
Gradual Stabilization under τ -Dynamics

Karine Altisen1, Stéphane Devismes1, Anaı̈s Durand1, and Franck Petit2

1 VERIMAG UMR 5104, Université Grenoble Alpes, France
2 LIP6 UMR 7606, INRIA, UPMC Sorbonne Universités, France

Abstract. In this paper, we introduce the notion of gradually stabilizing algo-
rithm as any self-stabilizing algorithm with the following additional feature: if
at most τ dynamic steps occur starting from a legitimate configuration, it first
quickly recovers to a configuration from which a minimum quality of service is
satisfied and then gradually converges to stronger and stronger safety guarantees
until reaching a legitimate configuration again. We illustrate this new property by
proposing a gradually stabilizing unison algorithm.

1 Introduction

Self-stabilization [10] is a general paradigm to enable the design of distributed systems
tolerating any finite number of transient faults. Consider the first configuration after
all transient faults cease. This configuration is arbitrary, but no other transient faults
will ever occur from this configuration. By abuse of language, this configuration is
referred to as arbitrary initial configuration of the system in the literature. Then, a self-
stabilizing algorithm (provided that faults have not corrupted its code) guarantees that
starting from an arbitrary initial configuration, the system recovers within finite time,
without any external intervention, to a so-called legitimate configuration from which
its specification is satisfied. Thus, self-stabilization makes no hypotheses on the nature
(e.g., memory corruptions, topological changes) of transient faults, and the system re-
covers from the effects of those faults in a unified manner. Such versatility comes at
a price, e.g., after transient faults cease, there is a finite period of time, called stabi-
lization phase, during which safety properties of the system may be violated. Hence,
self-stabilizing algorithms are mainly compared according to their stabilization time,
i.e., the maximum duration of the stabilization phase. Many problem specifications in-
duce a significant stabilization time, e.g., in the context of synchronization tasks [3] and
more generally for specifications of non-static problems [13], such as broadcast, the
lower bound is Ω(D) rounds, where D is the diameter of the network. By definition,
the stabilization time is impacted by worst case scenarios, but, in many cases, transient
faults are sparse and their effect may be superficial. Recent research thus focuses on
proposing self-stabilizing algorithms that also ensure drastically smaller convergence
times in favorable cases.

Defining the number of faults hitting a network using some kind of Hamming dis-
tance (minimal number of processes whose state must be changed in order to recover
a legitimate configuration), variants of self-stabilization have been defined. A time-
adaptive self-stabilizing algorithm [21] additionally guarantees a convergence time in

O(k) time units when the initial configuration is at distance at most k from a legiti-
mate configuration. Fault containing self-stabilizing algorithms [14] ensure that when
few faults hit the system, the faults are both spatially and temporally contained. “Spa-
tially” means that those faults cannot be propagated further than a preset radius around
the corrupted processes. “Temporally” means quick stabilization when few faults occur.
Some other approaches consist in providing convergence times tailored by the type of
transient faults, e.g., a superstabilizing algorithm [11] is self-stabilizing and has two
additional properties when transient faults are limited to a single topological change:
after adding or removing one link or process in the network, it recovers fast (typically
O(1) rounds), and a safety predicate, so-called passage, should be satisfied meanwhile.

Contributions. We introduce the notion of gradually stabilizing algorithm as any self-
stabilizing algorithm achieving the following additional feature. If at most τ dynamic
steps3 occur starting from a legitimate configuration, a gradually stabilizing algorithm
first quickly recovers to a configuration from which a specification offering a mini-
mum quality of service is satisfied. It then gradually converges to specifications offer-
ing stronger and stronger safety guarantees until reaching a configuration from which its
initial (strong) specification is satisfied again, and where it is ready to achieve another
gradual convergence in case of up to τ new dynamic steps. Of course, this property
makes sense only if convergence to every intermediate weaker specification is fast.

We illustrate this new property by considering three variants of a synchronization
problem respectively called strong, weak, and partial (asynchronous) unison. In these
problems, each process maintains a local clock. We restrict our study to periodic clocks,
i.e., clocks are integer variables whose domain is {0, . . . , α−1}, where α ≥ 2 is called
the period. Each process should regularly increment its clock modulo α (liveness) while
fulfilling some safety requirements. The safety of strong unison requires that at most
two consecutive clock values exist in each configuration of the system. Weak unison
only requires that the difference between clocks of every two neighbors is at most one
increment. Finally, we define partial unison as a specification dedicated to dynamic
systems which enforces the difference between clocks to remain at most one increment,
but only for neighboring processes that do not appear during the dynamic steps.

We propose a self-stabilizing strong unison algorithm which works with any period
α > 4 in any anonymous connected network. It assumes the knowledge of two values µ
and β, where µ is any upper bound on n — the (initial) number of processes, α should
divide β, and β > µ2. Our algorithm is designed in the locally shared memory model
and assumes the distributed unfair daemon, the most general daemon of the model. Its
stabilization time is at most n + (µ + 1)D + 1 rounds, where D is the diameter of
the network. We then slightly modify this algorithm to make it gradually stabilizing
after one dynamic step. In particular, the parameter µ should be now at least n + #J ,
where #J is an upper bound on the number of processes that join the system during a
dynamic step. This new version is gradually stabilizing because after one dynamic step
from a configuration which is legitimate for strong unison, it immediately satisfies the
specification of partial unison, then converges to the specification of weak unison in at
most one round, and finally retrieves, after at most (µ + 1)D1 + 1 additional rounds
(where D1 is the diameter of the network after the dynamic step), a configuration from

3 N.b., a dynamic step is a step containing topological changes.

which the specification of strong unison is satisfied and where it is ready to achieve
gradual convergence again in case of another dynamic step. This result holds consid-
ering dynamic steps which may contain several link and/or process additions and/or
removals, however we assume that after a dynamic step, the network stays connected
and, if α > 4, every new process is linked to at least one process already in the system
before the dynamic step. We show that this condition, called UnderLocalControl, is nec-
essary to obtain gradual convergence. However, notice that if the system suffers from
arbitrary other kinds of transient fault including, e.g., several dynamic steps that do not
satisfy the UnderLocalControl condition, our algorithm still converges to strong unison,
yet without intermediate safety guarantees during the stabilization phase.

Related Work. Gradual stabilization is related to two other stronger forms of self-
stabilization: safe-converging self-stabilization [19] and superstabilization [11]. The
goal of a safely converging self-stabilizing algorithm is to first quickly (O(1) rounds
is the usual rule) converge from an arbitrary configuration to a feasible legitimate con-
figuration, where a minimum quality of service is guaranteed. Once such a feasible
legitimate configuration is reached, the system continues to converge to an optimal le-
gitimate configuration, where more stringent conditions are required. Hence, the aim
of safe-converging self-stabilization is also to ensure a gradual convergence, but only
for two specifications. However, such a gradual convergence is stronger than ours as
it should be ensured after any step of transient faults,4 while our gradual convergence
applies after dynamic steps only. Safe convergence is especially interesting for self-
stabilizing algorithms that compute optimized data structures, e.g., minimal dominating
sets [19], minimal (f, g)-alliances [8]. However, to the best of our knowledge, no safe-
converging algorithm for non-static problems, such as unison, has been proposed until
now.

In superstabilization, like in our approach, fast convergence and the passage predi-
cate should be ensured only if the system was in a legitimate configuration before the
topological change occurs. In contrast with our approach, superstabilization ensures
fast convergence to the original specification. However, this strong property only con-
siders one dynamic step with only one topological event. Again, superstabilization has
been especially studied in the context of static problems, e.g., spanning tree construc-
tion [4, 5, 11], and coloring [11]. However, there exist few superstabilizing algorithms
for non-static problems in particular topologies, e.g., mutual exclusion in rings [16,20].

We use the general term unison to name several close problems also known in the lit-
erature as phase or barrier synchronization problems. There exist many self-stabilizing
algorithms for strong or weak unison problems, e.g., [2,6,7,15,17,18,22,23]. However,
to the best of our knowledge, until now there was no self-stabilizing solution for such
problems addressing specific convergence properties in case of topological changes, in
particular no superstabilizing one. Self-stabilizing strong unison was first considered
in synchronous anonymous networks. Particular topologies were considered in [17]
(rings) and [22] (trees). Gouda and Herman [15] proposed a self-stabilizing algorithm
for strong unison working in anonymous synchronous systems of arbitrary connected
topology. However, they considered unbounded clocks. A solution working with the
same settings, yet implementing bounded clocks, is proposed in [2]. In [23], an asyn-

4 Such transient faults may include topological changes, but not only.

chronous self-stabilizing strong unison algorithm is proposed for arbitrary connected
rooted networks.

Johnen et al investigated asynchronous self-stabilizing weak unison in oriented trees
in [18]. The first self-stabilizing asynchronous weak unison for general graphs was
proposed by Couvreur et al. [9]. However, no complexity analysis was given. Another
solution which stabilizes in O(n) rounds has been proposed by Boulinier et al. in [7].
Finally, Boulinier proposed in his PhD thesis a parametric solution which generalizes
both the solutions of [9] and [7]. In particular, the complexity analysis of this latter
algorithm reveals an upper bound in O(D.n) rounds on the stabilization time of the
Couvreur et al.’ algorithm.
Roadmap. In the next section, we define the computational model used in this paper. In
Section 3, we recall the formal definition of self-stabilization, and introduce the notion
of gradual stabilization. In Section 4, we show that condition UnderLocalControl is nec-
essary to obtain a gradually stabilizing solution. We present our self-stabilizing strong
unison algorithm in Section 5. The gradually stabilizing variant of this latter algorithm
is proposed in Section 6. We make concluding remarks in Section 7.

Due to the lack of space, proofs are omitted, see the report online [1] for details.

2 Preliminaries

We consider distributed systems made of anonymous processes. The system initially
contains n > 0 processes and its topology is connected, however it may suffer from
topological changes over time. Each process p can directly communicate with a subset
p.N of other processes, its neighbors. In our context, p.N can vary over time. Commu-
nications are assumed to be bidirectional and carried out by a finite set of locally shared
variables: each process can read its own variables and those of its current neighbors, but
can only write into its own variables. The state of a process is the vector of values of its
variables. We denote by S the set of all possible states of a process. Each process up-
dates its variables according to a local algorithm. The collection of all local algorithms
defines a distributed algorithm. The local algorithm of p consists of a finite set of actions
of the following form: 〈 label 〉 :: 〈 guard 〉 → 〈 statement 〉. Labels are used to identify
actions in the reasoning. The guard of an action is a Boolean predicate involving vari-
ables of p and its neighbors. The statement is a sequence of assignments on variables
of p. If the guard of some action evaluates to true, the action is said to be enabled at p.
By extension, if at least one action is enabled at p, p is said to be enabled. An action
can be executed only if it is enabled. The execution of an action consists in executing
its statement, atomically. A configuration γi is a pair (Gi, Vi → S). Gi = (Vi, Ei)
is a simple undirected graph, where Vi is the set of processes that exist in γi and Ei
represents the links between processes in γi. Vi → S is a function which associates a
state to any process of Vi. We denote by C the set of all possible configurations.
Executions. The dynamicity and asynchronism of the system are materialized by an
adversary, called daemon. To perform a step from a configuration γi, the daemon can
(1) activate processes that are enabled in γi — each activated process executes one of its
enabled actions according to its state and that of its neighbors in γi, and/or (2) modify
the topology. Activation of enabled processes and/or topology modifications are done

atomically, leading to a new configuration γi+1. The set of all possible steps induces a
binary relation 7→ over configurations (empty steps of the form γi 7→ γi are excluded).
Relation 7→ is partitioned into 7→s and 7→d. Relation 7→s defines all possible static steps
consisting in activation of enabled processes only. Relation 7→d defines all possible
dynamic steps containing topological changes and possibly process activations.

An execution is a sequence of configurations γ0, γ1, . . . such that G0 is connected
and ∀i ≥ 0, γi 7→ γi+1. For sake of simplicity, we note G0 = G = (V,E); we also
note D the diameter of G. Moreover, we note Eτ the set of maximal executions which
contain at most τ dynamic steps. The set of all possible executions is therefore equal to
E = ∪τ≥0Eτ . For any subset of configurations X ⊆ C, we denote by EτX the set of all
executions in Eτ that start from a configuration of X .
Dynamic Steps. Any step γi 7→d γi+1 contains a finite number of topological events
and maybe some process activations. Each topological event is of the following types.
(1) A process p can join the system. This event, denoted by joinp, triggers the atomic
execution of a specific action, called bootstrap. This bootstrap is executed without any
communication and initializes the variables of p to a particular state, called bootstate.
We denote by Newk the set of processes which are in bootstate in γk. When p joins
the system in γi 7→d γi+1, we have p ∈ Newi+1, but p /∈ Newi. Until p executes its
bootstrap, say in step γx 7→ γx+1, it is still in bootstate. Hence, ∀j ∈ {i+1, . . . , x}, p ∈
Newj , but p /∈ Newx+1. We assume that there are at most #J joins during a dynamic
step. (2) A process can also leave the system. (3) Finally, some communication links
can appear or disappear between two different processes.
Daemon. We assume the daemon is distributed and unfair. In a static step, this daemon
must select at least one enabled process. In a dynamic step, it can select zero, one,
or several enabled processes. It has no fairness constraint, i.e., it might never select a
process p during any step unless in the case of a static step from a configuration where p
is the only enabled process. Moreover, at each configuration, it freely chooses between
making a static or dynamic step, except if no more process is enabled; in this latter case,
only a dynamic step containing no process activation can be chosen.
Metrics. We measure the time complexity of our algorithms in rounds [12]. The first
round of an execution e = (γi)i≥0 is the minimal prefix e′ of e in which every process
that is enabled in γ0 either disappears, or executes an action, or becomes disabled (due
to some changes in its neighborhood). Let γj be the last configuration of e′, the second
round of e is the first round of e′′ = (γi)i≥j , and so on.
Specifications. We define a specification as a predicate over executions. We denote by
SPSU and SPWU the respective specifications for strong and weak unison. The specifi-
cation of partial unison, noted SPPU, does not impose any constraint on processes that
join the system until they achieve their bootstrap: the safety holds as long as clocks of
every two neighboring processes not in bootstate differ from at most one increment.

3 Stabilization

Self-stabilization has been defined by only considering executions free of topologi-
cal changes, yet starting from an arbitrary configuration. Indeed, self-stabilization con-
siders the system immediately after transient faults cease. So, the system is initially

observed from an arbitrary configuration reached after occurrences of transient faults
(including some topological changes maybe), but from which no faults will ever occur.
Below, we recall the definitions of some notions classically used in self-stabilization for
a given distributed algorithm A. Let X and Y be two subsets of configurations.

– X is closed under A iff every static step of A starting from a configuration of X
leads to a configuration which is also in X .

– Y converges to X underA iff every execution of E0Y contains a configuration of X .
– A stabilizes from Y to a specification SP by X iff X is closed under A, Y con-

verges to X under A, and every execution of E0X satisfies SP . In this case, the
convergence time from Y to X in rounds is the maximal number of rounds to reach
a configuration of X over every execution of E0Y .

A distributed algorithmA is self-stabilizing for a specification SP iff ∃L ⊆ C such that
A stabilizes from C to SP by L. L is said to be a set of legitimate configurations w.r.t.
SP , and the convergence time from C to L is called stabilization time of A.

Gradual Stabilization Under τ -Dynamics. This property is a specialization of self-
stabilization which additionally requires that after at most τ dynamic steps from a
legitimate configuration, the system gradually re-stabilizes to stronger and stronger
specifications, until fully recovering its initial (strong) specification. For every exe-
cution e = (γi)i≥0 ∈ Eτ , we note γfst(e) the first configuration of e after the last
dynamic step. Formally, fst(e) = min{i : (γj)j≥i ∈ E0}. For any subset E of Eτ , let
FC(E) = {γfst(e) : e ∈ E} be the set of all configurations that can be reached after the
last topological changes in executions of E. Let SP1, SP2, . . . , SPk, be an ordered se-
quence of specifications. Let B1, B2, . . . , Bk be (asymptotic) complexity bounds such
that B1 ≤ B2 ≤ · · · ≤ Bk.

A distributed algorithm A is gradually stabilizing under τ -dynamics for (SP1 •
B1, SP2 •B2, . . . , SPk •Bk) iff ∃L1, . . . ,Lk ⊆ C such that

1. A stabilizes from C to SPk by Lk.
2. ∀i ∈ {1, . . . , k}, A stabilizes from FC(EτLk) to SPi by Li, and the convergence

time in rounds from FC(EτLk) to Li is bounded by Bi.

The first point ensures that a gradually stabilizing algorithm is still self-stabilizing for
its strongest specification. Hence, its performances can be also evaluated at the light of
its stabilization time. Indeed, it captures the maximal convergence time of the gradually
stabilizing algorithm after the system suffers from an arbitrary finite number of transient
faults, e.g., after more than τ dynamic steps.

The second point means that after at most τ dynamic steps from a legitimate con-
figuration w.r.t. the strongest specification SPk, the algorithm gradually converges to
every specification SPi with i ∈ {1, . . . , k} in at mostBi rounds. Note thatBk captures
a complexity similar to the fault gap in fault-containing algorithms [14]: assume a pe-
riod of at most τ dynamic steps starting in a legitimate configuration Lk; Bk represents
the necessary fault-free interval after this period and before the next period of at most τ
dynamic steps so that system becomes ready to achieve gradual convergence again.

(a)

γT(c+3) mod α

(c+2) mod α

(b)

γT+1(c+3) mod α

(c+2) mod α
r1

r2
p

q
(c)

γT+2(c+3) mod α

(c+2) mod α
r1

r2
c p

q

Fig. 1: Proof outline of Theorem 1. The hachured nodes are in bootstate.

4 Necessary Condition

In this section, we establish that Condition UnderLocalControl is necessary to allow the
design of a deterministic algorithm A which is gradually stabilizing under 1-dynamics
for (SPPU • 0, SPWU • 1, SPSU •B) (with B ≥ 1) in any arbitrary anonymous network,
assuming the distributed unfair daemon. Below, we assume the existence of A and
denote by LASU the set of legitimate configurations of A w.r.t. specification SPSU.

UnderLocalControl captures a condition on the network dynamics which is neces-
sary to prevent a notable desynchronization of clocks: the network should stay con-
nected and, if α > 4, every process that joins during the dynamic step γ 7→d γ

′ should
be “under control of” (that is, linked to) at least one process which exists in both γ and
γ′. The definition of UnderLocalControl uses the notion of dominating set of a graph
G = (V,E), i.e., any subset D of V such that every node not in D is adjacent to at
least one member of D. Formally, UnderLocalControl holds iff ∀e ∈ E1LA

SU
, Gfst(e) is

connected, and if α > 4, then Vfst(e) \Newfst(e) is a dominating set of Gfst(e).

Theorem 1. An algorithm A is gradually stabilizing under 1-dynamics for (SPPU •
0, SPWU • 1, SPSU • B) in arbitrary anonymous networks under the distributed unfair
daemon only if UnderLocalControl holds.

Proof Outline. If the graph becomes disconnected after a dynamic step, the distributed
unfair daemon can prevent forever all processes of a given connected component from
incrementing their clocks, hence violating the liveness of SPSU. Assume, by contra-
diction, that there is an execution e with α > 4 such that Gfst(e) is connected but
Vfst(e) \Newfst(e) is not a dominating set. This means that some process p and all its
neighbors have been added during the dynamic step. First, to satisfy SPWU after at most
one round, p and its neighbors should be enabled to take a clock value immediately
after the dynamic step. Let c be the clock value that p would choose in this case. Then,
we build another execution e′ initiated from a configuration in LASU on another graph
containing at least two nodes which are neither p, nor one of its neighbors. As SPSU

holds and the execution can be asynchronous, it is possible for the system to eventually
reach a configuration γT where there are exactly two clock values: (c+ 2) mod α and
(c + 3) mod α (see Fig. 1(a)). Then, assume the daemon chooses to execute, during
γT 7→d γT+1, the dynamic step which contains no process activation, but introduces p,
its neighborhood, and two links, just as in Fig. 1(b). Then, after this step, SPPU should
be satisfied. Finally, assume that the daemon selects no process, except p and its neigh-
bors in the next step. As before, p sets its clock to c, but, as α > 4, whatever be the
value chosen by q, there is a difference greater than one increment between q and at

least one of its neighbors (Fig. 1(c)). Henceforth, the legitimate configurations of SPPU

are not closed under A, a contradiction. 2

5 Self-Stabilizing Strong Unison

In this section, we propose an algorithm which is self-stabilizing for strong unison
in any arbitrary connected anonymous network. This algorithm works for any period
α > 4 and is based on an algorithm previously proposed by Boulinier in his PhD [6],
this latter is self-stabilizing for weak unison and works for any period β > n2.

AlgorithmWU . We first recall the algorithm of Boulinier [6], noted here AlgorithmWU .
This algorithm being just self-stabilizing, it only considers executions without any topo-
logical change, yet starting from arbitrary configurations. So, the topology of the net-
work consists in a connected graph G = (V,E) of n nodes which is fixed all along the
execution. Each process p is endowed with a clock variable p.t ∈ {0, . . . , β−1}, where
β is its period. β should be greater than n2. The algorithm also uses another constant,
noted µ, which should satisfy n ≤ µ ≤ β

2 . The algorithm uses the notion of delay
between two integer values x and y, defined by the function dβ

(
x, y
)
= min

(
(x − y)

mod β, (y − x) mod β
)
. It also uses the relation �β,µ such that for every two integer

values x and y, x �β,µ y ≡
(
(y − x) mod β

)
≤ µ.

Two actions are used to maintain the clock p.t at each process p. When the delay
between p.t and the clocks of some neighbors is greater than one, but the maximum de-
lay is not too big (that is, does not exceed µ), then it is possible to “normally” converge,
using ActionWU-N below, to a configuration where the delay between those clocks is
at most one by incrementing the clocks of the most behind processes among p and its
neighbors: WU-N :: ∀q ∈ p.N , p.t �β,µ q.t→ p.t← (p.t+ 1) mod β

Moreover, once legitimacy is achieved, p can “normally” increment its clock still
using ActionWU-N when it is on time or one increment late with all its neighbors. In
contrast, if the delay is too big (that is, the delay between the clocks of p and one of its
neighbors is more than µ) and the clock of p is not yet reset, then p should reset its clock
to 0 using ActionWU-R: WU-R :: ∃q ∈ p.N , dβ

(
p.t, q.t

)
> µ ∧ p.t 6= 0→ p.t← 0

0 1

x

α-1

0 1 β
α -1

β
α

2βα -1

xβα

(x+ 1)βα -1

(α-1)βα

β-1

c

t

n-1

Fig. 2: From t to c.

Algorithm SU . For this algorithm, we still assume
a non-dynamic context (no topological change). Al-
gorithm SU is a straightforward adaptation of Algo-
rithm WU . More precisely, Algorithm SU maintains
two clocks at each process p. The first one, p.t ∈
{0, . . . , β−1}, is called the internal clock and is main-
tained exactly as in AlgorithmWU . Then, p.t is used
as an internal pulse machine to increment a second, yet
actual, clock of Algorithm SU p.c ∈ {0, . . . , α − 1},
also called external clock.

Algorithm SU is designed for any period α > 4.
Its actions SU-N and SU-R are identical to actions
WU-N andWU-R of AlgorithmWU , except that we add the computation of the ex-

ternal c-clock in their respective statement.
SU-N :: ∀q ∈ p.N , p.t �β,µ q.t → p.t← (p.t+ 1) mod β; p.c←

⌊
α
β
p.t
⌋

SU-R :: ∃q ∈ p.N , dβ
(
p.t, q.t

)
> µ ∧ p.t 6= 0 → p.t← 0; p.c← 0

Algorithm WU stabilizes to a configuration from which t-clocks regularly incre-
ment while preserving a bounded delay of at most one between two neighboring pro-
cesses, and so of at most n− 1 between any two processes. Algorithm SU implements
the same mechanism to maintain p.t at each process p and computes p.c from p.t as a
normalization operation from clock values in {0, . . . , β − 1} to {0, . . . , α − 1}: each
time the value of p.t is modified, p.c is updated to

⌊
α
β p.t

⌋
. Hence, we can set β in such

way that K = β
α is greater than or equal to n (here, we choose K > µ ≥ n and β > µ2

for sake of simplicity) to ensure that, when the delay between any two t-clocks is at
most n− 1, the delay between any two c-clocks is at most one, see Fig. 2. The liveness
ofWU ensures that every t-clock increments infinitely often, thus so do c-clocks.

Theorem 2. Algorithm SU is self-stabilizing for SPSU in any arbitrary connected anony-
mous network assuming a distributed unfair daemon. Its stabilization time is at most
n+ (µ+ 1)D + 1 rounds.

We have also proven that, once SU has stabilized, every process increments its c-
clock at least once every D + β

α rounds. This result derives from [6] which states that
after stabilization of t-clocks, those ones increment at least once every D + 1 rounds.

6 Gradual Stabilization under 1-Dynamics for Strong Unison

We now propose Algorithm DSU (Algorithm 1), a variant of Algorithm SU . DSU
is still self-stabilizing for strong unison, but also achieves a gradual convergence af-
ter one dynamic step. This dynamic step may include several topological events (i.e.
link or process additions or removals). However, according to Theorem 1, it should
satisfy Condition UnderLocalControl. Precisely, after any dynamic step which fulfills
condition UnderLocalControl, DSU maintains clocks almost synchronized during the
convergence to strong unison since it immediately satisfies partial unison, then con-
verges in at most one round to weak unison, and finally re-stabilizes to strong unison.
Remember that, after one dynamic step, the graph contains at most n + #J processes,
by definition, and D1 denotes the diameter of the new graph.

0
0

p0
0
1

p1
0
2

p2

. . . 0
n-2

pn−2
0
n-1

pn−1

Fig. 3: Link addition.

We first showed a result allowing to simplify proofs
and explanations: for every closed set of configurations
X , if UnderLocalControl holds, then ∀γi ∈ C, (∃γj ∈
X | γj 7→d γi) ⇔ (∃γk ∈ X | γk 7→donly γi), where
7→donly is the relation defining all dynamic steps contain-
ing no process activation. We apply this result to the set
of legitimate configurations w.r.t. strong unison, noted LdSU (n.b., LdSU is closed, by def-
inition): the set of configurations reachable from LdSU after one dynamic step (which
may also include process activations) is the same as the one reachable from LdSU after
one dynamic step made of topological events only. At the light of this result, we only
consider this latter kind of dynamic steps in the following.

Algorithm 1 DSU , for every process p
Parameters:
α: any positive integer such that α > 4
µ: any positive integer such that µ ≥ n+ #J
β: any positive integer such that β > µ2, and ∃K such thatK > µ and β = Kα

Variables: p.c ∈ {0, . . . , α− 1} ∪ {⊥}, p.t ∈ {0, . . . , β − 1} ∪ {⊥}
Predicates:

Lockedp ≡ p.t = ⊥ ∨ ∃q ∈ p.N , q.t = ⊥
NormalStepp ≡ ¬Lockedp ∧ ∀q ∈ p.N , p.t �β,µ q.t
ResetStepp ≡ ¬Lockedp ∧

(
∃q ∈ p.N , dβ

(
p.t, q.t

)
> µ ∧ p.t 6= 0

)
JoinStepp ≡ p.t = ⊥

Actions:
DSU -N :: NormalStepp → p.t← (p.t+ 1) mod β; p.c←

⌊
α
β p.t

⌋
DSU -R :: ResetStepp → p.t← 0; p.c← 0

DSU -J :: JoinStepp → p.t←MinTimep; p.c←
⌊
α
β p.t

⌋
bootstrap :: joinp → p.t← ⊥; p.c← ⊥

Consider first link additions only. Adding a link (see the dashed link in Fig. 3) can
break the safety of weak unison on internal clocks. Indeed, it may create a delay greater
than one between two new neighboring t-clocks. Nevertheless, the delay between any
two t-clocks remains bounded by n− 1, consequently, no process will reset its t-clock
(Fig. 3 shows a worst case). Moreover, c-clocks still satisfy strong unison immediately
after the link addition. Besides, since increments are constrained by neighboring clocks,
adding links only reinforces those constraints. Thus, the delay between internal clocks
of arbitrary far processes remains bounded by n − 1, and so strong unison remains
satisfied, in all subsequent static steps. Consider again the example in Fig. 3: before the
dynamic step, pn−1 had only to wait until pn−2 increments pn−2.t in order to be able
to increment its own t-clock; yet after the step, it also has to wait for p0.

0
0
p0 0

1
p1 0

2
p2

0
1
p3 0

2
p4

Fig. 4: Removals.

Assume now a dynamic step containing only process and link re-
movals. Due to Condition UnderLocalControl, the network remains
connected. Hence, constraints between (still existing) neighbors are
maintained: the delay between t-clocks of two neighbors remains
bounded by one, see the example in Fig. 4: process p2 and link
{p0, p3} are removed. So, weak unison on t-clocks remains satisfied
and so is strong unison on c-clocks.

Consider now a more complex scenario, where the dynamic step contains link ad-
ditions as well as process and/or link removals. Fig. 5 shows an example of such a sce-
nario, where safety of strong unison is violated. As above, the addition of link {p1, p6}
in Fig. 5(b) leads to a delay between t-clocks of these two (new) neighbors which is
greater than one (here 5). However, the removal of link {p1, p2}, also in Fig. 5(b), re-
laxes the neighborhood constraint on p2: p2 can now increment without waiting for p1.
Consequently, executing Algorithm SU does not ensure that the delay between t-clocks
of any two arbitrary far processes remains bounded by n − 1, e.g., after several static
steps from Fig. 5(b), the system can reach Fig. 5(c), where the delay between p1 and p2
is 9 while n − 1 = 5. Since c-clock values are computed from t-clock values, we also
cannot guarantee that there is at most two consecutive c-clock values in the system, e.g.,
in Fig. 5(c) we have: p1.c = 1, p6.c = 2, and p2.c = 3.

(a)
1
11

p1

2
12

p2 2
13

p3 2
14

p4

2
15

p52
16

p6
(b)

1
11

p1

2
12

p2 2
13

p3 2
14

p4

2
15

p52
16

p6
(c)

1
11

p1

3
20

p2 3
19

p3 3
18

p4

2
17

p52
16

p6

Fig. 5: Execution where links are added and removed (µ = 6, α = 7, and β = 42).

Again, in the worst case scenario, after a dynamic step, the delay between two neigh-
boring t-clocks is bounded by n− 1. Moreover, t-clocks being computed like in Algo-
rithmWU , we can use two of its useful properties (see [6]): (1) when the delay between
every pair of neighboring t-clocks is at most µ with µ ≥ n, the delay between these
clocks remains bounded by µ because processes never reset; (2) furthermore, from such
configurations, the system converges to a configuration from which the delay between
the t-clocks of every two neighbors is at most one. So, keeping µ ≥ n, processes will
not reset after one dynamic step and the delay between any two neighboring t-clocks
will monotonically decrease from at most n−1 to at most one. Consequently, the delay
between any two neighboring c-clocks (which are computed from t-clocks) will stay at
most one, i.e., weak unison will be satisfied all along the convergence to strong unison.

Consider now a process p that joins the system. The event joinp occurs and triggers
the specific action bootstrap that sets both the clocks p.t and p.c to a specific bootstate
value, noted⊥. By definition and from the previous discussion, the system immediately
satisfies partial unison since it only depends on processes that were in the system be-
fore the dynamic step. Now, to ensure that weak unison holds within a round, we add
the action DSU-J which is enabled as soon as the process is in bootstate. This action
initializes the two clocks of p according to the clock values in its neighborhood. Pre-
cisely, the value of p.t can be chosen among the non-⊥ values in its neighborhood, and
such values exist by Condition UnderLocalControl. We choose to set p.t to the minimum
non-⊥ t-clock value in its neighborhood, using the function MinTimep:
MinTimep = 0 if ∀q ∈ p.N , q.t = ⊥; = min{q.t : q ∈ p.N ∧ q.t 6= ⊥} otherwise.
The value of p.c is then computed according to the value of p.t. Notice thatMinTimep
returns 0 when p and all its neighbors have their respective t-clock equal to ⊥. This en-
sures that Algorithm DSU remains self-stabilizing (in particular, if the system starts in
a configuration where all t-clocks are equal to ⊥).

To prevent the unfair daemon from blocking the convergence to a configuration
containing no ⊥ values, we should also forbid processes with non-⊥ t-clock values to
increment while there are t-clocks with ⊥-values in their neighborhood. So, we define
the predicate Locked which holds for a given process p when either p.t = ⊥, or at least
one of its neighbors q satisfies q.t = ⊥. We then enforce the guard of both normal and
reset actions, so that no Locked process can execute them. See actions DSU-N and
DSU-R. This ensures that t-clocks are initialized first by Action DSU-J , before any
value in their neighborhood increments.

Finally, notice that all the previous explanation relies on the fact that, once the sys-
tem recovers from process additions (i.e., once no ⊥ value remains), the algorithm
behaves exactly the same as Algorithm SU . Hence, it has to match the assumptions
made for SU , in particular, the ones on α and β. However the constraint on µ has to

(a)

0
5

p1 0
6

p2 1
7

p3

0
5

p4 0
5

p5
(b)

0
5

p1 0
6

p2 1
7

p3

0
5

p4 0
5

p5 ⊥
⊥
p6

(c)

0
6

p1 0
6

p2 1
7

p3

0
6

p4 0
5

p5 ⊥
⊥
p6

(d)

1
7

p1 0
6

p2 1
7

p3

0
6

p4 0
5

p5 ⊥
⊥
p6

Fig. 6: Execution where the first step of a new process is delayed (µ = 6, α = 6, β = 42).

be adapted, since µ should be greater than or equal to the actual number of processes
in the network and this number may increase. Now, the number of processes added in a
dynamic step is bounded by #J . So, we require µ ≥ n+#J .

We now consider the example execution of Algorithm DSU in Fig. 6. This execu-
tion starts in a configuration legitimate w.r.t. the strong unison, see Fig. 6(a). Then, one
dynamic step happens (step (a)7→(b)), where a process p6 joins the system. We now try
to delay as long as possible the execution of DSU-J by p6. In configuration (b), p3 and
p5, the new neighbors of p6, are locked. They will remain disabled until p6 executes
DSU-J . p1 and p4 execute DSU-N in (b) 7→(c). Then, p4 is disabled because of p5 and
p1 executes DSU-N in (c) 7→(d). In configuration (d), p1 is from now on disabled: p1
must wait until p2 and p4 get t-clock value 7. p6 is the only enabled process, so the
unfair daemon has no other choice but selecting p6 to execute DSU-J in the next step.

Theorem 3. If UnderLocalControl is satisfied then Algorithm DSU is gradually stabi-
lizing under 1-dynamics for (SPPU • 0, SPWU • 1, SPSU • (µ+ 1)D1 + 2).

After one dynamic step that fulfills Condition UnderLocalControl from any legiti-
mate configuration w.r.t. strong unison, the system re-stabilizes to strong unison in at
most (µ + 1)D1 + 2 rounds. Now, in any other cases (e.g., a dynamic step that does
not satisfy UnderLocalControl), the system still recovers to a legitimate configuration
within finite time, as the algorithm is self-stabilizing. Nevertheless, in such cases, the
stabilization time is slightly bigger: n+#J + (µ+ 1)D1 + 2 rounds.

Finally, we have proven [1] that after stabilization to strong unison, every process
increments its c-clock at least once every D1 +

β
α rounds, like in Algorithm SU . More-

over, during the convergence from weak to strong unison, the increments are slower,
i.e., the c-clocks are guaranteed to increment at least once every µD1 +

β
α rounds.

7 Conclusion

The apparent seldomness of superstabilizing solutions for non-static problems, such as
unison, may suggest the difficulty of obtaining such a strong property and if so, make
our notion of gradual stabilization very attractive compared to merely self-stabilizing
solutions. For example, in our unison solution, gradual stabilization ensures that pro-
cesses remain “almost” synchronized during the convergence phase started after one dy-
namic step satisfying UnderLocalControl. Hence, it is worth investigating whether this
new paradigm can be applied to other, in particular non-static, problems. Concerning
our unison algorithm, the graceful recovery after one dynamic step comes at the price
of slowing down the clock increments. The question of limiting this drawback remains

open. Finally, it would be interesting to address in future work gradual stabilization for
non-static problems in context of more complex dynamic patterns.

References

1. Altisen, K., Devismes, S., Durand, A., Petit, F.: Gradual Stabilization under τ -Dynamics.
Tech. rep. (2015), https://hal.archives-ouvertes.fr/hal-01215190

2. Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step. Parallel Processing
Letters 1, 11–18 (1991)

3. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time optimal self-
stabilizing synchronization. In: STOC. pp. 652–661 (1993)

4. Blin, L., Potop-Butucaru, M., Rovedakis, S.: A super-stabilizing log(n)log(n)-approximation
algorithm for dynamic steiner trees. Theor. Comput. Sci. 500, 90–112 (2013)

5. Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil, S.: Loop-free super-stabilizing span-
ning tree construction. In: SSS. pp. 50–64 (2010)

6. Boulinier, C.: L’Unisson. Ph.D. thesis, Université de Picardie Jules Vernes, France (2007)
7. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In: PODC. pp.

150–159 (2004)
8. Carrier, F., Datta, A.K., Devismes, S., Larmore, L.L., Rivierre, Y.: Self-stabilizing (f,g)-

alliances with safe convergence. J. Parallel Distrib. Comput. 81-82, 11–23 (2015)
9. Couvreur, J., Francez, N., Gouda, M.G.: Asynchronous unison (extended abstract). In:

ICDCS. pp. 486–493 (1992)
10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM

17(11), 643–644 (1974)
11. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems. Chicago

J. Theor. Comput. Sci. 1997 (1997)
12. Dolev, S., Israeli, A., Moran, S.: Uniform Dynamic Self-Stabilizing Leader Election. IEEE

Trans. Parallel Distrib. Syst. 8(4), 424–440 (1997)
13. Genolini, C., Tixeuil, S.: A lower bound on dynamic k-stabilization in asynchronous systems.

In: SRDS. p. 212 (2002)
14. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-stabilizing dis-

tributed protocols. Distributed Computing 20(1), 53–73 (2007)
15. Gouda, M.G., Herman, T.: Stabilizing unison. Inf. Process. Lett. 35(4), 171–175 (1990)
16. Herman, T.: Superstabilizing mutual exclusion. Distributed Computing 13(1), 1–17 (2000)
17. Huang, S., Liu, T.: Four-state stabilizing phase clock for unidirectional rings of odd size. Inf.

Process. Lett. 65(6), 325–329 (1998)
18. Johnen, C., Alima, L.O., Datta, A.K., Tixeuil, S.: Optimal snap-stabilizing neighborhood

synchronizer in tree networks. Parallel Processing Letters 12(3-4), 327–340 (2002)
19. Kakugawa, H., Masuzawa, T.: A self-stabilizing minimal dominating set algorithm with safe

convergence. In: IPDPS. pp. 8.– (2006)
20. Katayama, Y., Ueda, E., Fujiwara, H., Masuzawa, T.: A latency optimal superstabilizing

mutual exclusion protocol in unidirectional rings. J. Parallel Distrib. Comput. 62(5), 865–
884 (2002)

21. Kutten, S., Patt-Shamir, B.: Stabilizing time-adaptive protocols. Theor. Comput. Sci. 220(1),
93–111 (1999)

22. Nolot, F., Villain, V.: Universal self-stabilizing phase clock protocol with bounded memory.
In: IPCCC. pp. 228–235 (2001)

23. Tzeng, C., Jiang, J., Huang, S.: Size-independent self-stabilizing asynchronous phase syn-
chronization in general graphs. J. Inf. Sci. Eng. 26(4), 1307–1322 (2010)

