowledge on the network (such
as an upper bound on the diameter or the number of processes, for example). We show that
its stabilization time is in Θ(n3) steps in the worst case, where n is the number of processes.
Its memory requirement is asymptotically optimal, i.e., Θ(log n) bits per processes. Its
round complexity is of the same order of magnitude — i.e., Θ(n) rounds — as the best
existing algorithms [10, 9] designed with similar settings. To the best of our knowledge, this
is the first self-stabilizing leader election algorithm for arbitrary identified networks that is
proven to achieve a stabilization time polynomial in steps. By contrast, we show that the
previous best existing algorithms designed with similar settings [10, 9] stabilize in a non
polynomial number of steps in the worst case.

Keywords: Distributed algorithms, fault-tolerance, self-stabilization, leader election, un-
fair daemon

1 Introduction

In distributed computing, the leader election problem consists in distinguishing a single process,
so-called the leader, among the others. We consider here identified networks. So, as it is usually
done, we augment the problem by requiring all processes to eventually know the identifier of
the leader. The leader election is fundamental as it is a basic component to solve many other
important problems, e.g., consensus, spanning tree constructions, implementing broadcasting
and convergecasting methods, etc.

Self-stabilization [11, 12] is a versatile technique to withstand any transient fault in a
distributed system: a self-stabilizing algorithm is able to recover, i.e., reach a legitimate config-
uration, in finite time, regardless the arbitrary initial configuration of the system, and therefore
also after the occurrence of transient faults. Thus, self-stabilization makes no hypotheses on the
nature or extent of transient faults that could hit the system, and recovers from the effects of
those faults in a unified manner. Such versatility comes at a price. After transient faults, there
is a finite period of time, called the stabilization phase, before the system returns to a legiti-
mate configuration. The stabilization time is then the worst case duration of the stabilization
phase, i.e., the maximum time to reach a legitimate configuration starting from an arbitrary

∗This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by
the French program Investissement d’avenir and the AGIR project DIAMS.
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one. Notice that efficiency of self-stabilizing algorithms is mainly evaluated according to their
stabilization time and memory requirement.

We consider deterministic1 asynchronous silent self-stabilizing leader election problem in
bidirectional, connected, and identified networks of arbitrary topology. We investigate solu-
tions to this problem which are written in the locally shared memory model introduced by
Dijkstra [11]. In this model, the distributed unfair daemon is known as the weakest scheduling
assumption. Under such an assumption, proving that a given algorithm is self-stabilizing im-
plies that the stabilization time must be finite in terms of atomic steps. However, despite some
solutions assuming all these settings (in particular the unfairness assumption) are available in
the literature [10, 9, 8], none of them is proven to achieve a polynomial upper bound in steps
on its stabilization time. Actually, the time complexities of all these solutions are analyzed in
terms of rounds only.

Related Work In [13], Dolev et al showed that silent self-stabilizing leader election requires
Ω(log n) bits per process, where n is the number of processes. Notice that non-silent self-
stabilizing leader election can be achieved using less memory, e.g., the non-silent self-stabilizing
leader election algorithm for unoriented ring-shaped networks given in [5] requires O(log log n)
space per process.

Self-stabilizing leader election algorithms for arbitrary connected identified networks have
been proposed in the message-passing model [1, 3, 6]. First, the algorithm of Afek and Brem-
ler [1] stabilizes in O(n) rounds using Θ(log n) bits per process. But, it assumes that the
link-capacity is bounded by a value B, known by all processes. Two solutions that stabilize in
O(D) rounds, where D is the diameter of the network, have been proposed in [3, 6]. However,
both solutions assume that processes know some upper bound D on the diameter D; and require
Θ(logD log n) bits per process.

Several solutions are also given in the shared memory model [14, 2, 8, 10, 9, 17]. The
algorithm proposed by Dolev and Herman [14] is not silent, works under a fair daemon, and
assume that all processes know a bound N on the number of processes. This solution stabilizes
in O(D) rounds using Θ(N logN) bits per process. The algorithm of Arora and Gouda [2]
works under a weakly fair daemon and assume the knowledge of some bound N on the number
of processes. This solution stabilizes in O(N) rounds using Θ(logN) bits per process.

Datta et al [8] propose the first self-stabilizing leader election algorithm (for arbitrary con-
nected identified networks) proven under the distributed unfair daemon. This algorithm stabi-
lizes in O(D) rounds. However, the space complexity of this algorithm is unbounded. (More
precisely, the algorithm requires each process to maintain an unbounded integer in its local
memory.)

Solutions in [10, 9, 17] have a memory requirement which is asymptotically optimal (i.e.
in Θ(log n)). The algorithm proposed by Kravchik and Kutten [17] assumes a synchronous
daemon and the stabilization time of this latter is in O(D) rounds. The two solutions proposed
by Datta et al in [10, 9] assume a distributed unfair daemon and have a stabilization time in
O(n) rounds. However, despite these two algorithms stabilizing within a finite number of steps
(indeed, they are proven assuming an unfair daemon), no step complexity analysis is proposed.

Contribution We propose a silent self-stabilizing leader election algorithm for arbitrary con-
nected and identified networks. Our solution is written in the locally shared memory model
assuming a distributed unfair daemon, the weakest scheduling assumption. Our algorithm as-
sumes no knowledge of any global parameter (e.g., an upper bound on D or n) of the network.

1We only consider here deterministic algorithms.
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Like previous solutions of the literature [10, 9], it is asymptotically optimal in space (i.e., it can
be implemented using Θ(log n) bits per process), and it stabilizes in Θ(n) rounds in the worst
case. Yet, contrary to those solutions, we show that our algorithm has a stabilization time in
Θ(n3) steps in the worst case.

For fair comparison, we have also studied the step complexity of the algorithms given in [10,
9], noted here DLV and DLV2, respectively. These latter are the closest to ours in terms of
performance. We show that their stabilization time is not polynomial. Indeed, there is no
constant α such that the stabilization time of DLV is in O(nα) steps. More precisely, we show
that fixing α to any constant greater than or equal to 4, for every β ≥ 2, there exists a network
of n = 2α−1 × β processes in which there exists a possible execution that stabilizes in Ω(nα)
steps. Similarly, for n ≥ 5, there exists a network and a possible execution of DLV2 that

stabilizes in Ω(2b
n−1
4 c) steps.

Roadmap The next section is dedicated to computational model and basic definitions. In
Section 3, we propose our self-stabilizing leader election algorithm. We prove its correctness in
Section 4. In the same section, we also study its stabilization time in both steps and rounds. We
show that the stabilization time of the self-stabilizing leader election algorithms given in [10, 9]
are not polynomial in steps in Sections 5 and 6, respectively. We present some experimental
results in Section 7. We conclude in Section 8.

2 Computational Model

2.1 Distributed Systems

We consider distributed systems made of n processes. Each process can communicate with a
subset of other processes, called its neighbors. We denote by Np the set of neighbors of process
p. Communications are assumed to be bidirectional, i.e. q ∈ Np if and only if p ∈ Nq.
Hence, the topology of the system can be represented as a simple undirected connected graph
G = (V,E), where V is the set of processes and E is a set of edges representing (direct)
communication relations. We assume that each process has a unique ID, a natural integer.
IDs are stored using a constant number of bits, b. As commonly done in the literature, we
assume that b = Θ(log n). Moreover, by an abuse of notation, we identify a process with its ID,
whenever convenient. We will also denote by ` the process of minimum ID. (So, the minimum
ID will be also denoted by `.)

2.2 Locally Shared Memory Model

We consider the locally shared memory model in which the processes communicate using a finite
number of locally shared registers, called variables. Each process can read its own variables and
those of its neighbors, but can only write to its own variables. The state of a process is the
vector of values of all its variables. A configuration γ of the system is a vector consisting in
one state of each process. We denote by γ(p) the state of process p in the configuration γ. We
denote by C the set of all possible configurations.

A distributed algorithm consists of one program per process. The program of a process p is
a finite set of actions of the following form:

〈label〉 :: 〈guard〉 → 〈statement〉

The labels are used to identify actions. The guard of an action in the program of process p is a
Boolean expression involving the variables of p and its neighbors. If the guard of some action

3



evaluates to true, then the action is said to be enabled at p. By extension, if at least one action
is enabled at p, p is said to be enabled. We denote by Enabled(γ) the set of processes enabled
in configuration γ. The statement of an action is a sequence of assignments on the variables
of p. An action can be executed only if it is enabled. In this case, the execution of the action
consists in executing its statement.

The asynchronism of the system is materialized by an adversary, called the daemon. In a
configuration γ, if there is at least one enabled process, then the daemon selects a non empty
subset S of Enabled(γ) to perform an (atomic) step: ∀p ∈ S, p atomically executes one of
its actions enabled in γ, leading the system to a new configuration γ′. We denote by 7→ the
relation between configurations such that γ 7→ γ′ if and only if γ′ can be reached from γ in one
(atomic) step. An execution is then a maximal sequence of configurations γ0, γ1, . . . such that
γi−1 7→ γi,∀i > 0. The term “maximal” means that the execution is either infinite, or ends at
a terminal configuration γ in which Enabled(γ) is empty.

In this paper, the daemon is supposed to be distributed and unfair. “Distributed” means
that while the configuration is not terminal, the daemon should select at least one enabled
process, maybe more. “Unfair” means that there is no fairness constraint, i.e., the daemon
might never permit an enabled process to execute, unless it is the only enabled process.

2.3 Rounds

To measure the time complexity of an algorithm, we also use the notion of round [15]. This
latter allows to highlight the execution time according to the speed of the slowest process. If
a process p is enabled in a configuration γi but not enabled in the next configuration γi+1 and
does not execute any action between γi and γi+1, we said that p is neutralized during the step
γi 7→ γi+1. Neutralization of p is caused by the following situation: at least one neighbor of p
changes its state between γi and γi+1, and this change makes the guards of all actions of p false.
The first round of an execution e, noted e′, is the minimal prefix of e in which every process
that is enabled in the initial configuration either executes an action or becomes neutralized. Let
e′′ be the suffix of e starting from the last configuration of e′. The second round of e is the first
round of e′′, and so forth.

2.4 Self-stabilization

Let A be a distributed algorithm. Let E be the set of all possible executions of A. A specification
SP is a predicate over E .
A is self-stabilizing for SP if and only if there exists a non-empty subset of configurations

L ⊆ C, called legitimate configurations, such that:

• Closure: ∀e ∈ E , for each step γi 7→ γi+1 ∈ e, γi ∈ L ⇒ γi+1 ∈ L.

• Convergence: ∀e ∈ E ,∃γ ∈ e such that γ ∈ L.

• Correctness: ∀e ∈ E such that e starts in a legitimate configuration γ ∈ L, e satisfies SP .

Every configuration that is not legitimate is called illegitimate. The stabilization time is
the maximum time (in steps or rounds) to reach a legitimate configuration starting from any
configuration.

2.5 Self-stabilizing Leader Election

We define SPLE the specification of the leader election problem. Let Leader : V 7→ N be a
function defined on the state of any process p ∈ V in the current configuration that returns the
ID of the leader appointed by p. An execution e ∈ E satisfies SPLE if and only if:
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1. For each configuration γ ∈ e, ∀p, q ∈ V , Leader(p) = Leader(q) and Leader(p) is the ID
of some process in V .

2. For each step γi 7→ γi+1 ∈ e, ∀p ∈ V , Leader(p) has the same value in γi and γi+1.

An algorithm A is silent if and only if every execution is finite [13]. Let γ be a terminal
configuration. The set of all possible executions starting from γ is the singleton {γ}. So, if
A is self-stabilizing and silent, γ must be legitimate. Thus, to prove that a leader election
algorithm is both self-stabilizing and silent, it is necessary and sufficient to show that: (1) in
every terminal configuration γ, ∀p, q ∈ V , Leader(p) = Leader(q) and Leader(p) is the ID of
some process; (2) every execution is finite.

3 Algorithm LE
In this section, we present a silent and self-stabilizing leader election algorithm, called LE . Its
formal code is given in Algorithm 1. Starting from an arbitrary configuration, LE converges
to a terminal configuration, where the process of minimum ID, `, is elected. More precisely, in
the terminal configuration, every process p knows the identifier of ` thanks to its local variable
p.idR; moreover a spanning tree rooted at ` is defined using two variables per process: par and
level (idR means ID of the root). Formally:

1. `.idR = `, `.par = `, and `.level = 0, and

2. ∀p 6= `, p.idR = `, p.par points to the parent of p in the tree and p.level is the level of p
in the tree.

We present a simple algorithm for the leader election problem in Subsection 3.1. We show why
this algorithm is not self-stabilizing in Subsection 3.2. Then, we explain in Subsection 3.3 how
to modify this simple algorithm to make it self-stabilizing.

3.1 Non Self-stabilizing Leader Election

We first consider a simplified version of LE . Starting from a predefined initial configuration, it
elects ` in all idR variables and builds a spanning tree rooted at `.

Initially, every process p declares itself as leader: p.idR = p, p.par = p, and p.level = 0. So,
p satisfies the two following predicates:

SelfRoot(p) ≡ (p.par = p)

SelfRootOk′(p) ≡ (p.level = 0) ∧ (p.idR = p)

Note that, in the sequel, we say that p is a self root when SelfRoot(p) holds.
From such an initial configuration, our non self-stabilizing algorithm consists in the following

single action:

J-Action′ :: ∃q ∈ Np, (q.idR < p.idR) → p.par ← min�{q ∈ Np};
p.idR← p.par.idR;
p.level← p.par.level + 1;

where ∀x, y ∈ V, x � y ⇔ (x.idR ≤ y.idR) ∧ [(x.idR = y.idR)⇒ (x < y)].
Informally, when p discovers that p.idR is not equal to the minimum identifier, it updates

its variables accordingly: let q be the neighbor of p having idR minimum. Then, p selects q as
new parent (i.e., p.par ← q and p.level← p.par.level+ 1) and sets p.idR to the value of q.idR.
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1

3

5

7

6

2

4〈1, 0〉

〈3, 0〉

〈5, 0〉

〈7, 0〉

〈6, 0〉

〈2, 0〉

〈4, 0〉

(a) Initial configuration. SelfRoot(p) ∧
SelfRootOk′(p) holds for every process p.

1

3

5

7

6

2

4〈1, 0〉

〈3, 0〉

〈1, 1〉

〈1, 1〉

〈3, 1〉

〈2, 0〉

〈2, 1〉

(b) 4, 5, 6, and 7 have executed J-Action′.
Note that J-Action′ was not enabled at 2
because it is a local minimum.

1

3

5

7

6

2

4〈1, 0〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈3, 1〉

〈1, 2〉

〈1, 2〉

(c) 2, 3, and 4 have executed J-Action′.
3 joins the tree rooted at 1. However, the
new value of 3.idR is not yet propagated
to its child 6.

1

3

5

7

6

2

4〈1, 0〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈1, 2〉

〈1, 2〉

〈1, 2〉

(d) 6 has executed J-Action′. The config-
uration is now terminal, ` = 1 is elected,
and a tree rooted at ` is available.

Figure 1: Example of execution of the non self-stabilizing algorithm. Process identifiers are
given inside the nodes. 〈x, y〉 means idR = x and level = y. Arrows represent par pointers.
The absence of arrow means that the process is a self root.
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If there are several neighbors having idR minimum, we break ties using the identifiers of those
neighbors.

Hence, the identifier of ` is propagated, from neighbors to neighbors, into the idR variables
and the system reaches a terminal configuration in O(D) rounds. Figure 1 shows an example
of such an execution.

Notice first that for every process p, p.idR is always less than or equal to its own identifier.
Indeed, p.idR is initialized to p and decreases each time p executes J-Action′. Hence, p.idR = p
while p is a self root and after p executes J-Action′ for the first time, p.idR is smaller than its
ID forever.

Second, even in this simplified context, for each two neighbors p and q such that q is the
parent of p, it may happens that p.idR is greater than q.idR — an example is shown in Figure 1c,
where p = 6 and q = 3. This is due to the fact that p joins the tree of q but meanwhile q joins
another tree and this change is not yet propagated to p. Similarly, when p.idR 6= q.idR, p.level
may be different from q.level + 1. According to those remarks, we can deduce that when
p.par = q with q 6= p, we have the following relation between p and q:

GoodIdR(p, q) ≡ (p.idR ≥ q.idR) ∧ (p.idR < p)

GoodLevel(p, q) ≡ (p.idR = q.idR)⇒ (p.level = q.level + 1)

3.2 Fake IDs

This previous algorithm is not self-stabilizing. Indeed, in a self-stabilization context, the exe-
cution may start in an arbitrary configuration. In particular, idR variables can be initialized to
arbitrary natural integer values, even values that are actually not IDs of (existing) processes.
We call such values fake IDs.

2 3 4 5

〈1, 1〉 〈3, 0〉 〈4, 0〉 〈1, 1〉

(a) Illegitimate initial configuration,
where 2 and 5 have fake idR.

2 3 4 5

〈1, 1〉 〈1, 2〉 〈1, 2〉 〈1, 1〉

(b) 3 and 4 executed J-Action′. The con-
figuration is now terminal.

Figure 2: Example of execution that does not converge to a legitimate configuration.

2 3 4 5

〈2, 0〉 〈1, 2〉 〈1, 2〉 〈5, 0〉

Figure 3: One step after Figure 2b, 2 and 5 have reset.

The existence of fake IDs may lead the system to an illegitimate terminal configuration.
Refer to the example of execution given in Figure 2: starting from the configuration in 2a,
if processes 3 and 4 move, the system reaches the terminal configuration given in 2b, where
there are two trees and the idR variables elect the fake ID 1. In this example, 2 and 5 can
detect the problem. Indeed, predicate SelfRootOk′ is violated by both 2 and 5. One may
believe that it is sufficient to reset the local state of processes which detect inconsistency (here
processes 2 and 5) to p.idR ← p, p.par ← p and p.level ← 0. After these resets, there are still
some errors, as shown on Figure 3. Again, 3 and 4 can detect the problem. Indeed, predicate
GoodIdR(p, p.par) ∧GoodLevel(p, p.par) is violated by both 3 and 4. In this example, after 3
and 4 have reset, all inconsistencies have been removed. So let define the following action:
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R-Action′ ::
(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
∨
(
¬SelfRoot(p)

∧¬(GoodIdR(p, p.par) ∧GoodLevel(p, p.par))
)

→ p.par ← p; p.idR← p; p.level← 0;

Unfortunately, this additional action does not ensure the convergence in all cases, see the
example in Figure 4. Indeed, if a process resets, it becomes a self root but this does not erase
the fake ID in the rest of its subtree. Then, another process can join the tree and adopt the fake
ID which will be further propagated, and so on. In the example, a process resets while another
joins its tree at lower level, and this leads to endless erroneous behavior, since we do not want to
assume any maximal value for level (such an assumption would otherwise imply the knowledge
of some upper bound on n). Therefore, the whole tree must be reset, instead of its root only.
To that goal, we first freeze the “abnormal” tree in order to forbid any process to join it, then
the tree is reset top-down. The cleaning mechanism is detailed in the next subsection.

3

5

2 6

4

〈1, 2〉

〈5, 0〉

〈2, 0〉 〈1, 4〉

〈1, 3〉

(a) Illegitimate initial configu-
ration.

3

5

2 6

4

〈3, 0〉

〈5, 0〉

〈1, 5〉 〈1, 4〉

〈1, 3〉

(b) 2 joins the tree. 3 leaves it.

3

5

2 6

4

〈3, 0〉

〈1, 6〉

〈1, 5〉 〈1, 4〉

〈4, 0〉

(c) 5 joins the tree. 4 leaves it.

3

5

2 6

4

〈1, 7〉

〈1, 6〉

〈1, 5〉 〈6, 0〉

〈4, 0〉

(d) Both 3 and 6 move.

3

5

2 6

4

〈1, 7〉

〈1, 6〉

〈2, 0〉 〈6, 0〉

〈1, 8〉

(e) 4 joins, 2 leaves.

3

5

2 6

4

〈1, 7〉

〈5, 0〉

〈2, 0〉 〈1, 9〉

〈1, 8〉

(f) Configuration similar to 4a

Figure 4: The first process of the chain of bold arrows violates the predicate SelfRootOk′ and
resets by executing R-Action′, while another process joins its tree. This cycle of resets and joins
might never terminate.

3.3 Cleaning Abnormal Trees

To introduce the trees, we define what is a “good relation” between a parent and its children.
Namely, the predicate KinshipOk′(p, q) models that a process p is a real child of its parent
q = p.par. This predicate holds if and only if GoodLevel(p, q) and GoodIdR(p, q) are true.
This relation defines a spanning forest: a tree is a maximal set of processes connected by par
pointers and satisfying KinshipOk′ relation. A process p is a root of such a tree whenever
SelfRoot(p) holds or KinshipOk′(p, p.par) is false. When SelfRoot(p) ∧ SelfRootOk′(p) is
true, p is a normal root just as in the non self-stabilizing case (see 3.1). In other cases, there is
an error and p is said to be an abnormal root:

AbRoot′(p) ≡
(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
∨
(
¬SelfRoot(p) ∧ ¬KinshipOk′(p, p.par)

)
8



These are the two possible errors identified in the Subsection 3.2. A tree is called an abnormal
tree (resp. normal) when its root is abnormal (resp. normal).

We now detail the different predicates and actions of Algorithm 1.

Algorithm 1 Algorithm LE for every process p

Variables
p.idR ∈ N, p.par ∈ Np ∪ {p}, p.level ∈ N, p.status ∈ {C,EB,EF}

Macros
Childrenp ≡ {q ∈ Np | q.par = p}
RealChildrenp ≡ {q ∈ Childrenp | KinshipOk(q, p)}
p � q ≡ (p.idR ≤ q.idR) ∧ [(p.idR = q.idR)⇒ (p ≤ q)]
Minp ≡ min� {q ∈ Np | q.status = C}

Predicates
SelfRoot(p) ≡ p.par = p
SelfRootOk(p) ≡ (p.level = 0) ∧ (p.idR = p) ∧ (p.status = C)
GoodIdR(s, f) ≡ (s.idR ≥ f.idR) ∧ (s.idR < s)
GoodLevel(s, f) ≡ (s.idR = f.idR)⇒ (s.level = f.level + 1)
GoodStatus(s, f) ≡ [(s.status = EB)⇒ (f.status = EB)]

∧[(s.status = EF )⇒ (f.status 6= C)]
∧[(s.status = C)⇒ (f.status 6= EF )]

KinshipOk(s, f) ≡ GoodIdR(s, f) ∧GoodLevel(s, f) ∧GoodStatus(s, f)
AbRoot(p) ≡ [SelfRoot(p) ∧ ¬SelfRootOk(p)]

∨[¬SelfRoot(p) ∧ ¬KinshipOk(p, p.par)]
Allowed(p) ≡ ∀q ∈ Childrenp, (¬KinshipOk(q, p)⇒ q.status 6= C)

Guards
EBroadcast(p) ≡ (p.status = C) ∧ [AbRoot(p) ∨ (p.par.status = EB)]
EFeedback(p) ≡ (p.status = EB) ∧ (∀q ∈ RealChildrenp, q.status = EF )
Reset(p) ≡ (p.status = EF ) ∧AbRoot(p) ∧Allowed(p)
Join(p) ≡ (p.status = C) ∧ [∃q ∈ Np, (q.idR < p.idR) ∧ (q.status = C)]

∧Allowed(p)

Actions
EB-action :: EBroadcast(p) → p.status← EB;
EF -action :: EFeedback(p) → p.status← EF ;
R-action :: Reset(p) → p.status← C; p.par ← p;

p.idR← p; p.level← 0;
J-action :: Join(p) ∧ ¬EBroadcast(p) → p.par ←Minp; p.idR← p.par.idR;

p.level← p.par.level + 1;

Variable status Abnormal trees need to be frozen before to be cleaned in order to prevent
them from growing endlessly (see 3.2). This mechanism (inspired from [4]) is achieved using
an additional variable, status, that is used as follows. If a process is clean (i.e., not involved
into any freezing operation), then its status is C. Otherwise, it has status EB or EF and
no neighbor can select it as its parent. These two latter states are actually used to perform a
“Propagation of Information with Feedback” [7, 18] in the abnormal trees. Therefore, status
EB means “Error Broadcast” and EF means “Error Feedback”. From an abnormal root, the
status EB is broadcast down in the tree. Then, once the EB wave reaches a leaf, the leaf
initiates a convergecast EF -wave. Once the EF -wave reaches the abnormal root, the tree is
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said to be dead, meaning that there is no process of status C in the tree and no other process
can join it. So, the tree can be safely reset from the abnormal root toward the leaves.

Notice that the new variable status may also get arbitrary initialization. Thus, we enforce
previously introduced predicates as follows.

A self root must have status C, otherwise it is an abnormal root:

SelfRootOk(p) ≡ SelfRootOk′(p) ∧ (p.status = C)

To be a real child of q, p should have a status coherent with the one of q. This is expressed
with the predicate GoodStatus(p, q) which is used to enforce the KinshipOk(p, q) relation:

GoodStatus(p, q) ≡ [(p.status = EB)⇒ (q.status = EB)]

∧[(p.status = EF )⇒ (q.status 6= C)]

∧[(p.status = C)⇒ (q.status 6= EF )]

KinshipOk(p, q) ≡ KinshipOk′(p, q) ∧GoodStatus(p, q)

Precisely, when p has status C, its parent must have status C or EB (if the EB-wave is not
propagated yet to p). If p has status EB, its parent must be of status EB because p gets status
EB from its parent and its parent will change its status to EF only after p gets status EF .
Finally, if p has status EF , its parent can have status EB (if the EF -wave is not propagated
yet to its parent) or EF .

Normal execution Remark that, after all abnormal trees have been removed, all processes
have status C and the algorithm works as in the initial version. Notice that the guard of
J-action has been enforced so that only processes with status C and which are not abnormal
root can execute it, and when executing J-action, a process can only choose a neighbor of status
C as parent. Moreover, remark that the cleaning of all abnormal trees does not ensure that all
fake IDs have been removed. Rather, it guarantees the removal of all fake IDs smaller than `.
This implies that (at least) ` is a self root at the end of the cleaning and all other processes will
elect ` within the next D rounds.

Cleaning abnormal trees Figure 5 shows how an abnormal tree is cleaned. In the first phase
(see Figure 5a), the root broadcasts status EB down to its (abnormal) tree: all the processes
in this tree execute EB-action, switch to status EB and are consequently informed that they
are in an abnormal tree. The second phase starts when the EB-wave reaches a leaf. Then, a
convergecast wave of status EF is initiated thanks to action EF -action (see Figure 5b). The
system is asynchronous, hence all the processes along some branch can have status EF before
the broadcast of the EB-wave is done into another branch. In this case, the parent of these two
branches waits that all its children in the tree (processes in the set RealChildren) get status
EF before executing EF -action (Figure 5c). When the root gets status EF , all processes have
status EF : the tree is dead. Then (third phase), the root can reset (safely) to become a self root
by executing R-action (Figure 5e). Its former real children (of status EF ) become themselves
abnormal roots of dead trees (Figure 5f) and reset, etc.

Finally, we used the predicate Allowed(p) to temporarily lock the parent of p in two par-
ticular situations — illustrated in Figure 6 — where p is enabled to switch its status from C
to EB. These locks impact neither the correctness nor the complexity of LE . Rather, they
allow us to simplify the proofs by ensuring that, once enabled, EB-action remains continuously
enabled until executed.
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EB-action

C

6

2 8

〈1, 0〉

〈1, 1〉 〈1, 1〉

(a) When an abnormal root detects an error, it
executes EB-action. The EB-wave is broadcast
to the leaves. Here, 6 is an abnormal root be-
cause it is a self root and its idR is different from
its ID (1 6= 6).

EF -action

C
EB

(b) When the EB-wave reaches a leaf, it exe-
cutes EF -action. The EF -wave is propagated
up to the root.

C EF

EB

5

4

7

9

〈1, 4〉

〈1, 5〉

〈1, 5〉

〈1, 5〉

(c) It may happen that the EF -wave reaches
a node, here process 5, even though the EB-
wave is still broadcasting into some of its proper
subtrees: 5 must wait that the status of 4 and 7
become EF before executing EF -action.

EF -action

EF
EB

(d) EB-wave has been propagated in the other
branch. An EF -wave is initiated by the leaves.

R-action

EF

(e) EF -wave reaches the root. The root can
safely reset (R-action) because its tree is dead.
The cleaning wave is propagated down to the
leaves.

R-action

EF EF

6

2 8

〈6, 0〉

〈1, 1〉 〈1, 1〉

(f) Its children become themselves abnormal
roots of dead trees and can execute R-action:
2 and 8 can clean because their status is EF
and their parent has status C.

Figure 5: Schematic example of the cleaning mechanism. Trees are filled according to the status
of their processes: white for C, dashed for EB, gray for EF .
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4

9

〈3, 0〉

〈4, 1〉

(a) 4 and 9 are abnormal roots. If 4 executes
R-action before 9 executes EB-action, the kin-
ship relation between 4 and 9 becomes correct
and 9 is no more an abnormal root. Then,
EB-action is no more enabled at 9.

6 3

4

9

〈2, 3〉 〈3, 0〉

〈3, 1〉

〈2, 5〉

(b) 9 is an abnormal root and Min4 is 6. If 4
executes J-action before 9 executes EB-action,
the kinship relation between 4 and 9 becomes
correct and 9 is no more an abnormal root.
Then, EB-action is no more enabled at 9.

Figure 6: Example of situations where the parent of a process is locked.

4 Correctness and Complexity Analysis

In this section, we first define some concepts which will be used in the proofs (Subsection 4.1).
Then, we show in Subsection 4.2 that Algorithm LE is self-stabilizing and silent for the leader
election, assuming a distributed unfair daemon. Along the proof, we also establish a bound on
its stabilization time in steps, namely O(n3). Finally, we study more precisely the complexity
of LE in Subsection 4.3 (in particular, we give its complexity in rounds).

4.1 Some Definitions

First, we instantiate the function Leader(p) used in the specification of the leader election
(Section 2.5).

Definition 1 (Leader). For each process p, for every configuration γ, the value Leader(p) in
γ is p.idR.

Note that the value of Leader(p) depends on the current configuration γ. Nevertheless,
when it is clear from the context, we omit the mention to γ. This will be also the case for every
predicates and notations used in the sequel.

We now recall some definitions and notations from graph theory. A path P, from pk to p0
is a sequence of processes pk, pk−1, . . . , p0 such that pi−1 ∈ Npi , for all i in {1, ..., k}. Nodes
pk and p0 are respectively called the initial and terminal extremity of P. The length of P,
denoted by |P|, is equal to k. We call cycle any path pk, pk−1, . . . , p0 such that p0 = pk. The
distance between two processes p and q, denoted ‖p, q‖, is equal to the length of the shortest
path between p and q. The diameter of the network, denoted D, is the maximum distance
between any two processes.

The rest of the paragraph is dedicated to introducing and justifying the notion of trees
induced by the KinshipOk relation. We first show that the predicate KinshipOk is an acyclic
relation. To that goal, we define the graph induced by the KinshipOk relation.

Definition 2 (Graph of Kinship Relations). For some configuration γ, let Gkr = (V,KR) be a
directed graph such that (p, q) ∈ KR ⇔ ({p, q} ∈ E) ∧ (p.par = q) ∧KinshipOk(p, q). Gkr is
called the graph of kinship relations in γ.
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We first show that Gkr is a DAG (Directed Acyclic Graph). We recall, path and cycle
naturally extend to directed graph, i.e., a (directed) path P in Gkr is a sequence of processes
pk, pk−1, . . . , p0 such that for all i in {1, ..., k}, (pi, pi−1) ∈ KR.

Lemma 1. Let γ be a configuration. The graph of kinship relations in γ contains no cycle.

Proof. By definition, for all pairs of processes p, q such that KinshipOk(p, q) holds, we have:
p.idR ≥ q.idR and p.idR = q.idR⇒ p.level = q.level+ 1. Hence, the processes along any path
in Gkr are ordered w.r.t. the strict lexical order on the pair (idR, level). The result directly
follows.

Hence Gkr is a DAG (Directed Acyclic Graph) and even a spanning forest since the condition
p.par = q implies at most one successor per process in KR. Below, we define the roots and
trees of this spanning forest.

Definition 3 (Root). For some configuration γ, a process p satisfies Root(p) (and is called a
root in γ) if and only if SelfRoot(p)∨AbRoot(p), or equivalently if SelfRoot(p)∨¬KinshipOk(p, p.par)
holds in γ.

Next, we define the paths, called KPaths, that follow the tree structures in Gkr, i.e., the
paths linking each process to the root of its own tree.

Definition 4 (KPath). For every process p, KPath(p) is the unique path p0, p1, . . . , pk such
that pk = p and satisfying the following conditions:

• ∀i, 1 ≤ i ≤ k, (pi.par = pi−1) ∧KinshipOk(pi, pi−1)

• Root(p0)

Using Definitions 3 and 4, we formally define trees as follows.

Definition 5 (Tree). For some configuration γ, for every process p such that Root(p), we define
Tree(p), the tree rooted at p, as follows:

Tree(p) = {q ∈ V | p is the initial extremity of KPath(q)}

This means, in particular, that we identify each tree with the ID of its root.

We give in Observation 1 an invariant on KPaths when looking at the status of the processes.
This property is based on the notion of S-Trace defined below.

Definition 6 (S-Trace). For some configuration γ, for a sequence of processes p0, p1, . . . , pk,
we define:

S-Trace(p0, p1, . . . , pk) ∈ {C,EB,EF}∗

as the sequence (p0.status).(p1.status) . . . (pk.status) in γ.

Observation 1. For any configuration, we have:

∀p ∈ V, S-Trace(KPath(p)) ∈ EB∗C∗ ∪ EB∗EF ∗.

Proof. Let p be a process. If |KPath(p)| = 1, Observation 1 trivially holds. For |KPath(p)| ≥
2, assume by contradiction that S-Trace(KPath(p)) /∈ EB∗C∗ ∪ EB∗EF ∗. Then, ∃s, f ∈
KPath(p) such that s.par = f and S-Trace(f, s) ∈ {C.EB,C.EF, EF.EB,EF.C}. In all
cases, ¬GoodStatus(s, f) holds which in turns implies that ¬KinshipOk(s, f). This contradicts
Definition 4.
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4.2 Correctness

To prove the self-stabilization of Algorithm LE under an unfair daemon, we first show that any
execution is finite (Theorem 1) and then we show that in any terminal configuration, there is a
unique leader: for every two processes, p and q, we have Leader(p) = Leader(q) and Leader(p)
is the ID of some process (Theorem 2).

4.2.1 Termination of LE

The goal, here, is to show that any execution contains a finite number of steps. We first partition
a given execution into a finite number of segments (Lemma 4), see Fig. 7. Then, we prove that
each segment contains a finite number of J-actions (Lemma 10). This latter result implies
that every execution contains a finite number of J-actions (Corollary 2). Then, we show, in
Lemma 11 and Corollary 3, that every execution contains a finite number of other actions. This
allows us to conclude in Theorem 1 that every execution contains a finite number of steps.

Abnormal trees First, we introduce some notions that refine the concept of trees.

Definition 7 (Normal/Abnormal Tree). For every configuration γ and every process p, any
tree rooted at p such that ¬AbRoot(p) in γ is called a normal tree. In this case, SelfRoot(p) ∧
SelfRootOk(p) holds in γ, by Definition 3. Any tree that is not normal is simply said to be
abnormal.

Definition 8 (Alive/Dead). Let γ be a configuration. A process p is called alive in γ if and
only if γ(p).status = C. Otherwise, p is said to be dead. A tree T in γ is called an alive tree
in γ if and only if ∃p ∈ T such that p is alive in γ. Otherwise, it is called a dead tree.

Definition 9 (Leave/Join a Tree). Let γ 7→ γ′ be a step. If a process p is in a tree T in γ, but
in a different tree T ′ in γ′ (namely, the roots of T and T ′ are different), we say that p leaves T
and joins T ′ in γ 7→ γ′.

Remark 1. No process can join a dead tree.

Lemma 2. No alive abnormal root can be created.

Proof. Let p be a process which is not an alive abnormal root in some configuration γ. This
means that p is dead, p is a normal root (SelfRoot(p)∧SelfRootOk(p) holds in γ), or p is not
a root (KinshipOk(p, p.par) holds in γ).

Let γ 7→ γ′ be a step. If p executes EB-action in γ 7→ γ′ (respectively EF -action), then
γ′(p).status = EB (respectively γ′(p).status = EF ) and, consequently, p is dead in γ′.

If p executes R-action, the predicate SelfRoot(p) ∧ SelfRootOk(p) holds in γ′. So, p is a
normal root in γ′.

If p executes J-action, let q = Minp in γ. By definition of J-action, γ(p).idR ≤ p (since
p is not an abnormal root at γ), γ(q).status = C, and γ(p).status = γ′(p).status = C. Also,
¬SelfRoot(p) holds in γ′.

• If q does not move in γ 7→ γ′, then γ′(p).par = q, γ′(q).status = C = γ′(p).status,
γ′(p).level = γ(q).level + 1 = γ′(q).level + 1, and γ′(p).idR = γ(q).idR = γ′(q).idR <
γ(p).idR ≤ p. Hence, the predicate KinshipOk(p, p.par) is true in γ′. Now, we already
know that ¬SelfRoot(p) holds in γ′. Thus, ¬SelfRoot(p)∧KinshipOk(p, q) holds in γ′:
p is not a root in γ′, by Definition 3.
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• Assume now that q moves during the step γ 7→ γ′. As γ(q).status = C, q can only
execute EB-action or J-action in the step. Consequently, γ′(q).idR ≤ γ(q).idR. Then,
γ′(p).idR = γ(q).idR ≥ γ′(q).idR and γ′(p).idR = γ(q).idR < γ(p).idR ≤ p. So, the
predicate GoodIdR(p, q) holds in γ′.

If q executes J-action, then γ′(p).idR 6= γ′(q).idR. Otherwise, q executes EB-action,
so γ′(p).idR = γ′(q).idR and γ′(p).level = γ(q).level + 1 = γ′(q).level + 1. Hence,
GoodLevel(p, q) holds in γ′.

Finally, γ′(q).status ∈ {C,EB} and γ′(p).status = γ(p).status = C, so the predicate
GoodStatus(p, q) holds in γ′.

Thus, ¬SelfRoot(p) ∧ KinshipOk(p, q) holds in γ′ and, so, p is not a root in γ′, by
Definition 3.

Assume now that p executes no action in the step γ 7→ γ′. The only way for p to become an
alive abnormal root is that γ(p).par moves during the step, since the property “alive abnormal
root” only depends on p and p.par. Furthermore, as p is not an alive abnormal root, when p is
a normal root in γ, it stays so, in γ′.

Therefore, let us consider the case when p is not a root in γ and γ(p).par moves. As p
changes none of its variables, the only way for it to become an alive abnormal root is to have
status C in γ and thus in γ′. As GoodStatus(p, p.par) holds in γ, this implies that the status of
γ(p).par is either EB or C. Looking at case EB, p is a real child of p.par in γ with status C;
hence EF -action is disabled for p.par in γ. Looking at case C, p.par can execute EB-action and
can change only its status to EB in γ 7→ γ′: GoodStatus(p, p.par) holds in γ′ and consequently
KinshipOk(p, p.par) holds in γ′. p.par can also execute J-action in γ 7→ γ′. This means that
in γ and in γ′, p.par has status C, hence GoodStatus(p, p.par) holds in γ′. Furthermore, p.par
has a smaller value of idR in γ′, so GoodIdR(p, p.par) and GoodLevel(p, p.par) are satisfied in
γ′, and consequently KinshipOk(p, p.par) holds in γ′.

Lemma 3. No alive abnormal tree can be created.

Proof. Let γ 7→ γ′ be a step. Let p ∈ V . Assume there is no alive abnormal tree rooted at p
in γ. In particular, p is not an alive abnormal root in γ. Then, assume, by contradiction, that
Tree(p) exists and is an alive abnormal tree in γ′.

• If γ′(p).status = EF , then every process in the tree has status EF (Observation 1) and
the tree is dead, a contradiction.

• If γ′(p).status = C, then p is an alive abnormal root in γ′. But no alive abnormal root is
created (Lemma 2), a contradiction.

• If γ′(p).status = EB. Then, according to the algorithm, there are two possible cases:

γ(p).status = EB:

– If AbRoot(p) holds in γ, then Tree(p) is dead in γ (otherwise, Tree(p) is an
abnormal alive tree in γ, a contradiction). By the definition of J-action, no
process can join Tree(p) in γ 7→ γ′.
Moreover, as γ(p).status = EB, no process q in Tree(p) satisfies Reset(q) in γ,
by Observation 1. Consequently, no process can leave Tree(p) in γ 7→ γ′. So,
every process in Tree(p) still have status EF or EB in γ′, i.e. Tree(p) is still
dead in γ′, a contradiction.
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– If ¬AbRoot(p) holds in γ, then p does not satisfy SelfRoot(p). Indeed, the
predicate SelfRootOk(p) implies that p.status = C in γ, a contradiction.
So, let q = γ(p).par ∈ Np. ¬AbRoot(p) in γ implies that q.status = EB
and the predicate KinshipOk(p, q) holds in γ. This latter also implies that
p ∈ RealChildrenq in γ. Now, p ∈ RealChildrenq and p.status = EB in γ
implies that q is disabled in γ. Moreover, as γ′(p).status = EB, p does not
execute any action in γ 7→ γ′. So, the predicate ¬AbRoot(p) still holds in γ′, a
contradiction.

γ(p).status = C: ¬AbRoot(p) holds in γ (otherwise p is an abnormal alive root in γ).
Then, p executes EB-action in γ 7→ γ′ to get status EB. So, EBroadcast(p) ∧
¬AbRoot(p) implies that p.par 6= p and p.par.status = EB in γ. Let q = γ(p).par.
Now, p.par 6= p and ¬AbRoot(p) implies that KinshipOk(p, q) in γ. So, p ∈
RealChildrenq and, as p.status = C and q.status = EB in γ, q is disabled in γ.
Moreover, as γ′(p).status = EB, p necessarily executes EB-action in γ 7→ γ′ which
only changes its status to EB. So, ¬AbRoot(p) still holds in γ′, a contradiction.

Finite number of J-actions To show that every process p executes only a finite number of
J-actions, we prove below that p can only execute a finite number of J-actions in each segment
of execution — a segment being separated from its follower by the death or the disappearance
of some abnormal alive tree.

Definition 10 (Disappear/Die). Let γ 7→ γ′ be a step and let p be a process such that Root(p)
in γ.

• Tree(p) disappears during the step γ 7→ γ′ if and only if Tree(p) is no more defined in γ′

— namely Root(p) does not hold in γ′.

• Tree(p) dies during the step γ 7→ γ′ if and only if Tree(p) is alive in γ, yet Tree(p) exists
— namely Root(p) holds — and is dead in γ′.

γ0 γ1

a segment another segment

an abnormal alive tree dies or disappears

Figure 7: Segments of execution

Definition 11 (Segment of execution). Let e = γ0γ1 . . . be any execution. e′ = γi . . . γj is a
segment of execution e (segment, for short) if and only if e′ is a maximal factor of e, where no
abnormal alive tree dies nor disappears.

Figure 7 illustrates Definition 11. We now show that the number of segments is finite.

Lemma 4. There are at most n+ 1 segments in any execution.

Proof. In the initial configuration, there are at most n abnormal roots (every process) and,
consequently, at most n abnormal trees. As no alive abnormal tree can be created (Lemma 3),
if an abnormal tree is alive, then it is alive since the initial configuration. So, there is at
most n trees that die or disappear and, consequently, there are at most n + 1 segments in the
execution.
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From Lemma 4, we have the following remark:

Remark 2. There are at most n steps outside segments (more precisely, the steps where at
least one abnormal tree dies or disappears) and these steps necessarily contains an execution of
EB-action.

We now count the number of J-actions processes can execute in a given segment. For that
purpose, we first need to prove intermediate lemmas that identify properties on computation
steps.

Observation 2. Let γ be a configuration and let p a process such that Reset(p) is true in γ.
Then, Tree(p) exists and is dead in γ.

Proof. Let γ be a configuration and let p be a process such that Reset(p) is true in γ. By
definition, AbRoot(p) holds in γ, hence Tree(p) is defined in γ. Furthermore, γ(p).status = EF :
by Observation 1, every process in Tree(p) has status EF in γ, and we are done.

Lemma 5. Let γ 7→ γ′ be a step and let p be a process such that p.status ∈ {EB,EF} in γ.
Let T be the tree which contains p in γ. First, T is an abnormal tree in γ. Second, if T does
not disappear during the step γ 7→ γ′, p is still in T in γ′ unless T was dead in γ.

Proof. Let γ 7→ γ′ be a step and let p be a process such that p.status ∈ {EB,EF} in γ. We note
r the root of the tree containing p in γ. As S-Trace(KPath(p)) ∈ EB∗EF ∗, by Observation 1,
the status of r in γ is either EF or EB. Hence AbRoot(r) holds in γ: Tree(r) is an abnormal
tree in γ.

Assume now that Root(r) holds in γ′ (the tree does not disappear during the step). If r
executes R-action in γ 7→ γ′, Observation 2 applies in γ and proves that Tree(r) is dead in γ.

If r does not (or cannot) execute R-action, its only possible action is EF -action. As Root(r)
holds in γ′, r is still abnormal root in γ′. Let then q ∈ KPath(p) in γ with q 6= r. By Observa-
tion 1, γ(q).status ∈ {EB,EF} also. If γ(q).status = EB, q can only execute EF -action and
if γ(q).status = EF , q is disabled, as q 6= r. Executing EF -action preserves GoodStatus and
hence preserves also KinshipOk relations. Therefore, the KPath from p to r is the same in γ
and γ′ and then p ∈ Tree(r) in γ′.

Lemma 6. Let p be a process and let γ 7→ γ′ be a step. If p is an abnormal root of status C in
γ, then it is still an abnormal root in γ′.

Proof. Let γ 7→ γ′ be a step and let p be a process such that AbRoot(p) ∧ p.status = C in γ: p
can only execute EB-action. Therefore, γ′(p).status ∈ {C,EB} and every other variable of p
has identical value in γ and γ′.

So, if SelfRoot(p) holds in γ, then SelfRootOk(p) is false in γ, and SelfRoot(p)∧¬SelfRootOk(p)
still holds in γ′.

Otherwise, ¬SelfRoot(p) holds in γ, i.e., p.par 6= p. Then, ¬SelfRoot(p) still holds in γ′.
Let q ∈ V such that q = γ(p).par and consider the following cases:

γ(q).status = EF : Then, ¬GoodStatus(p, q) holds in γ which implies that ¬KinshipOk(p, q)
holds in γ. However, p ∈ Childrenq in γ. So, ¬Allowed(q) holds in γ, and q is disabled.
So, γ′(p).status ∈ {C,EB} and γ′(q).status = EF , which implies that the predicate
¬GoodStatus(p, q) holds in γ′. Thus, we have ¬KinshipOk(p, q) in γ′.

γ(q).status = EB: Then, GoodStatus(p, q) holds in γ. So, AbRoot(p) in γ implies that the pred-
icate ¬GoodIdR(p, q)∨¬GoodLevel(p, q) holds in γ. Now, q can only executes EF -action
in γ 7→ γ′. So, neither p nor q modify their variables par, idR, or level in γ 7→ γ′, and,
consequently, ¬GoodIdR(p, q)∨¬GoodLevel(p, q) still holds in γ′. So, ¬KinshipOk(p, q)
holds in γ′.
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γ(q).status = C: As AbRoot(p) holds in γ, ¬KinshipOk(p, q) in γ. Thus, ¬Allowed(q) holds
in γ because p ∈ Childrenq and p.status = C in γ. So, q cannot execute J-action in
γ 7→ γ′. Then, γ(q).status = C and γ(p).status = C implies that GoodStatus(p, q) holds
in γ. So, AbRoot(p) in γ implies that ¬GoodIdR(p, q)∨¬GoodLevel(p, q) holds in γ. As p
and q can only modify their status during the step γ 7→ γ′ (q can only execute EB-action
in γ 7→ γ′), ¬GoodIdR(p, q) ∨ ¬GoodLevel(p, q) still holds in γ′. So, ¬KinshipOk(p, q)
holds in γ′.

In any cases, ¬KinshipOk(p, q) holds in γ′. As the predicate ¬SelfRoot(p) holds in γ′,
AbRoot(p) holds in γ′.

Lemma 7. Let γ be a configuration and let p be a process such that p.status ∈ {EB,EF} in
γ. Let T be the tree which contains p in γ. Let γR be the first configuration, if any, after γ,
such that p executes an R-action γR 7→ γR+1.

Assume γR exists, then T is dead in γR or has disappeared (at least once) between γ and
γR.

Proof. Let γ be a configuration and let p be a process such that p.status ∈ {EB,EF} in γ. We
note r the root of the tree which contains p in γ. Let γ = γ0γ1... be an execution starting at
γ. Let γR be the first configuration, if any, in this execution such that p executes an R-action
during the step γR 7→ γR+1.

For every configuration γx, x ∈ {0, ..., R−1}, the status of p is EB or EF . Hence, Lemma 5
applies iteratively in γx: either Tree(r) disappears during the step γx 7→ γx+1, or, if not,
p ∈ Tree(r) in γx+1. Hence, in γR, either Tree(r) has disappeared or, if not, p ∈ Tree(r).

When p ∈ Tree(r) in γR, by assumption, p executes an R-action between γR and γR+1.
Hence, AbRoot(p) holds in γR and thus p = r. Furthermore, Observation 2 applies and proves
that Tree(r) is dead in γR.

Lemma 8. Let p be a process and let γ 7→ γ′ be a step. Let T be the tree that contains p in γ. If
EBroadcast(p) holds in γ, then T is an abnormal alive tree in γ and, if T has not disappeared
in γ′, p still belongs to T in γ′.

Proof. Let γ 7→ γ′ be a step. Let p be a process such that EBroadcast(p) holds in γ. We note
r the root of the tree which contains p in γ.

If AbRoot(p) holds in γ, then p = r is the root of an alive abnormal tree, since γ(p).status =
C. Furthermore, if Tree(p) exists in γ′, p ∈ Tree(p) in γ′, trivially.

Otherwise, ¬AbRoot(p), p.par.status = EB, and KinshipOk(p, p.par) holds in γ. Applying
Lemma 5 to γ(p).par, we have that γ(p).par belongs to an abnormal alive tree in γ and so does
p: Tree(r) is an alive abnormal tree.

Furthermore, first note that γ(p).par = γ′(p).par (p can only change its status to EB in
γ 7→ γ′: either p do not move or executes EB-action). So, still by Lemma 5, in γ′, if Tree(r)
exists in γ′, γ′(p).par belongs to Tree(r) in γ′, since Tree(r) is not dead in γ (γ(p).status = C).

AsKinshipOk(p, p.par) holds in γ, we have that p ∈ RealChildrenq in γ. Since γ(p).status =
C, q is disabled in γ (because of p) and, as p can only modify its status to EB in γ 7→ γ′ , we
still have p ∈ RealChildrenq in γ′, i.e., p and q belong to the same abnormal tree, Tree(r), in
γ′.

Corollary 1. Let γ be a configuration and let p be a process such that EBroadcast(p) holds in
γ. Let T the tree which contains p in γ. Let γR be the first configuration, if any, since γ, such
that p executes an R-action γR 7→ γR+1.

Assume γR exists, then T is an alive abnormal tree in γ but it is dead in γR or has disappeared
(at least once) between γ and γR.
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Proof. Let γ be a configuration and let p be a process such that EBroadcast(p) holds in γ. We
note r the root of the tree which contains p in γ. Lemma 8 applies in γ: Tree(r) is an alive
abnormal tree in γ.

Let γ = γ0γ1... be an execution starting at γ. Let γR be the first configuration, if any, in
this execution such that p executes an R-action during the step γR 7→ γR+1. We assume that
γR exists. Then at some step, γi 7→ γi+1, p executes a EB-action, with i < R.

Lemma 8 applies iteratively from γ0 and to γi: either Tree(r) has disappeared in γ1 (and
so between γ0 and γi+1), or p stays in Tree(r) in γ1 (and so between γ0 and γi+1), and so on.

If Tree(r) has not yet disappeared in γi+1, then p ∈ Tree(r) in γi+1 and γi+1(p).status =
EB. Here, Lemma 7 applies and proves that Tree(r) has disappeared in γR or p is in Tree(r)
in γR.

Lemma 9. Let p be a process. Let s be a segment of execution. Between any two executions of
J-action by p in s, p can only execute J-actions.

Proof. Let s = γ0γ1 . . . be a segment of execution and p ∈ V . Consider two executions of
J-action by p during s: one in γi 7→ γi+1 and the other in γj 7→ γj+1, with i < j. Assume
by contradiction that p executes an action different from J-action between γi+1 and γj . Let
γk 7→ γk+1 be the first step between γi+1 and γj during which p executes some other action:
this is a EB-action. Let γl 7→ γl+1 be the last step between γi+1 and γj during which p executes
some other action: this is a R-action (hence k < l).

Now, Lemma 1 applies since in γk, EBroadcast(p) holds, and in some step later γl 7→ γl+1, p
executes a R-action. This proves that in γk, some abnormal tree is alive and that in γl, this tree
is dead or has disappeared. Hence γk and γl are not in the same segment, a contradiction.

Lemma 10. In a segment of execution, there are at most (n−1)(n−2)/2 executions of J-action.

Proof. Let p ∈ V . First, p only executes J-actions between two J-actions in the same segment
(Lemma 9). So, using the guard of J-action, it follows that the value of the p.idR always
decreases during any sequence of J-actions which means that p cannot set p.idR two times to
the same value during the segment.

Let A be the set of processes q such that q.status = C at the beginning of the segment. Let
B the set of processes q such that q executes an R-action in the segment. A ∩ B = ∅. Indeed,
pick a process q ∈ A ∩ B. q switches from status C at the beginning to status EB, and then
to status EF since some step later, it executes R-action. Hence, there exists a configuration
γb in the segment such that EBroadcast(q) is true and another γr, later on such that R-action
occurs: hence Corollary 1 applies and proves that the tree of q in γb is abnormal alive and that
it dies or disappears some step before γr. This contradicts the definition of segment. Hence,
|A|+ |B| ≤ n.

Now, p.idR can only be assigned to (1) values which are present in variables idR of processes
in A at the first configuration of the segment and (2) to ID of processes in B. Let f : V 7→ N

such that ∀p ∈ A ∪B, if p ∈ A, f(p) = x, where x is the value of p.idR at the beginning of the
segment; otherwise, f(p) = p. Let p0, . . . pk−1 (with k ≤ n) be the set of processes in A ∪ B in
ascending order of f . pi changes at most i times of idR. Hence, in a given segment, the number
of executed J-actions, noted ]J-action, satisfies the following inequality:

]J-action ≤
k−1∑
i=0

i ≤
n−1∑
i=0

i =
(n− 1)(n− 2)

2
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By Lemmas 4 and 10, in any execution, there are at most n+ 1 segments, where processes
execute at most (n− 1)(n− 2)/2 J-actions. Hence, follows:

Corollary 2. In any execution, there are at most n3

2 − n
2 + n

2 + 1 steps containing J-actions.

Other Actions Below, we show an upper bound on the number of executions of other actions.

Lemma 11. In any execution, each process can execute at most n R-actions.

Proof. First, by definition, there are at most n abnormal alive trees in the initial configuration.
Let ]AbT be that number. Moreover, ]AbT can only decrease, by Lemma 3.

Let p be a process. We first show that when p executes R-action for the first time, ]AbT ≤
n−1. Then, we show that after every subsequent execution of a R-action by p, ]AbT necessarily
decreases. Hence, we will conclude that p cannot execute R-action more than n, because ]AbT
cannot be negative.

Consider the first step γi 7→ γi+1 where p executes R-action. Using Observation 2, Tree(p)
exists and is dead in γi. Hence, there are at most n− 1 abnormal alive trees in γi.

Consider the j − th execution of R-action by p, with j > 1. After the (j − 1)− th R-action
of p, the status of p is C. So, between the (j − 1) − th and the j − th R-action, the status of
p thus switches from C to EB and from C to EF , so that p can switch its status from EF to
C when executing its j − th R-action. Hence, meanwhile there exists a configuration γb such
that EBroadcast(q) is true and another γr, later on such that p executes its j − th R-action in
γr 7→ γr+1: Corollary 1 applies and proves that the tree to which p belongs in γb is abnormal
alive and that tree dies or disappears some step before γr, and we are done.

Let p be a process. p necessarily executes R-action between two executions of EF -action
(resp. EB-action). Hence, we have the following corollary.

Corollary 3. In any execution, a process can execute EB-action and EF -action at most n
times, each.

By Remark 2, Corollaries 2, 3, and Lemma 11:

Theorem 1 (Convergence). Every execution contains at most n3

2 + 2n2 + n
2 + 1 steps.

4.2.2 Terminal Configurations

We now show that in a terminal configuration, there is one and only one leader process, known
by all processes, i.e., for every two processes, p and q, we have Leader(p) = Leader(q) and
Leader(p) is the ID of some process.

Lemma 12. In a terminal configuration, every process has status C.

Proof. By contradiction, consider a terminal configuration γ where some process p satisfies
p.status 6= C. Then two cases are possible:

1. p.status = EB. By Observation 1, ∃q ∈ V such that q.status = EB∧(∀q′ ∈ RealChildrenq, q′.status 6=
EB) ∧ p ∈ KPath(q). If RealChildrenq = ∅, then q can executes EF -action. Otherwise,
there are two cases. If ∀q′ ∈ RealChildrenq then, q′.status = EF and q can execute
EF -action. Otherwise, there is q′ ∈ RealChildrenq such that q′.status = C and then q′

can execute EB-action. Hence, in both cases, γ is not terminal, a contradiction.
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2. p.status = EF . By Observation 1, ∃q ∈ V such that q.status = EF ∧ (Root(q)∨
(KinshipOk(q, q.par) ∧ q.par.status 6= EF ) ∧ q ∈ KPath(p).

If Root(q), then AbRoot(q) ∨ SelfRoot(q). Now, q.status = EF implies that AbRoot(q)
holds. So, in all cases, q.status = EF ∧ AbRoot(q) holds. If Allowed(q) holds, then
R-action is enabled at q, a contradiction. Otherwise, ∃r ∈ Childrenq such that ¬KinshipOk(r, q)∧
r.status = C. So EB-action is enabled at r, a contradiction.

If ¬Root(q), either q.par.status = C, AbRoot(q) holds and we obtain a contradiction as
in the case where Root(q) holds, or q.par.status = EB and using the same argument as
in case 1, we can deduce that some process is enabled, a contradiction.

Hence, all cases, γ is not terminal, a contradiction.

Theorem 2 (Correctness). In a terminal configuration, ∀p, q ∈ V,Leader(p) = Leader(q) and
Leader(p) is the ID of some process.

Proof. Let γ be a terminal configuration. Assume first, by contradiction, that there are at least
two leaders. As G is connected, ∃p, q ∈ V such that Leader(γ(p)) 6= Leader(γ(q)) and q ∈ Np.
Now, assume without loss of generality that:

Leader(γ(p)) = γ(p).idR < γ(q).idR = Leader(γ(q))

By Lemma 12, p.status = q.status = C. Then, either EBroadcast(q) is true and q can execute
EB-action or q can execute J-action. Hence γ is not terminal, a contradiction.

Assume now that the leader is not one of the processes, i.e., is a fake ID. Let p ∈ V such
that its level is minimum. Notice that γ(p).status = C by Lemma 12. If SelfRoot(p) holds in
γ, γ(p).idR 6= p. So, AbRoot(p) holds and p can execute EB-action. Otherwise, there is q ∈ Np
such that γ(p).par = q. As the level of p is minimum, γ(p).level ≤ γ(q).level. So, AbRoot(p)
holds and p can execute EB-action. Hence, γ is not terminal, a contradiction.

Using Theorem 2, there is exactly one root in a terminal configuration (the leader elected).
So the graph of kinship relations in a terminal configuration contains exactly one tree. Hence,
we can conclude:

Remark 3. In a terminal configuration, Gkr is a spanning tree rooted at the leader.

Theorems 1 and 2 establish the self-stabilization, silence, and step complexity of Algorithm
LE . Moreover, note that idR and level can be stored in Θ(log n) bits. Hence, we can conclude:

Theorem 3. Algorithm LE is a silent self-stabilizing leader election algorithm working under
a distributed unfair daemon. Its step complexity is at most n3

2 + 2n2 + n
2 + 1 steps. Its memory

requirement is Θ(log n) bits per process.

4.3 Complexity Analysis

In this section, we study the complexity of Algorithm LE in rounds and we make a worst-case
analysis of its stabilization time both in steps and rounds.
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4.3.1 Stabilization Time in Rounds

Clean configurations First, we study the “good” cases, i.e., when the system is in a clean
configuration (defined below). From such configurations, the execution consists in building
a tree rooted at ` using J-action only. Once, the tree is built, the system is in a terminal
configuration, where every process has elected `.

Definition 12 (Clean configuration). A configuration γ is called a clean configuration if and
only if for every process p, ¬EBroadcast(p) ∧ p.status = C holds in γ. A configuration that is
not clean is said to be dirty.

Remark 4. By definition, in a clean configuration, every process p has status C and either p is
a normal root, i.e., SelfRoot(p)∧SelfRootOk(p), or (exclusively) KinshipOk(p, p.par) holds.

Remark 5. Notice that in a clean configuration, the only action a process p can execute is
J-action, provided that Join(p) holds. Note also that Allowed(p) always holds due to Remark 4.
Verifying Join(p) then reduces to: ∃q ∈ Np, (q.idR < p.idR). In this case, the value of p.idR
can only decrease.

Lemmas 13 to 16 proves that, starting from a clean configuration, the system reaches in O(D)
rounds a terminal configuration (see Theorem 4). We first show the set of clean configurations
is closed.

Lemma 13. The set of clean configurations is closed.

Proof. Let γ 7→ γ′ be a step such that γ is a clean configuration. By definition, all processes have
status C in γ. So, processes can only execute J-action (Remark 5) in γ 7→ γ′, and consequently
all processes have status C in γ′. Now, ∀p ∈ V,¬EBroadcast(p) ∧ p.status = C in γ implies
that there is no alive abnormal root in γ. By Lemma 2, there is no alive abnormal root in γ′

too. Now, the fact that all processes have status C and there is no alive abnormal root in γ′

implies that ∀p ∈ V,¬EBroadcast(p) ∧ p.status = C in γ′, i.e., γ′ is clean.

Using Lemma 13, we show below that if a process is enabled in a clean configuration — for
the only action it can execute, i.e., J-action — it remains enabled until it executes it.

Lemma 14. In a clean configuration, if J-action is enabled at p, it remains enabled until it is
executed by p.

Proof. Let γ 7→ γ′ be a step such that γ is a clean configuration. Assume by contradiction that
J-action is enabled at p in γ and not in γ′, but p did not execute J-action between γ and γ′.
By Lemma 13, γ′ is also a clean configuration. So, ¬EBroadcast(p)∧ p.status = C holds in γ′.

But Join(p) must be false in γ′. Using Remark 5, this means that there necessarily exists
a neighbor of p, say q, such that γ(q).idR < γ(p).idR but γ′(q).idR ≥ γ′(p).idR = γ(p).idR.
This contradicts Remark 5.

Lemma 15. There is no (fake) idR smaller than ` in a clean configuration.

Proof. Let γ be a clean configuration. Assume there exists a process of idR smaller than `. Let
p be such a process such that p.idR is minimum among all the processes and p.level is minimum
among all the processes having idR minimum.

Note that p.idR 6= p so SelfRootOk(p) is false in γ. Hence, using Remark 4, the predi-
cate KinshipOk(p, p.par) holds in γ. Since we take p of minimum idR, p.idR ≤ p.par.idR in γ.
GoodIdR(p, p.par) implies that p.idR ≥ p.par.idR, so p.idR = p.par.idR. Now, GoodLevel(p, p.par)
implies that p.level = p.par.level + 1, which contradicts the minimality of p.level.
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For any process p, p can only set p.idR to its own ID or copy the value of q.idR, where q is
one of its neighbors. So, we have the following remark:

Remark 6. No fake ID is created during any step.

Lemma 16. In a clean configuration, if the idR of a process p is `, p is disabled forever.

Proof. Let γ be a clean configuration. Let p be a process with γ(p).idR = `. By Remark 5,
only J-action can be enabled in γ. Moreover, its guard reduces to ∃q ∈ Np, (q.idR < p.idR).
But Lemma 15 ensures that this cannot be true, hence p is disabled in γ. Then, by Lemma 13
and Remark 6, this will be true forever.

Corollary 4. A clean configuration where ∀p ∈ V, p.idR = `, is terminal.

Theorem 4. In a clean configuration, the system reaches a terminal configuration where ∀p ∈
V, p.idR = ` in at most D rounds.

Proof. Consider any execution e that starts from a clean configuration. In the following, we
denote by ρi the first configuration of the ith round in e. We show by induction on the distance
d ≥ 0 between the processes and ` that ∀p ∈ V such that ‖p, `‖ ≤ d, ρd(p).idR = `.

Base case: If ‖p, `‖ = 0, p = `. Notice that if the predicate GoodIdR(p, p.par) holds in ρ0,
it would implies that p.idR < p which is false by Lemma 15. So KinshipOk(p, p.par)
cannot hold in ρ0. Hence, SelfRoot(p) ∧ SelfRootOk(p) holds in ρ0 (by Remark 4) and
ρ0(p).idR = p = `.

Induction step: Assume the property holds at some d ≥ 0. If ‖p, `‖ = d+ 1, ∃q ∈ Np such that
‖q, `‖ = d. By induction hypothesis and by Lemma 16, q.idR = ` and q is disabled forever
since ρd.

If p.idR = ` in ρd, it remains so forever (Lemma 16). If p.idR 6= ` in ρd then q.idR < p.idR
(Lemma 15). Then, J-action is enabled at p in ρd and remains enabled until p executes
it (Lemma 14). As there is no fake ID smaller than ` (Lemma 15), p.idR = ` after p
executes J-action, i.e., after at most one round. Hence, p.idR = ` in ρd+1.

As D ≥ max {‖p, `‖, p ∈ V }, in at most D rounds, the system reaches a configuration where
∀p ∈ V, p.idR = `. By Corollary 4, this configuration is terminal.

Dirty Configurations In the previous paragraph, we proved that, starting from a clean
initial configuration, the system reaches a terminal configuration in at most D rounds. But
what happens if the initial configuration is dirty, i.e., if there is a process p such that the
predicate EBroadcast(p) holds or p.status 6= C. In this section, we prove that starting from
a dirty configuration, the system reaches a clean configuration in at most 3n rounds. More
precisely, we show that a dirty configuration contains abnormal trees that are “cleaned” in at
most 3n rounds. The system will be in a clean configuration afterwards.

Lemma 17. In an dirty configuration, there exists at least one abnormal root.

Proof. Let γ be a dirty configuration. Then, ∃p ∈ V such that p.status 6= C ∨EBroadcast(p).
We search for an abnormal root.

1. If p.status ∈ {EB,EF}, using Observation 1, there is q ∈ KPath(p) such that q.status ∈
{EB,EF} ∧ Root(q). Then, AbRoot(q) ∨ SelfRoot(q) holds in γ. Now, SelfRoot(q) ∧
q.status ∈ {EB,EF} implies AbRoot(q). Hence, in all cases, AbRoot(q) holds.
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2. If EBroadcast(p) holds, Lemma 8 applies and we are done.

We have just shown that there are abnormal roots (and so abnormal trees) in dirty con-
figurations. Below, we prove that these abnormal trees will disappear after three waves of
“cleaning”. After the first wave, an abnormal tree becomes dead (Theorem 5), after the second
wave any abnormal root gets the status EF (Theorem 6) and finally after the third wave there
is no more abnormal trees (Theorem 7), hence the system is in a clean configuration.

The following technical lemma is used in the proof of Theorem 5.

Lemma 18. When EB-action is enabled at a process p, it remains enabled until p executes
EB-action.

Proof. Assume that EB-action is enabled at a process p in a configuration γ, but p did not
execute EB-action during the step γ 7→ γ′. Notice that p does not execute any action during
this step, as guards are mutually exclusive. As EB-action is enabled in γ, γ(p).status = C and
then, γ′(p).status = C.

First, assume that the predicate AbRoot(p) holds in γ. If SelfRoot(p) ∧ ¬SelfRootOk(p)
holds in γ and, as these predicates only depends on the local state of p and as p does not execute
any action during the step, it also holds in γ′: the action is still enabled in γ′. Otherwise,
¬SelfRoot(p) ∧ ¬KinshipOk(p, p.par) holds in γ. These predicates only depends on the local
state of p and its parent. Now, Allowed(p.par) does not hold in γ because of p, so p.par cannot
execute R-action nor J-action during γ 7→ γ′. Then, either p.par executes EF -action, changes
its status to EF and then, GoodStatus(p, p.par) is false in γ′, or p.par executes EB-action and
changes its status to EB. In these two cases, EBroadcast(p) holds in γ′.

Now, assume p.par.status = EB. p.par can only execute EF -action and change its status to
EF . Then, the predicate GoodStatus(p, p.par) is false in γ′, which implies that EBroadcast(p)
holds in γ′.

Theorem 5. In at most n rounds, the system reaches a configuration where every abnormal
tree (if any) is dead.

Proof. Consider any execution e = γ0, . . .. ∀i > 0, we denote by γRi the last configuration of
the ith round and so the first configuration of the i + 1th round of e. Moreover, let γR0 = γ0
be the initial configuration. We show by induction on the length of the KPaths that, ∀i ≥ Rd
(d ≥ 1), ∀p ∈ V , if p is in an abnormal tree and |KPath(p)| ≤ d in γi, then p is dead in γi.

Base Case: If p is in an abnormal tree and |KPath(p)| = 1, p is an abnormal root. As no alive
abnormal root is created (Lemma 2), if p is alive, it is an alive abnormal root since γR0

and if predicate (p.status = C ∧AbRoot(p)) becomes false in some configuration, then it
remains false forever. Hence, it is sufficient to show that any alive abnormal root is no
more an alive abnormal root after one round (that is, from γR1).

By definition, EB-action is enabled at p in γR0 and p executes EB-action during the first
round (using Lemma 18). Hence, p is dead at the end of the first round, and we are done.

Induction Hypothesis: Let d ≥ 1. Assume that ∀i ≥ Rd, ∀p ∈ V , if p belongs to an abnormal
tree and |KPath(p)| ≤ d in γi, then p is dead in γi.

Induction Step: We first show that for every p ∈ V , for every i ≥ Rd, if (p.status = C ∧
|KPath(p)| ≤ d + 1) is false in configuration γi, then for every j ≥ i, (p.status = C ∧
|KPath(p)| ≤ d+ 1) is false in configuration γj .
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Assume by contradiction that the predicate (p.status = C ∧ |KPath(p)| ≤ d+ 1) is false
in γj , but true in γj+1 (j ≥ i). By induction hypothesis, |KPath(p)| = d+ 1 > 1 in γj+1

(indeed, p is alive in γj+1). So, γj+1(p).par 6= p. So, let q ∈ Np such that γj+1(p).par =
q. By definition, |KPath(q)| = d in γj+1. By induction hypothesis, γj+1(q).status ∈
{EB,EF}. Now, p.status = C and |KPath(p)| > 1 in γj+1, so p is not an abnormal root
in γj+1. Hence, γj+1(q).status = EB (by Observation 1) and, consequently, γj(q).status ∈
{C,EB}.

• If γj(q).status = EB, then p does not execute any action during the step γj 7→
γj+1 (otherwise, γj+1(p).status 6= C or γj+1(p).par 6= q). Hence, γj(p).status =
γj+1(p).status = C. By hypothesis, “p.status = C ∧ |KPath(p)| ≤ d+ 1” is false in
γj , so we have |KPath(p)| > d+ 1 in γj .

Now, γj(p).status = C and γj(q).status = EB, so S-Trace(KPath(p)) = EB+C in
γj (Observation 1) and p is the only process in its KPath that can execute an action
in γj 7→ γj+1. Hence, for every q such that q ∈ KPath(p) in γj , q ∈ KPath(p) in
γj+1, and then |KPath(p)| > d + 1 in γj+1. So p.status = C ∧ |KPath(p)| ≤ d + 1
is false in γj+1, a contradiction.

• If γj(q).status = C, then q is in an alive abnormal tree in γj (indeed, q executes
EB-action in γj 7→ γj+1, and so Lemma 8 applies). As q is alive in γj , we have
|KPath(q)| > d in γj by induction hypothesis. Moreover, q is not an abnormal root
(there is no more alive abnormal root after the first round, see the base case). Hence,
the status of its parent in γj is EB.

Now, |KPath(q)| > d and S-Trace(KPath(q)) = EB+C in γj (Observation 1). So,
q is the only one in its KPath that executes an action in γj 7→ γj+1 and this action
is EB-action, that maintains the KinshipOk relation. Hence, |KPath(q)| > d in
γj+1 and consequently, |KPath(p)| > d+ 1 in γj+1, a contradiction.

Hence, ∀p ∈ V , if (p.status = C ∧ |KPath(p)| ≤ d + 1) is false in some configuration γi
with i ≥ Rd, then (p.status = C ∧ |KPath(p)| ≤ d+ 1) remains false forever.

Now, EB-action is continuously enabled ∀p such that p is alive |KPath(p)| = d + 1 in
γRd

(by induction hypothesis and Lemma 18). So, p becomes dead during the round and,
∀j ≥ Rd+1, γj contains no alive process p such that |KPath(p)| ≤ d+ 1.

n ≥ max {|KPath(p)|, ∀p ∈ V }. Hence, any process in an abnormal tree becomes dead in at
most n rounds.

Lemma 19. If EF -action is enabled at a process p, it remains enabled until p executes EF -action.

Proof. Let γ 7→ γ′ be a step. Assume by contradiction EF -action is enabled at a process p in γ
and is not enabled in γ′, but p did not execute EF -action during the step γ 7→ γ′. Notice that p
does not execute any action during this step, as guards are mutually exclusive. As EFeedback(p)
holds in γ, γ(p).status = γ′(p).status = EB. As EFeedback(p) does not hold in γ′ and no
process can execute J-action and choose a process of status EB as parent, ∃q ∈ RealChildrenp
such that γ(q).status = EF and γ′(q).status 6= EF . Now, because γ(q).status = EF , q
can only execute R-action. However, as q ∈ RealChildrenp, KinshipOk(q, p) holds in γ and
then q is not a root. So, q cannot execute any action and change its status during γ 7→ γ′, a
contradiction.

Theorem 6. Let γ be a configuration containing abnormal trees and where all abnormal trees
are dead. In at most n rounds from γ, the system reaches a configuration where the status of
all abnormal roots is EF .
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Proof. Consider any execution e = γ0, . . . starting from a configuration that contains abnormal
trees and where all abnormal trees are dead. ∀i > 0, we denote by γRi the last configuration of
the ith round and so the first configuration of the i+ 1th round. Moreover, let γR0 = γ0 be the
initial configuration.

Claim 1: ∀p ∈ V , ∀i ≥ R0, if γi(p).status 6= EB, then ∀j ≥ i, γj(p).status 6= EB.

Assume by contradiction that γj(p).status 6= EB and γj+1(p).status = EB, with γj 7→
γj+1. Then, p.status = C in γj and EB-action is enabled at p in γj . So, p is in an alive
abnormal tree in γj (Lemma 8), a contradiction to Lemma 3.

In any configuration γ, we denote by MaxLengthKPath(p) = max{|KPath(q)|, q ∈ V ∧ p ∈
KPath(q)}. Again in γ, we define L(p) = MaxLengthKPath(p)−|KPath(p)| and EBL(p, k) ≡
p.status = EB ∧ L(p) = k.

Claim 2: ∀i ≥ R0, if EBL(p, ki) holds in γi, then ∀j ≥ i,∀kj < ki,¬EBL(p, kj) holds in γj .

If j = i, EBL(p, kj) is false for kj < ki because L(p) cannot have two different values in a
same configuration. Assume now j > i. The case ki = 0 is direct. Assume ki > 0. Assume
by contradiction that EBL(p, ki) holds in γi and EBL(p, kj) holds in γj with j > i and
kj < ki. So, γi(p).status = γj(p).status = EB and there are two cases:

• p.status = EB in all the configurations between γi and γj . Consider the step
γi 7→ γi+1. Let q be any process such that p ∈ KPath(q) in γi. So, KPath(q) =
q0 . . . qi . . . qk where qi = p and qk = q, and S-Trace(KPath(q)) = EB+EF ∗ in γi.
There is a unique process in KPath(q) that can execute an action in γi 7→ γi+1

(the only one of status EB with children of status EF ). If it executes an action, it
is EF -action which maintains KinshipOk relation. Hence, ∀q′ ∈ KPath(q) in γi,
q′ ∈ KPath(q) in γi+1. We can apply this latter property to every process r such
that p ∈ KPath(r) and |KPath(r)| = MaxLengthKPath(p) in γi: p ∈ KPath(r)
in γi+1 and the value of |KPath(r)| in γi+1 is greater than or equal to the value
of |KPath(r)| in γi. So, EBL(p, ki+1) holds with ki+1 ≥ ki. Applying the same
argument on step γi+1 7→ γi+2, etc., until step γj−1 7→ γj , we obtain that EBL(p, kj)
is true in γj with kj ≥ ki, a contradiction.

• There is a configuration between γi and γj where p.status 6= EB. So, ∃x, i < x < j,
such that γx(p).status 6= EB and γx+1(p).status = EB. This contradicts Claim 1.

We show by induction that ∀i ≥ Rd with d ≥ 1, ∀p ∈ V , ∀k ≤ d− 1, EBL(p, k) is false in γi.

Base case: There are three cases:

1. If L(p) = 0 in γR0 and γR0(p).status = EB, then EF -action is enabled at p in γR0 ,
p executes EF -action during the first round, by Lemma 19 and p gets status EF .
By Claim 1, p.status remains different from EB forever and EBL(p, 0) is false in γi,
∀i ≥ R1.

2. If γR0(p).status 6= EB, p.status 6= EB forever (Claim 1) and then EBL(p, 0) is false
forever.

3. If EBL(p, k) holds in γR0 with k > 0, EBL(p, 0) is false forever (Claim 2).

Induction hypothesis: ∀i ≥ Rd with d ≥ 1, ∀p ∈ V , ∀k ≤ d− 1, EBL(p, k) is false in γi.

Induction step: There are four cases:
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1. If L(p) = d and γRd
(p).status = EB, then ∀q ∈ RealChildrenp in γRd

, L(q) < d by
definition and γRd(q).status 6= EB by induction hypothesis. Now, the trees are dead,
so γRd

(q).status = EF . Hence, EF -action is enabled at p in γRd
. By Lemma 19,

p executes EF -action during the round and gets status EF . Then, p.status 6= EB
forever (Claim 1), so EBL(p, d) is false at the end of the d+ 1th round and remains
false forever.

2. If L(p) = d and γRd
(p).status 6= EB, then, using Claim 1, p.status 6= EB forever.

So, EBL(p, d) is false forever.

3. If L(p) < d, γRd
(p).status 6= EB by induction hypothesis and we conclude as in

case 2.

4. If EBL(p, k) holds in γRd
with k > d, EBL(p, i) is false forever ∀i ≤ d (Claim 2).

With d = n, we have ∀i ≥ Rn, ∀p ∈ V , ∀k ≤ n− 1, EBL(p, k) is false in γi: hence, in at most
n rounds, there is no more process of status EB in abnormal trees, those ones being dead. So,
all processes (and in particular the abnormal roots) in abnormal trees have status EF .

Lemma 20. If all abnormal trees are dead and R-action is enabled at a process p, then R-action
remains enabled at p until p executes it.

Proof. Let γ be a configuration, where all abnormal trees are dead. Assume, by contradiction,
that R-action is enabled at a process p in a configuration γ and is not enabled in the next
configuration γ′, but p did not execute R-action during the step γ 7→ γ′. Notice that p does
not execute any action during this step, as guards are mutually exclusive.

As R-action is enabled in γ and p does not execute an action during the step, γ(p).status =
γ′(p).status = EF .

If SelfRoot(p)∧¬SelfRootOk(p) holds in γ, it also holds in γ′ because p does not execute
an action between γ and γ′ and these predicates only depends on the local state of p.

Otherwise ¬SelfRoot(p) ∧ ¬KinshipOk(p, p.par) holds in γ. Let q = p.par. If q does not
execute an action between γ and γ′, p is still an abnormal root. Otherwise, three cases are
possible:

• ¬GoodIdR(p, q) holds in γ.

1. If γ(p).idR < γ(q).idR. If q executes EB-action or EF -action during the step,
the idR of q does not change, so γ′(p).idR < γ′(q).idR, and then AbRoot(p) holds
in γ′. Otherwise q executes R-action or J-action. Then γ′(q).status = C, so
¬GoodStatus(p, q) and AbRoot(p) holds in γ′.

2. If γ(p).idR ≥ p, the idR is not modified during the step, so γ′(p).idR = γ(p).idR ≥ p
and AbRoot(p) holds in γ′.

• ¬GoodLevel(p, q) holds in γ so γ(p).idR = γ(q).idR but γ(p).level 6= γ(q).level+1. First,
if q executes EB-action or EF -action, its idR and its level do not change, so γ′(p).idR =
γ′(q).idR and γ′(p).level 6= γ′(q).level+1, so AbRoot(p) holds in γ′. Otherwise, q executes
R-action or J-action and consequently γ′(q).status = C. So ¬GoodStatus(p, q) and
AbRoot(p) holds in γ′.

• ¬GoodStatus(p, q) holds in γ. Then γ(q).status = C, and q can only execute EB-action
or J-action between γ and γ′. If q executes EB-action, then EBroadcast(q) holds in γ,
so q is in an abnormal tree (Lemma 8). But, by hypothesis, all abnormal trees are dead
in γ, so γ(q).status 6= C, a contradiction. If q executes J-action then γ′(q).status = C,
so ¬GoodStatus(p, q) and AbRoot(p) holds in γ′.
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Thus, γ′(p).status = EF and AbRoot(p) holds in γ′ and, consequently, Allowed(p) is false
in γ′. So ∃q ∈ Np such that q ∈ Childrenp∧¬KinshipOk(q, p) holds in γ′ but γ′(q).status = C.
Two cases are possible:

• If q /∈ Childrenp in γ, then q executes J-action during the step γ 7→ γ′ and Minq = p.
But γ(p).status = EF , a contradiction.

• Otherwise q ∈ Childrenp in γ and γ(q).status 6= C. q executes either EF -action and
γ′(q).status = EF , or R-action and γ′(q).par 6= p, so q /∈ Childrenp in γ′, a contradiction.

Definition 13 (Abnormal process). A process p is said to be abnormal if and only if p belongs
to an abnormal tree. p is said to be normal, otherwise.

As no process can join a dead abnormal tree (Remark 1) and, by Lemma 3, no alive abnormal
tree can be created, we have the following remark:

Remark 7. In a configuration where every abnormal tree is dead, the number of abnormal
processes can only decrease.

Theorem 7. Starting from a configuration where every abnormal tree is dead and the status of
their roots is EF , there is no more abnormal processes in at most n rounds.

Proof. Let γ0 be a configuration where all abnormal trees are dead and the status of their roots
is EF . By Observation 1, all abnormal processes have status EF in γ0. So, from γ0, no process
can be ever an abnormal process with a status different of EF (such a process can only execute
R-action, then it is a normal process forever, by Lemma 3). Then, by definition, the number of
abnormal processes in γ0 is at most n. Moreover, by Remark 7, it is sufficient to show that in
any configuration γk reachable from γ0, if the number of abnormal processes is not null, then
at least one of them becomes normal within the next round.

So, let assume that some process p is abnormal in γk. Then, γk(p).status = EF . By
Observation 1 and Lemma 20, the initial extremity r of KPath(p) is an abnormal process (of
status EF ) and executes R-action within the next round. After executing R-action, r is normal
(actually, r becomes a self root), and we are done.

By definition, the root of a normal tree has status C. So, by Observation 1, we have:

Remark 8. Every process has status C in a configuration containing no abnormal processes.
Moreover, this configuration is clean.

Using Lemma 17 and Theorems 5 to 7, we can conclude:

Theorem 8. In at most 3n rounds, the system reaches a clean configuration.

Then, using Theorems 4 and 8 we get:

Theorem 9 (Round Complexity). In at most 3n + D rounds, the system reaches a terminal
configuration.
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Figure 8: An example in 3n+D rounds
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4.3.2 Worst Case Analysis of the Stabilization Time

Lower Bound on the Worst Case Stabilization Time in Rounds. We now show that
the bound proposed in Theorem 9 cannot be improved. To see this, we exhibit a construction
that gives, ∀n ≥ 4, ∀D, 2 ≤ D ≤ n − 2, a network of n processes whose diameter is D from
which there is a possible synchronous execution that lasts exactly 3n+D rounds. (Recall that
every synchronous execution is possible under the distributed unfair daemon.)

We consider a network G = (V,E) composed of n processes V = {p1, . . . , pn} such that pi
has ID i, for i ∈ {1, . . . , n}. Figure 8a shows the system in its initial configuration. In details,
processes p1, pn, . . . ,p2 form a chain, i.e., {p1, pn} ∈ E and {pi, pi−1} ∈ E, ∀i ∈ {3, . . . , n}.

We add k edges to p2, with 2 ≤ k ≤ n− 2, as follows:

If k = n− 2, {p2, p1} ∈ E and for ∀i ∈ {4, . . . , n}, {p2, pi} ∈ E,

Otherwise ∀i ∈ {4, . . . , k + 3}, {p2, pi} ∈ E.

Notice that the diameter of the network is n − k and can be adjusted by adding or removing
some edges to p2.

We assume the following initial configuration:

• pi.idR = 0, ∀i ∈ {1, . . . , n},

• p1.level = n− 1 and p1.par = pn,

• p2.par = p2 and p2.level = 0,

• pi.level = i− 2 and pi.par = pi − 1, ∀i ∈ {3, . . . , n}.

We consider a synchronous daemon, i.e., in a configuration γ, every process in Enabled(γ)
is selected by the daemon to execute an action. So, in this case, every round lasts exactly one
step.

The execution is then as follows:

• p2, p3, p4, . . . , pn, p1 sequentially execute EB-action: n rounds. (See Figure 8b.)

• p1, pn, pn−1, . . . , p2 sequentially execute EF -action: n rounds. (See Figure 8c.)

• p2 and p3 sequentially execute R-action: 2 rounds. (See Figure 8d.)

• For i = 4, . . . , n, simultaneously pi and pi−1 respectively executes R-action and J-action,
in particular, pi−1 joins Tree(p2): n− 3 rounds. (See Figures 8e and 8f.)

• p1 executes R-action and pn executes J-action simultaneously: 1 round.

• For i = n, . . . , k+3, i executes J-action to join Tree(1): n−k−2 rounds. (See Figure 8g.)

• p2 and pk+2 simultaneously execute J-action to join Tree(1): 1 round. (See Figure 8h.)

• p3, . . . , pk+1 simultaneously execute J-action and then the configuration is terminal: 1
round. (See Figure 8i.)

Hence, the execution lasts exactly 3n+ (n− k) = 3n+D rounds. Using Theorem 9 we can
conclude:

Theorem 10. In the worst case, the round complexity of LE is exactly 3n+D rounds.
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(k) In one step, the system reaches a termi-
nal configuration where p1 is leader.

Figure 9: An example in Ω(n3) steps

31



Lower Bound on the Worst Case Stabilization Time in Steps. We show that the
bound given in Theorem 1 can be asymptotically matched, i.e., we give an example of possible
execution that stabilizes in Ω(n3) steps, for every n ≥ 4.

We consider a network G = (V,E) composed of n processes V = {p1, . . . , pn} such that
pi has ID n + i, ∀i ∈ {1, . . . , n}. Figure 9a shows the network in this initial configuration. In
details, there are 2n−3 edges: {pi, pi+1} for i ∈ {1, . . . , n−2} and {pi, pn} for i ∈ {1, . . . , n−1}.
(Notice that the diameter of this network is 2.) The initial configuration is as follows:

• pi.idR = i, ∀i ∈ {1, . . . , n− 1}, and pn.idR = 2n.

• pi.par = pi, pi.level = 0 and pi.status = C, ∀i ∈ {1, . . . , n}.

We consider the following execution:

• For i = n− 1, n− 2, . . . , 1, we clean Tree(pi) the following way:

1. If i ≤ n− 2, for j = n− 2, n− 1, . . . , i,

(a) For k = j + 1, j + 2, . . . , n− 1, pk joins Tree(pj).

Case 1 lasts
∑n−1−i

j=1 j = (n− i− 1)(n− i)/2 steps.

2. pi, pi+1, . . . , pn−1 sequentially execute EB-action: n− i steps.

3. pn−1, pn−2, . . . , pi sequentially execute EF -action: n− i steps.

4. pi, pi+1, . . . , pn−1 sequentially execute R-action: n− i steps.

Figures 9e to 9h show the cleaning of Tree(pn−3).

• After all abnormal trees have been cleaned, processes pn−1 to p2 join Tree(p1) similarly
as Case 1:

∑n−2
j=1 j = (n− 1)(n− 2)/2 steps (Figure 9j).

• pn executes J-action to join Tree(p1): 1 step (Figure 9k).

Hence, the complete execution lasts:

3 +

n−2∑
i=1

(
3(n− i) +

(n− i− 1)(n− i)
2

)
+

(n− 1)(n− 2)

2
+ 1 =

n3

6
+

3

2
n2 − 8

3
n+ 2 steps

So, there exists an execution in Ω(n3). Using Theorem 3, we can conclude:

Theorem 11. In the worst case, the step complexity of LE is in Θ(n3) steps.

5 Step Complexity of Algorithm DLV
In this section, we study the step complexity of the algorithm given in [10], called here DLV.2

Below, we show that its stabilization time is not polynomial in steps.
First, we give the code of algorithm DLV and an informal explanation of its main principles

in Subsection 5.1. Then, we give in Subsection 5.2 an example of a class of network in which
there is a possible execution that stabilizes in Ω(n4) steps. Finally, in Subsection 5.3, we
generalize the previous example to a class of network where there is a possible execution that
stabilizes in Ω(nα) for any α ≥ 4.
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Algorithm 2 Algorithm DLV [10] for every process p

Variables
p.leader ∈ N, p.level ∈ N, p.key = 〈p.leader, p.level〉, p.parent ∈ Np ∪ {p}
p.color ∈ {1, 2}, p.done ∈ B

Macros
SelfKey(p) ≡ 〈p, 0〉
SuccKey(p) ≡ 〈p.leader, p.level + 1〉
BestNbrKey(p) ≡ min{q.key | (q ∈ Np) ∧ (SuccKey(q) < SelfKey(p))

∧(q.color = 2)}
TrueChldrn(p) ≡ {q ∈ Np | (q.parent = p) ∧ (q.key = SuccKey(p))}
FalseChldrn(p) ≡ {q ∈ Np | (q.parent = p) ∧ (q.key 6= SuccKey(p))}
Recruits(p) ≡ {q ∈ Np | q.key > SuccKey(p)}

Predicates
IsTrueRoot(p) ≡ p.key = SelfKey(p)
IsTrueChld(p) ≡ (p.key = SuccKey(p.parent) ∧ (p.leader < p)
IsFalseRoot(p) ≡ ¬IsTrueRoot(p) ∧ ¬IsTrueChld(p)
Done(p) ≡ (Recruits(p) = ∅) ∧ (∀q ∈ TrueChldrn(p), q.done)
ColorFrozen(p) ≡ IsTrueRoot(p) ∧ p.done

Guards
Join(p, q) ≡ (IsFalseRoot(p) ∨ (SuccKey(q) < p.key)) ∧ (q.color = 2)

∧(q.key = BestNbrKey(p)) ∧ (FalseChldrn(p) = ∅)
Reset(p) ≡ IsFalseRoot(p)
Color1(p) ≡ (p.color = 2) ∧ ¬ColorFrozen(p) ∧ (p.parent.color = 2)

∧(Recruits(p) = ∅) ∧ (∀q ∈ TrueChldrn(p), q.color = 1)
Color2(p) ≡ (p.color = 1) ∧ ¬ColorFrozen(p) ∧ (p.parent.color = 1)

∧(∀q ∈ TrueChldrn(p), q.color = 2)
UpdateDone(p) ≡ p.done 6= Done(p)

Actions
J (priority 1) :: Join(p, q) → p.key ← SuccKey(q); p.parent← q;

p.color ← 1; p.done← false;
R (priority 2) :: Reset(p) → p.key ← SelfKey(p); p.parent← p;

p.color ← 2; p.done← false;
C1 (priority 3) :: Color1(p) → p.color ← 1; p.done← Done(p);
C2 (priority 3) :: Color2(p) → p.color ← 2; p.done← Done(p);
UD (priority 4) :: UpdateDone(p) → p.done← Done(p);
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(b) 7 can execute C1 action and get color 1.

Figure 10: Guards of color actions. The ID is represented inside the node. The label next to a
node shows its key. The arrows represent parent pointers. No arrow exits a node if its parent
is itself. The filling represents the color: gray for 1 and white for 2.

5.1 Overview of DLV

The formal code of Algorithm DLV is given in Algorithm 2. This algorithm uses priorities.
Each of its actions is given with priority number. When an enabled process is selected by the
daemon, it only executes its enabled action with the lowest priority number.

Algorithm DLV elects the process of minimum ID, `, and builds a breadth-first spanning
tree rooted at `. To ensure that every process knows which one is elected, it maintains a variable
leader in which is saved the alleged leader. Variables parent and level are used to define the
tree. The key of a process p is the combination of its two variables p.leader and p.level. Notice
that the keys are ordered using the classical lexical order.

Let p be a process. Let q be its neighbor of smallest key (BestNbrKey(p)). Suppose the
key of process p is not the immediate successor of the q’s key or p.parent 6= q. p may execute
Action J to modify its key and its parent pointer accordingly. Notice that, contrary to our
algorithm, p can execute Action J and change its parent when there is a neighbor with the
same leader but with a level smaller than p.level− 1, in order to build a breadth-first spanning
tree. Note also that the execution of Action J is constrained by the use of a color, whose goal
will be explained later.

As in LE , Datta et al define a “good relation” between a process p and its parent: IsTrueChld(p).
This ensures that the key of p is the successor key of its parent and that its leader is smaller
than its own ID. Then, a maximal set of processes linked by parent pointers and satisfying the
IsTrueChld relation defines a tree. The root of a tree can be a true root (IsTrueRoot(p)), i.e.,
the key of p is a self key (〈p, 0〉). In this case, the tree is said to be normal. Otherwise, the root
is a false root (IsFalseRoot(p)), i.e., neither a true root nor a true child, and the tree is said
to be abnormal.

Color waves The main difference between DLV and LE is the way to deal with these abnor-
mal trees. Instead of using a status and a three-waves cleaning, DLV uses color waves. More
precisely, each process has a variable color, whose value is either 1 or 2. A process can only
choose as parent a neighbor of color 2 and after executing Action J , the process gets color 1.

A process can change its color, by executing Actions C1 or C2, if it has the same color than
its parent (it is trivially satisfied for every true root) and if all of its true children have the other
color (see Figure 10). There is an additional constraint to change a color to 1: as a process
cannot recruit when it has color 1, a process p of color 2 must not change its color while it can
recruit processes (while Recruits(p) 6= ∅).

2DLV stands for “Datta, Larmore, and Vemula.”
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To add a new level in the tree, the leaves must change their color to 2. Then, the goal is
to propagate up in the tree a first wave of Actions C1 initiated by the parents of the leaves,
so that a second wave of Actions C2 can be initiated by the leaves. To ensure that, the root
should absorbed a (previous) wave. But, only a true root can absorb a color wave. Indeed, the
priorities on actions prevent a false root to change its color (before it resets) and, so, to absorb
a color wave.

Therefore, the colors of the processes in an abnormal tree eventually alternate, i.e., the
parents and their true children do not have the same color, and no more process can join the
tree: the tree is color locked. Then, the false root eventually resets by executing Action R, and
so forth. Once all abnormal trees have been removed, ` is a true root and regularly absorb color
waves allowing then the leaves of its tree to recruit processes.

Finally, in O(n) rounds, ` is elected and a breadth-first spanning tree rooted at ` is built.
Notice that the color waves might never end. So, an additional mechanism allow to ensure
the silence by using a Boolean variable done and Action UD. When a process p believes that
the construction of the final tree is finished (because it cannot recruit processes anymore) and
all its true children q (if any) have set their variables q.done to true, p.done is set to true.
Moreover, a true root r cannot change its color once r.done holds. In this case, we said that
r is color frozen. Thus, after the completion of the final tree construction, the value true is
propagated up in the tree into the done variables, and in O(D) rounds, the system reaches a
terminal configuration.

Example of execution Figure 11 shows an example of execution of DLV (for sake of sim-
plicity, we do not consider the done variables and Actions UD in this example). In the initial
configuration (Configuration a), the leader of process 7 is 1, the only fake id. Moreover, 5 has
already chosen 7 as parent. Then, in step a 7→ b, 2 and 3 execute Action J and choose 7 (of
color 2) as parent. Note also that 5 has the same color than its parent (7), has no true child,
and cannot recruit any other process. So 5 executes Action C1 and gets color 1 in b 7→ c. No
more process can join the tree rooted at 7 and the tree is color locked (7 is a false root and
cannot change its color), so 7 resets during c 7→ d. In Configuration d, 2, 3 and 5 are false roots.
In d 7→ e they execute Action R in turns. Then, in e 7→ f, processes 4, 5, 6, 7, and 8 execute
Action J to choose 2 as parent. In Configuration f, 3 cannot join the tree rooted at 2 because
all its neighbors have color 1. 2 changes its color to 1 by executing Action C1 in f 7→ g. Then,
processes 4, 5, 6, 7, and 8 get color 2 by executing Action C2 in g 7→ h. Finally, 3 is allowed to
execute Action J and joins the tree rooted at 2 in h 7→ i.

5.2 Example in Ω(n4) Steps

First, we show an execution of DLV that lasts Ω(n4) steps.

Network and initial configuration We consider a network made of n = L × β processes
with L = 8 and β ≥ 2: p(1,1), p(1,2), . . . , p(1,β), p(2,1), p(2,2), . . . , p(2,β), . . . , p(8,1), p(8,2), . . . , p(8,β)
such that the ID of p(i,j) is (i− 1)β + j,∀i ∈ {1, . . . , 8},∀j ∈ {1, . . . , β}. Notice that 0 is a fake
ID smaller than every ID in the network.

Figure 12a shows the structure of the network and the initial configuration. In details, the
processes form β columns: ∀i ∈ {2, . . . , 8}, ∀j ∈ {1, . . . , β}, {p(i−1,j), p(i,j)} ∈ E.

There are also three complete bipartite subgraphs: ∀j, j′ ∈ {1, . . . , β}, j′ 6= j,

{p(4,j), p(5,j′)} ∈ V, {p(6,j), p(7,j′)} ∈ E and {p(7,j), p(8,j′)} ∈ E

These bipartite subgraphs split the network in four layers:
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Figure 11: Example of execution of algorithm DLV.
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• Layer 1: line 8

• Layer 2: line 7

• Layer 3: lines 5 and 6

• Layer 4: lines 1 to 4

We choose the following initial configuration.

• For i ∈ {1, . . . , 8}, for j ∈ {1, . . . , β}, p(i,j).leader = 0, p(i,j).level = i and p(i,j).done =
false

• For j ∈ {1, . . . , β},

– p(1,j).parent = p(1,j)

– p(5,j).parent = p(4,1)

– p(7,j).parent = p(6,1)

– p(8,j).parent = p(7,1)

– For i ∈ {2, 3, 4, 6}, p(i,j).parent = p(i−1,j)

• For i ∈ {1, . . . , 8}, p(i,1).color = (i mod 2) + 1

• For j ∈ {2, . . . , β},

– p(8,j).color = 1

– For i ∈ {1, . . . , 7}, p(i,j).color = 2

Overview of the execution We first give an illustrative execution to understand the Ω(n4)
lower bound.

We start with Configuration a of Figure 12. Starting from this configuration, all the processes
of the first column and of the last line successively reset. We obtain configuration b. This costs
at least β steps (since the reset of the last line can be sequential). Then, all processes p(8,.) can
join p(7,2) (which has the fake id 0 as leader). This leads to Configuration c. Then, we can
reset p(7,2) and the last line (at least β steps). Again processes p(8..) can join p(7,3) and we can
reset, etc., until we reset p(7,β) and the last line to obtain Configuration d. Overall, this costs
at least β2 steps.

From Configuration d, we can rebuilt the tree on p(6,2). The tree is shown in Configuration e,
and we can reset the processes following the order given by the arrow in Configuration e. We
obtain Configuration f. Again we can start the succession of buildings and resets bottom-up
just as before, but this time, until resetting a tree rooted at p(5,β) (Configuration g). This costs
at least β3 steps.

From Configuration g, we can rebuild a tree on the second column until reaching Configu-
ration h . This latter is similar to the first one, Configuration a. The only difference is that
the main tree is now rooted at p(1,2) instead of p(1,1). We can repeat the same scheme on each
column. This leads to an execution of at least β4 steps.
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Figure 12: Intuitive idea of the execution. The leader of a process is 0 if the process is labeled
with a star, its own ID otherwise. level is not represented as it is always correct. The plain
gray arrows show the processes that successively reset.
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Figure 12: (continued)
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Execution in details Now, let see the details of the execution. We consider an unfair daemon
which selects the enabled processes according to the function Daemon given in Algorithms 3 and
4. In this algorithm, top(i) (respectively bottom(i)) is the number of the first line (respectively
last line) of layer i. More precisely:

top(i) = L− 2i−1 + 1

bottom(i) =

{
top(1) if i = 1

top(i− 1)− 1 if i > 1

In Build(layer, column), all the processes of lines top(layer) to 8 execute line by line Action
J . Notice that every process of line top(layer) chooses the process p(top(layer)−1,column) as parent.

In Reset(layer, column), all the processes on column column from the one on line top(layer+
1) to the one on line bottom(layer + 1) execute Action R (except for layer 1 where all the pro-
cesses of line 8 also execute Action R). Then, Reset(layer − 1, i) and Build(layer − 1, i+ 1)
are called for each column i = 1, . . . , β − 1. Finally, Reset(layer − 1, β) is executed.

We count how many times processes p(8,.) executes Action R:

• Each process p(8,.) executes once Action R on line 15 of Algorithm 3 in function Re-
set(layer, column), when layer = 1: at least β processes execute Action R.

• Reset(3, column) is called β times by function Daemon.

• Reset(2, column) is called β times by function Reset(3, column).

• Reset(1, column) is called β times by function Reset(2, column).

Hence, Action R is executed β4 times by the processes of line 8. Now, β = n/8. Hence we can
conclude:

Theorem 12. For every β ≥ 2, there exists a network of n = 8 × β processes in which there
exists a possible execution that stabilizes in Ω(n4) steps.

5.3 Generalization to an Example in Ω(nα) Steps

We note E4 the graph built for the example in Ω(n4) steps and shown in Figure 12a. Then,
starting from Eα−1 (α ≥ 5), we can build Eα, a graph for which there exists an execution in
Ω(nα) steps. The construction is based on the same principle as in Subsection 5.2, by adding a
layer. If Eα−1 has Lβ processes p(i,j) (1 ≤ i ≤ L, 1 ≤ j ≤ β), then Eα has L′ = 2L lines of β
processes q(i′,j′) (1 ≤ i′ ≤ L′, 1 ≤ j′ ≤ β). The construction principle is as follows:

1. We increase the level and the ID of the Lβ processes of Eα−1 as follows: ∀i ∈ {1, . . . , L},
∀j ∈ {1, . . . , β}, q(i+L,j) = p(i,j). The ID of q(i+L,j) becomes (i + L − 1)β + j and
q(i+L,j).level = i + L. The value of variables color and done do not change. If i 6= 1,
the parent remains the same. Otherwise, see step 3.

2. At the top of Eα−1, we add L lines of β processes. These new processes satisfy:

• ∀i ∈ {1, . . . , L}, ∀j ∈ {1, . . . , β}:
– q(i,j).id = (i− 1)β + j

– q(i,j).leader = 0

– q(i,j).level = i
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Algorithm 3 Algorithm of the daemon.
1: function Daemon
2: for i = 1 . . . β, (i+ +) do
3: Reset(3,i);
4: if i < β then
5: Build(3,i+1);
6: end if
7: end for
8: end function

9: function Reset(layer, column)
10: for i = top(layer + 1) . . . bottom(layer + 1), (i+ +) do
11: p(i,column) executes R;
12: end for
13: if layer = 1 then
14: for j = 1 . . . β, (j + +) do

15: p(L,j) executes R; . Reset of layer 1

16: end for
17: else
18: for j = 1 . . . β, (j + +) do
19: Reset(layer − 1, j);
20: if j < β then
21: Build(layer − 1, j + 1);
22: end if
23: end for
24: end if
25: end function

Algorithm 4 Algorithm of the daemon.
1: function Build(layer, column)
2: for i = top(layer) . . . bottom(layer), (i+ +) do
3: for j = 1 . . . β, (j + +) do
4: p(i,j) executes J ;
5: end for
6: for k = i− 1 . . . 2(i− L

2
), (k −−) do

7: if k ≥ top(layer) then
8: for j = 1 . . . β, (j + +) do
9: p(k,j) executes C1;

10: end for
11: else
12: p(k,column) executes C1;
13: end if
14: end for
15: for k = i . . . 2(i− L

2
) + 1, (k −−) do

16: if k ≥ top(layer) then
17: for j = 1 . . . β, (j + +) do
18: p(k,j) executes C2;
19: end for
20: else
21: p(k,column) executes C2;
22: end if
23: end for
24: end for
25: if layer > 1 then
26: Build(layer − 1, 1);
27: end if
28: end function
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– q(i,j).done = false

• ∀i ∈ {2, . . . , L}, ∀j ∈ {1, . . . , β}, {q(i−1,j), q(i,j)} ∈ E and q(i,j).parent = q(i−1,j)

• ∀j ∈ {1, . . . , β}, q(1,j).parent = q(1,j)

• ∀j ∈ {2, . . . , β},∀i ∈ {1, . . . , L}, q(i,j).color = 2

• ∀i ∈ {1, . . . , L}, q(i,1).color = (i mod 2) + 1

3. The former first line of Eα−1 becomes a new bipartite complete subgraph with the last
added line:

• ∀j ∈ {1, . . . , β},∀j′ ∈ {1, . . . , β}, {q(L,j), q(L+1,j′)} ∈ E
• ∀j ∈ {1, . . . , β}, q(L+1,j).parent = q(L,1)

Figure 13 shows the structure of the network for E5 and its initial configuration.
In the execution, the daemon selects processes according to function Daemon(α) (see Al-

gorithm 5) which is the generalization of the algorithm presented in Section 5.2. In Eα−1,
processes p(L,.) execute βα−1 times Action R. Now, we added a new level of recursion. Then,
processes q(L′,.) execute βα times Action R. As β = n

L′ , the execution lasts Ω(nα) steps. Hence,
we obtain:

Theorem 13. For every α ≥ 4, for every β ≥ 2, there exists a network Eα of n = 2α−1 × β
processes in which there exists a possible execution of Algorithm DLV that stabilizes in Ω(nα)
steps.

Algorithm 5 Generalization of the algorithm of the daemon for Eα.
1: function Daemon(α)
2: for i = 1 . . . β, (i+ +) do
3: Reset(α− 1,i); . See Algorithm 3
4: if i < β then
5: Build(α− 1,i+1); . See Algorithm 4
6: end if
7: end for
8: end function

We proved that for Eα of size n = L × β (β ≥ 2, α ≥ 4 and L = 2α−1), the execution in
Algorithm 5 stabilizes using at least βα steps. For a fixed size n of network, the value βα may
vary, depending on e.g. L. For instance, for L = n/2, we have that α = log2 n and β = 2 which
implies that βα = n. At the opposite of the interval of L (second example), when L = 8, we
have α = 4 and β = n × 2−3. Hence, in this case, βα = 2 × n4. Both costs obtained in those
examples are polynomial. But, between them, the function reaches higher values: the following
corollary shows that the highest value of βα is reached for L =

√
n
2 and is non-polynomial.

Corollary 5. The stabilization time of Algorithm DLV is in Ω

((
2n
) 1

4
log2(2n)

)
steps.

Proof. We show below that for every α ≥ 4, for every β ≥ 2, there exists a network of size

n = 2α−1 × β for which there exists an execution which stabilizes in Ω

((
2n
) 1

4
log2(2n)

)
steps.

Let β, α and L be positive integers such that n = L × β, β ≥ 2, α ≥ 4, and L = 2α−1 (as
for Theorem 13). The value of the function βα reaches its maximum when L =

√
n
2 , β =

√
2n

and α = 1
2(log2 n+ 1). (This can be easily proved by cancellation of the derivative of βα w.r.t.

L.) In this case, βα equals (2n)
1
4
log2(2n), and we are done.
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Figure 13: Initial configuration of the example in Ω(n5) steps.
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6 Step Complexity of Algorithm DLV2

In this section, we study the step complexity of the algorithm given in [9], called here DLV2.

6.1 Overview of DLV2

The formal code of Algorithm DLV2 is given in Algorithm 6.3 The principle of Algorithm
DLV2 is very similar to Algorithm DLV. It elects ` and builds a breadth-first search spanning
tree rooted at `. A variable leader is used to save the ID of the current leader. The level of the
process in the tree is saved into variable level. The key of a process p is the combination of its
two variables p.leader and p.level. The keys are ordered using the lexical order. Notice that
there is no explicit pointer to the parent but it can easily be computed with the keys.

Notice that we suppose every ID to be different than 0. When there is a smaller possible key
in the neighborhood of a process p, p may execute Action A2 and update its key accordingly.

As in LE and DLV2, a “good relation” between a process p and its parent, called V alid(p),
is defined. This predicate ensures that p is either a self root (〈p, 0〉), a zero root (〈0, 0〉), or its
key is greater or equal to the best possible key.

Algorithm 6 Algorithm DLV2 [9] for every process p

Variables
p.leader ∈ N, p.level ∈ N, p.key = 〈p.leader, p.level〉

Macros
successor(〈lead, lvl〉) ≡ 〈lead, lvl + 1〉
MinKeyMeighbor(p) ≡ min {q.key : q ∈ Np}

Predicates
SelfRoot(p) ≡ p.key = 〈p, 0〉
ZeroRoot(p) ≡ p.key = 〈0, 0〉
V alid(p) ≡ SelfRoot(p) ∨ ZeroRoot(p) ∨ (p.key > MinKeyNeighbor(p))
Is Linked(p) ≡ p.key = successor(MinKeyNeighbor(p))
Is Good(p) ≡ Is Linked(p) ∨ (SelfRoot(p)⇒ p.key < MinKeyNeighbor(p))

∨ZeroRoot(p)
Frozen(p) ≡ SelfRoot(p) ∧ (∃q ∈ Np : q.leader = 0)
ZeroLeaf(p) ≡ (p.leader = 0) ∧ (∀q ∈ Np : (q.key ≤ p.key) ∨ SelfRoot(q))

Actions
A1 (priority 1) :: ¬V alid(p) → if p.leader < p.id then

p.key ← 〈0, 0〉
else

p.key ← 〈p, 0〉
A2 (priority 2) :: ¬Is Good(p)∧ → p.key ← successor(MinKeyNeighbor(p))

¬Frozen(p)
A3 (priority 3) :: ZeroLeaf(p) → p.key ← 〈p, 0〉

Zero propagation The main difference between DLV and DLV2 is the way to deal with fake
IDs. DLV2 exploits the value 0, smaller than any ID. More precisely, if a process p is not valid

3The code given in Algorithm 6 is slightly different from the one given in [9]. Actually, we found a flaw in
the definition of the V alid predicate. After private communication with the authors, we agree on the solution
proposed here.
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Figure 14: Example of execution of algorithm DLV2.

and if its leader is smaller than its own ID, i.e. maybe a fake ID, p executes Action A1 and
gets key 〈0, 0〉. 0 is then propagated in the network using Action A2 and erase any fake ID. The
only processes that can make a barrier to the propagation of 0 are the self roots. Indeed a self
root neighbor with a process of leader 0 is said frozen, i.e. it cannot execute Action A2 and get
0 as leader too.

When the growing of zero trees ends, the leaves, i.e. processes of leader 0 that are surrounded
by self roots or processes with smaller key, can reset to self root executing Action A3.

Example of execution Figure 14 shows an example of execution of DLV2. For an easy
reading of the figure, we explicit the parent pointers. The colors of processes are used to
differentiate the leader. If the node is gray, its leader is an existing ID (we can infer which one
with the parent pointers). If the node is black, its leader is the fake ID 1, smaller than any ID
in the network. If the node is white, its leader is 0. We can also infer the level with the parent
pointers.

In the initial configuration (Configuration a), the leader of processes 3, 7, and 8 is the fake
ID 1. Then, in step a 7→ b, 1 is propagated to process 6 that executes A2. At the same time,
9 also executes A2 and chooses 5 as leader. 7 corrects its error and becomes a zero root by
executing Action A1 during step b 7→ c. The special ID 0 is propagated to processes 3 and 8 in
step c 7→ d and then to process 6 in step d 7→ e. At the same time, 8 can reset itself executing
Action A3 because it is a zero leaf. Notice that 0 is not propagated to 5 since 5 is a self root
and cannot execute Action A2. In step e 7→ f, 6 resets itself and 8 executes Action A2 to choose
5 as leader. Then, 3 executes Action A3 during step f 7→ g. The last process of leader 0, process
7, resets itself during step g 7→ h. In the same step, 5 and 6 execute Action A2 and choose 3 as
leader. Notice that the leader of 8 and 9 is still 5 in Configuration h. Leader 3 is propagated
to 7, 8, and 9 during step h 7→ i. Hence, 3 is elected in Configuration i.

6.2 Example of Exponential Execution

Network and initial configuration We consider a network composed of n ≥ 5 processes
pk of ID k ∈ {2, . . . , n + 1}. Notice that 1 is a fake ID smaller than every ID in the net-
work. Figure 15 shows the network and the initial configuration. The network is composed
of H =

⌊
n−1
4

⌋
diamonds. ∀h ∈ {0, . . . ,H − 1}, Diamond h is made of the following edges:

{p4(H−h−1)+2, p4(H−h−1)+3}, {p4(H−h−1)+2, p4(H−h−1)+4}, {p4(H−h−1)+3, p4(H−h−1)+5}, {p4(H−h−1)+4, p4(H−h−1)+6},
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and {p4(H−h−1)+5, p4(H−h−1)+6}. The remaining processes form a chain linked to p2, i.e. the
edges {pi, pi+1} with i ∈ {4H + 4, n}, and the edge {p2, p4H+3}.

We consider the initial configuration where p2.key = 〈1, 0〉, i.e. p2 has the fake id 1 as
leader, and ∀i ∈ {3, . . . , n+ 1}, pi.key = 〈i, 0〉, i.e. pi is self root.

Overview of the execution for n = 11 Figure 16 shows an intuitive idea of the execution for
n = 11. Each phase is composed of three waves: the propagation of fake ID 1, the propagation
of special ID 0, and the reset.

During the first phase ((1) in Figure 16), the fake ID 1 is propagated to p4, p6, p8, and p10.
The fake ID 1 is also propagated to p3 and p7 to prepare the next phases. Then, p2 corrects its
error executing Action A1 and the special ID 0 is propagated along the same path. The reset
starts at p10, and then p8 resets.

p7 still has 1 as leader so, in phase (2), 1 is propagated to p9 and p10. Then, since p6 holds
0, 0 propagated to p7, p9, and p10. Finally, p10, p9, p7, p6 and p4 resets.

Then, during phase (3), we start again on the right side. p3.leader = 1 so 1 is propagated
to p5, p6, p8, and p10. Then 0 is propagated to p3 and along the same path. The reset starts
from p10 to p8 as in phase (1).

Finally phase (4) is similar to phase (2) with a reset along the right side of the network.
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Figure 16: Intuitive idea of the execution for n = 11.

Notice that the additional processes p11 and p12 do nothing.

Generalization for any n ≥ 5 We generalize this idea for any n ≥ 5. We consider an unfair
daemon that selects the enabled processes according to function Daemon given in Algorithm 7.

Theorem 14. For every n ≥ 5, there exists a network of n processes in which there exists a

possible execution of Algorithm DLV2 that stabilizes in Ω(17× (2b
n−1
4 c − 1) steps.

Proof. Let consider the diamond h. When p4(H−h−1)+2 holds 1 as leader, the processes into
diamond h executes the following actions:

• Propagation of 1 on the left: p4(H−h−1)+3, p4(H−h−1)+4, p4(H−h−1)+6 executes Action A2

• Propagation of 0 on the left: p4(H−h−1)+2 executes Action A1, p4(H−h−1)+4, p4(H−h−1)+6

executes Action A2

• Reset on the left: p4(H−h−1)+6, p4(H−h−1)+4 executes Action A3

• Propagation of 1 on the right: p4(H−h−1)+5, p4(H−h−1)+6 executes Action A2

• Propagation of 0 on the right: p4(H−h−1)+3, p4(H−h−1)+5, p4(H−h−1)+6 executes Action A2

• Reset on the right: p4(H−h−1)+6, p4(H−h−1)+5, p4(H−h−1)+3, p4(H−h−1)+2

So we have 17 actions. Notice that p4(H−h−1)+6 holds 1 as leader twice. Hence, if h ≥ 1, one such
execution on diamond h implies two executions on diamond h−1. We denote T (h) the maximum
number of actions executed by processes on diamonds h to 0. So T (h) ≥ 17 + 2T (h − 1), for
h ≥ 1. Notice that this execution on diamond 0 does not imply any other actions, so T (0) ≥ 17.

We can trivially prove by induction that T (h) ≥ 17
∑h

i=0 2i. Hence,

T (H − 1) ≥ 17
H−1∑
i=0

2i = 17(2H − 1) = 17(2b
n−1
4 c − 1)
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Algorithm 7 Algorithm of the daemon.

1: function Daemon
2: p3 executes Action A2;
3: BuildLeft(H − 1,1);
4: p2 executes Action A1;
5: BuildLeft(H − 1,0);
6: ResetLeft(H − 1);
7: end function

8: function BuildLeft(h, b)
9: p4(H−h−1)+4 executes Action A2;

10: p4(H−h−1)+6 executes Action A2;
11: if h > 0 then
12: if b = 1 then
13: p4(H−h−1)+7 executes Action A2;
14: end if
15: BuildLeft(h− 1, b);
16: end if
17: end function

18: function BuildRight(h)
19: if b 6= 1 then
20: p4(H−h−1)+3 executes Action A2;
21: end if
22: p4(H−h−1)+5 executes Action A2;
23: p4(H−h−1)+6 executes Action A2;
24: if h > 0 then
25: if b = 1 then
26: p4(H−h−1)+7 executes Action A2;

27: end if
28: BuildLeft(h− 1, b);
29: end if
30: end function

31: function ResetLeft(h)
32: if h = 0 then
33: p4∗(H−1)+6 executes Action A3;
34: else
35: ResetLeft(h− 1);
36: end if
37: p4(H−h−1)+4 executes Action A3;
38: BuildRight(h, 1);
39: BuildRight(h, 0);
40: ResetRight(h);
41: end function

42: function ResetRight(h)
43: if h = 0 then
44: p4∗(H−1)+6 executes Action A3;
45: else
46: ResetLeft(h− 1);
47: end if
48: p4(H−h−1)+5 executes Action A3;
49: p4(H−h−1)+3 executes Action A3;
50: p4(H−h−1)+2 executes Action A3;
51: end function

7 Experimentations

We ran simulations to empirically evaluate and compare the average stabilization times of our
algorithm LE , Algorithm DLV, and Algorithm DLV2 in terms of steps and rounds.

Probabilistic daemon We use an event-driven homemade simulator dedicated to the locally
shared memory model. In this simulator, we use a probabilistic daemon. To enforce asynchro-
nism (i.e., to maximize interleavings between actions at different processes), we implemented
the daemon as follows: at each step, the probability that an enabled process is selected by the
daemon follows an exponential distribution on the number of consecutive steps where the node
was enabled yet not selected.

UDG In our experiments, we consider a particular family of random graphs: the Unit Disk
Graphs (UDGs) [16]. Such graphs are generated as follows. First, nodes are deployed on a
square plane uniformly at random. Then, two nodes are neighbors if and only if their Euclidean
distance is smaller than a pre-defined radius. UDGs are commonly used to model wireless sensor
networks. Indeed, sensors are motionless and equipped with radio. In this case, the pre-defined
radius represents the range of radio antenna.

Arbitrary initial configuration In each experiment, the initial configuration is randomly
generated. We lead the random generation in such a way that with probability 1

2 , the initial
value of each idR variable (resp. each leader variable in Algorithms DLV and DLV2) is a fake
id. Moreover, the way IDs and idR (resp. leader in Algorithms DLV and DLV2) are set allows
the existence of fake IDs lower than the lowest existing ID of the network.
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Figure 17: Average stabilization time in rounds for LE , DLV, and DLV2 on UDGs (n = 1000).

Consider first Algorithms LE and DLV. Each process selects its unique ID in {1, ..., 2n}
uniformly at random. Then, the initial value of each idR variable (resp. each leader variable
in Algorithm DLV) is chosen in {1, ..., 2n} uniformly at random. The initial value of each par
pointer is chosen among the ID of the node and the IDs of its neighbors uniformly at random.
Finally, the initial value of each level variable is chosen in {0, ..., n − 1} uniformly at random.
Finally, the initial value of all other variables (i.e., status in LE , and color and done in DLV)
are chosen uniformly at random in their respective (finite) domain.

The generation of the arbitrary initial configuration of DLV2 is slightly different. Indeed,
the leader variables can take the (reset) value 0, which is neither an ID, nor a fake ID. So, to
ensure that the initial value of each leader variable is a fake id with probability 1

2 , (1) each
process selects its unique ID in {1, ..., 2n+ 1} uniformly at random, and (2) the initial value of
each leader variable is chosen in {0, ..., 2n+ 1} uniformly at random. Finally, the initial value
of each level variable is chosen in {0, ..., n− 1} uniformly at random.

7.1 Average Stabilization Time in Rounds

In this subsection, we study the stabilization time in rounds. To that goal, we generated a pool
of 220 UDGs. Each of those contains n = 1000 nodes. However, we make varying the diameters
from 4 and 24 (20 graphs per diameter). We repeatedly executed each algorithm (LE , DLV,
and DLV2) on each graph with arbitrary initializations until obtaining a confidence interval
smaller than 2% of the average stabilization time.

Results are shown on Figure 17. We can remark that the average stabilization time in rounds
of LE is far from the analytical worst case (i.e., 3n + D rounds). Actually, we never observed
an execution whose stabilization time matches the worst case. The average stabilization time in
rounds of the three algorithms is sub-linear in n. However, in our experiments, our algorithm
outperforms DLV. Observed round complexities of DLV2 are slightly better than those of our
algorithm. This can be explained by the fact that DLV2 removes abnormal trees in two waves,
while our algorithm uses three waves. Finally, we draw the diameter D in the Figure to show

49



0

200

400

600

800

1000

100 200 300 400 500 600 700 800 900 1000

S
te

p
s

n

DLV
DLV2
LE
n

Figure 18: Average stabilization time in steps for LE , DLV, and DLV2 on UDGs (D = 14).

that the observed average stabilization times in rounds of LE and DLV2 are of the order of
magnitude of the diameter D.

7.2 Average Stabilization Time in Steps

In this subsection, we study the average stabilization time in steps. To that goal, we generated
a pool of 110 UDGs with diameter fixed to 14, yet where the number of nodes varies from 100
to 1000 (10 graphs per size). We repeatedly executed each algorithm (LE , DLV, and DLV2)
on each graph with arbitrary initializations until obtaining a confidence interval smaller than
2% of the average stabilization time in steps.

Results are shown on Figure 18. Again, we can remark that the average stabilization time
in steps of LE is far from the analytical worst case (i.e., Θ(n3) steps). Again, we never observed
an execution whose stabilization time matches the worst case. Again, in our experiments,
LE outperforms DLV, even though their respective average stabilization times in steps are of
the same order of magnitude. Results observed with LE and DLV2 are of the same order of
magnitude. Finally, we draw the size n of the network in the Figure to show that the observed
average stabilization times in steps of the three solutions do not depend on n.

8 Conclusion

We proposed a silent self-stabilizing leader election algorithm, called LE , for bidirectional con-
nected identified networks of arbitrary topology. Starting from any arbitrary configuration, LE
converges to a terminal configuration, where all processes know the ID of the leader, this latter
being the process of minimum ID. Moreover, as in most of the solutions from the literature, a
distributed spanning tree rooted at the leader is defined in the terminal configuration.
LE is written in the locally shared memory model. It assumes the distributed unfair daemon,

the most general scheduling hypothesis of the model. Moreover, it requires no global knowledge
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on the network (such as an upper bound on the diameter or the number of processes, for
example). LE is asymptotically optimal in space, as it requires Θ(log n) bits per process, where
n is the size of the network. We analyzed its stabilization time both in rounds and steps. We
showed that LE stabilizes in at most 3n + D rounds, where D is the diameter of the network.
We also proved that for every n ≥ 4, for every D, 2 ≤ D ≤ n − 2, there is a network of n
processes in which a possible execution exactly lasts this complexity.

Finally, we proved that LE achieves a stabilization time polynomial in steps. More precisely,
its stabilization time is at most n3

2 + 2n2 + n
2 + 1 steps. Then, we showed for every n ≥ 4, that

there exists a network of n processes in which a possible execution exactly lasts n3

6 + 3
2n

2− 8
3n+2

steps, establishing then that the worst case is in Θ(n3).
For fair comparison, we studied the step complexity of the previous best algorithms with

similar settings (i.e., they do not use any global knowledge and are proven assuming an unfair
daemon) given in [10, 9] and respectively called here DLV and DLV2. We showed that for a
given α ≥ 3, for every β ≥ 2, there exists a network of n = 2α × β processes in which there
is an execution of algorithm DLV that stabilizes in Ω(nα+1). In other words, the stabilization
time of DLV in steps is not polynomial. Similarly, we showed that for any n ≥ 5, there exists

a network in which there is an execution of algorithm DLV2 that stabilizes in Ω(2b
n−1
4 c) steps.

Hence, the stabilization time of DLV2 is also not polynomial.
Perspectives of this work deal with complexity issues. In [10], Datta et al showed that it

is easy to implement a silent self-stabilizing leader election which works assuming an unfair
daemon, uses Θ(log n) bits per process, and stabilizes in O(D) rounds (where D is an upper
bound on D). Nevertheless, processes are assumed to know D. It is worth investigating whether
it is possible to design an algorithm which works assuming an unfair daemon, uses Θ(log n) bits
per process, and stabilizes in O(D) rounds without using any global knowledge. We believe this
problem remains difficult, even adding some fairness assumption.
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